Supplementary Material:
Discovery of Options via Meta-Learned Subgoals

A Potential negative societal impact

While all AT advances can have potential negative impact on society through their misuse, this work
advances our understanding of fundamental questions of interest to RL and at least at this point is far
away from potential misuse.

B Additional Qualitative Experiments on Gridworld

For the main gridworld results in text, we discovered 4 options (/X = 4, where K is the number of
options; a hyperparameter) and visualised them. This additionally brings a question which is what do
these options look like when this hyperparameter is set to a different value. In this subsection, we
provide visualisations for the options discovered when MODAC is trained with K = 2 (see Fig. [I)
and K = 8 (see Fig.[2).

(a) (b)

Figure 1: Option visualisations on the four-room gridworld when 2 options were discovered. The red
circle approximately marks the destination/subgoal states for each discovered option-policy. Option
(a) led the agent to the upper-left room, whereas option (b) led to either the upper-right or lower-right
rooms depending on the start state.

B.1 Additional Qualitative Visualisations from DeepMind Lab

In addition to the visualisations in the main text, we include here additional visualisations of trajec-
tories obtained by executing all the discovered option-policies on a training task (Fig.[3) and on its
corresponding test task (Fig. ). From these visualisations, it can be observed that each of the option
policy do produce diverse and structured exploratory behaviours in both training and test tasks.

We also include visualisations of a trained MODAC agent picking options to produce behaviour in
order to complete an episode on a training task (Fig.[5) and in its corresponding test task (Fig.[6). In
these Figures, primitive actions are coloured in blue and options are coloured in an arbitrary, different
colour. The agent’s start state and end state are highlighted with white and green circles respectively.
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Figure 2: Option visualisations on the four-room gridworld when 8 options were discovered. The red
circle approximately marks the destination/subgoal states for each discovered option-policy. Option
(b, e, f, g, h) each led the agent to one of the rooms where the training tasks are concentrated. The
options (a, ¢) were similar and seem to move the agent in the left cardinal direction. Option (d) doesn’t
seem to have a well-defined subgoal. We hypothesise that the options (b, e, f, g, h) were picked often
compared to the options (a, ¢, d), during training time, which led them to have well-defined subgoals.

(b)

Figure 3: Sampled Option-Policies on a Training Task. The goal was always in the top-left corner but
not in the line of sight for the agent at the start of the episode. The agent’s starting and end positions
are highlighted by white and green circles. Each figure shows a trajectory by following each of the 5
discovered options.

Figure 4: Sampled Option-Policies on a Test Task. The goal was always in the top-left corner but not
in the line of sight for the agent at the start of the episode. The agent’s starting and end positions are
highlighted by white and green circles. Each figure shows a trajectory by following each of the 5
discovered options (which are obtained from the training phase).

These figures show that the MODAC agent relies on picking options for producing behaviour in both
training and test task, thus validating that our approach does indeed learn reusable and transferrable
options, which is the primary reason behind their improved transfer performance.

B.2 Additional Experiments on Atari

Here, we study the question of whether MODAC can discover options in Atari games from unsuper-
vised learning tasks that could become useful to rélaximise the game score at test time.



Figure 5: Option Execution by a Manager on a Training Task. The figures show 5 distinct samples
of trajectories generated by a manager with access to both discovered options (marked in arbitrary
colours) and primitive actions (in blue). The agent’s starting and final positions are highlighted by a
white and green circles, respectively. In all cases, the agent successfully reaches the goal by using a
mixture of primitive actions and discovered options.

Figure 6: Option Execution by a Manager on a Test Task. The figures show 5 distinct samples of
trajectories generated by a manager with access to both discovered options (obtained from the training
phase; marked in arbitrary colours) and primitive actions (in blue). The agent’s starting and final
positions are highlighted by a white and green circles, respectively. In all cases, the agent successfully
reaches the goal by using a mixture of primitive actions and discovered options.

Atari games, unlike DeepMind Lab tasks, have mutually inconsistent game dynamics and thus the
problem of discovering options useful across distinct games would require significant new work on
a separate problem, that of learning cross-game abstractions that can then support shared options.
Therefore, we considered each Atari game as a separate test domain and, instead, procedurally
generated multiple training tasks within each game. Specifically, we used pixel-control tasks, defined
by Jaderberg et al.| (2016)), as our set of generated unsupervised training tasks. Those tasks were
quite different from the test task, which was the usual task of maximising the Atari game score.
Importantly, in defining the training tasks, we ignored episode terminations in the pixel-control task
definition to avoid any information leaks from the test task. The challenge for MODAC was to
use the generated pixel-control tasks to discover options that could speed up learning if provided
to a randomly initialised manager solving the corresponding Atari game. Note that this is quite
different from the typical use of pixel-control tasks, where they are used to aid learning of good state
representations. In our case, the manager policy did not share any weights with the option-policy and
termination networks, therefore any improvements in learning efficiency can only be attributed to the
options themselves, and not to representation learning.

Quantitative Analysis: We choose 4 Atari games (Boxing, Hero, MsPacman, Riverraid), where
pixel-control was separately found useful for representation learning. We discovered 5 options (with a
switching cost ¢ = 0.1), and their average length was 7 steps. Fig.[7]shows the transfer performance of
a randomly initialised manager, when given access to the pre-trained options discovered by MODAC
on the pixel-control tasks defined on the corresponding Atari game. In all 4 games, the agent that had
access to the options discovered by MODAC learned to maximise game-score rewards much faster
than a Flat agent learned using primitive actions alone. We measured the distribution of the manager’s
choices at transfer time and observed that options were selected 60.79% of the time, which implies
that our discovered options were responsible for agent’s performance. In MsPacman, the Flat agent
learned faster but saturated at a lower level, perhaps showing that the use of options during transfer
can help explore better. This is consistent with the findings by [Tessler et al.|(2017)) that options help
initially for exploration. In all 4 games, the transfer-learning performance of MODAC is much better
than the transfer-learning performance of MLSH and Option-Critic.
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Figure 7: Transfer experiments on Atari games. Figures show the performance of different agents
learning to maximise rewards from the main task while having access to options discovered from
pixel-control tasks defined on that same game. MODAC with discovered options learned faster in all
4 Atari games and thereby was able to achieve better asymptotic performance on 3 of these 4 Atari
games.

Note that during the training phase, options were discovered from the pixel-control training tasks by
ignoring the episode terminations (i.e., unsupervised). This was done deliberately in order to avoid
leaking of any task-relevant information from the test task (which is to maximise the Atari game
score). Here, we look at the effect of discovering options when episode terminations are not ignored.
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Figure 8: Transfer experiments on Atari games. Figures show the performance of MODAC agents
learning to maximise rewards from the main task while having access to options discovered from
pixel-control tasks defined on the same game. The figure compares MODAC agents whose options
were discovered by ignoring (in blue) and including (in red) the episode termination.

In Figure [8] we present learning curves of the MODAC agent with options discovered with and
without episode terminations from the training task. From these, we can see that MODAC agent with
options discovered by ignoring the episode terminations learns a little faster than its counterpart that
included episode terminations in 2 out of 4 games (namely, MsPacman, Boxing). In Hero, ignoring
the episode terminations seems to allow MODAC to achieve a stable asymptotic performance, and in
Riverraid, there does not seem to be any visible difference in performance.

B.3 Objective and Update Equations for Discovering Option-Rewards and Terminations
Using Meta-gradients

The objective of MODAC is to discover the parameters of the option-rewards {n’“oi } and terminations
{n?""} so as to maximise the hierarchical agent’s performance G through the parameters of the
option-policies {6°} that they induce. One way of accomplishing this objective is by measuring a
change in the option-rewards and terminations on the hierarchical agent’s performance through the
change they induce in the option-policies.

Recall that the parameters of option-policies are learned to maximise their corresponding option-
rewards, with discounts applied with corresponding option-terminations, on the local trajectories that
they produced; while the parameters of the manager’s policy " are learned to maximise extrinsic
rewards (see Eqns. 1, 2 from main text).

The objective for option-rewards and option-terminations is to maximise the following:
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where the n-step return for the manager is defined as: G = 3" Y71 =y e+ oM (s4),
and c is the switching cost. The expectation of the agent’s performance is over the parameters of
option-policies, manager’s policy and set of training tasks G.

Using the score-function estimator (similar to its use in the policy-gradient theorem (Sutton et al.|
2000)) and chain-rule, we can obtain the update equation for the option-rewards and terminations as
follows:
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where #°' refers to the inner-loop option-policy parameters obtained by making an inner-loop update,
given produced by Eqn. 1 (thus, they are differentiable w.r.to option-rewards and terminations).

The gradients for parameters of the option-rewards """ and terminations 1°”* are obtained by
following a policy-gradient update to maximize extrinsic returns G . The policy for the learning
agent can be viewed to be a factored policy which is composed of the manager’s policy which selects
an option and this selected policy then selects an action which is executed in the environment. The
meta-gradient is then computed by differentiating through this factored policy where the parameters
of the manager and option-policies are obtained after (atleast) an inner-loop update (In our work,
we performed 5 inner-loop updates). The gradient term for the option-rewards and terminations (i.e
meta-parameters) are approximate because it ignores the effect of a change in option-rewards and
terminations on the manager’s policy. The update term only captures the direct dependence of the
meta-parameters on the option-policies.
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The update equations are a stochastic gradient update and are computed over samples obtained from
the environment. They are used according to how they are described in Alg. 1, where multiple
inner-loop updates are performed per outer-loop update to option-rewards an terminations. Since

the gradients for option-rewards and terminations are computed through the parameters of the
option-policies, we call them meta-gradients.

B.4 Neural Network Architecture

The MODAC agent, which consists of a manager, option-policy, option-reward and option-termination
network, uses an identical torso architecture for all of them; and details about the torso are described
below.

Gridworld: The neural net torso consisted of a 2-layer CNN each with 32 filters (filter size = 2 x 2,
with stride length = 1). The activations from the CNN were transformed by a single fully-connected
layer of size 256.

DeepMind Lab: We use a Deep ResNet torso identical to the one from [Espeholt et al.| (2018)), with an
additional LSTM layer (with 256 hidden units) after the feed-forward torso.



Atari: We use a Deep ResNet torso identical to the one from [Espeholt et al.| (2018)).

All layers of the neural network use a ReLU activation function in the intermediate layers. The output
layers of the option-reward and option-termination function use a arctan and sigmoid activations
respectively.

For the training phase in the gridworld, the task information was added as an additional channel to the
input image, which was given as input to the manager network. In DeepMind Lab and Atari, during
training, we obtain the task information as a one-hot vector from the environment and is passed
through an embedding network to produce a 128-dimensional vector. This vector is concatenated
with the feed-forward produced by the Deep ResNet torso of the manager network, which is then
used for subsequent computations to produce the manager’s policy.

‘We also used identical architecture choices for the hierarchical baselines.

B.S Preprocessing

For both DeepMind Lab and Atari domains, the input to the learning agent consists of 4 consecutively
stacked frames where each frame is a result of repeating the previous action for 4 time-steps,
greyscaling and downsampling the resulting frames to 84 x 84 images, and max-pooling the last 2.
These are fairly canonical preprocessing pipeline applied to DeepMind Lab and Atari environments,
and additionally, rewards are clipped to the [-1, 1] range.

B.6 Hyperparameters

For both hierarchical and flat agents (MODAC, Option-Critic, MLSH, actor-critic), we tuned the
following hyperparameters: entropy weight and learning rate. In the case of the hierarchical agents,
we tied the entropy weights for manager and option-policies to take the same value. Similarly, we
also tied the learning rates used for training the parameters of the manager and option-policies.
For MODAC, we used a single learning rate for learning the parameters of option-reward and
option-termination.

The hierarchical agents also include a switching cost hyperparameter, which is separately tuned for
each agent.

We tuned the hyperparameters for each agent separately and then used a single set of hyperparameters
across all DeepMind Lab and Atari environments, for each agent (which is usually the norm in many
Deep RL work). The hyperparameters that we found for MODAC after tuning are reported in Table [T}

We considered the following set of values {0.0001,0.001,0.01,0.03} for tuning the entropy weights
and correspondingly {0.0001,0.0003, 0.0006, 0.001, 0.003} for the learning rates. For switching
cost, we searched over {0,0.0001,0.001,0.01,0.03,0.05,0.07,0.1}. Furthermore, we used RM-
SProp as the optimiser for updating the parameters of the learning agents.

B.7 Experimental Setup for DeepMind Lab

For our experiments on DeepMind Lab, we evaluated our approach on 4 different task sets, where
each set corresponds to a different navigation problem. Each set consists of a training task and a test
task; In all our task sets, the training task is simpler to learn for an actor-critic agent when compared
to the test task. Below, we provide the names of the tasks from the four task sets and these are taken
from the suite of DeepMind Lab tasks (Beattie et al., [2016)).

Set No. | Training Task Test Task
1 explore_goal_locations_small explore_goal_locations_large
2 explore_object_rewards_few explore_object_rewards_many
3 explore_object_locations_small  explore_object_locations_large
4 explore_obstructed_goals_small  explore_obstructed_goals_large

In both these the training and test tasks, the layout of the maze is procedurally generated, for every
episode. Furthermore, the agent’s start state is randomly initialised; the goal locations (for Set 1, 4),
number of objects (for Set 2) and object locations (for Set 3) are also procedurally generated.



B.8 Baselines

We compare MODAC with the following three baseline agents in all our experiments. The first two of
them are hierarchical agents that discover options/skills using their respective approaches, while the
third is a non-hierarchical flat actor-critic agent. Note that the Hierarchical RL baselines (i.e., MLSH
and Option-Critic) also learn to select among the union of options and primitive actions, identical
to our MODAC agent. Hierarchical RL baselines also use an architecture identical to that of our
MODAC agent.

Meta-Learned Shared Hierarchies (MLSH) (Frans et al.|[2017): The manager and option-policies are
independently trained using an actor-critic update. The manager learns its policy by maximising task
rewards; workers learn option-policies by maximising task rewards on the local trajectories generated
whenever they were picked. The time scale of the workers is a fixed hyper-parameter. We tuned this
via a search, and it is set to 5 in gridworld experiments and to 10 in Atari and DeepMind Lab.

Multi-task extension of the Option-Critic with Deliberation Cost (Harb et al.,[2018)): The original
Option-Critic with deliberation cost was designed for a single-task setting. It uses a manager and
a set of workers, which learn their policies by optimising task rewards. The workers also learn a
termination through the task-value function. We extend this to our multi-task setting, mirroring the
architectural choices of our agent: the manager learns a task-conditional policy, while the workers
learn task-independent policies and terminations.

Non-Hierarchical Actor-Critic (Flat): In addition to the two hierarchical baselines described above,
we also compare against a vanilla, non-hierarchical, actor-critic agent.

B.9 Resource Usage

The average running time for each agent on the DeepMind Lab training tasks is reported below. For
the hierarchical agents, the running time that during the training phase are reported is significantly
higher than that of the flat actor-critic agent, as they are simultaneously learning to solve the training
tasks and discover options. In the test phase, the hierarchical agents reuse their discovered options,
and as a result, their running times are similar to that of the flat actor-critic agent.

Agent Running Time
Actor-Critic | 3 hours 10 mins
MLSH 4 hours 31 mins
Option-Critic | 4 hours 46 mins
MODAC 5 hours 56 mins

B.10 Computing Infrastructure

We run our experiments using a distributed infrastructure implemented in JAX (Bradbury et al.l | 2018).
The computing infrastructure is based on an actor-learner decomposition (Espeholt et al., [2018)),
where multiple actors generate experience in parallel, and this experience is channelled into a learner
via a small queue. Both the actors and learners are co-located on a single machine, where the host is
equipped with 56 CPU cores and connected to 8 TPU cores (Jouppi et al.,[2017)). To minimise the
effect of Python’s Global Interpreter Lock, each actor-thread interacts with a batched environment;
this is exposed to Python as a single special environment that takes a batch of actions and returns a
batch of observations, but that behind the scenes steps each environment in the batch in C++. The
actor threads share 2 of the 8 TPU cores (to perform inference on the network), and send batches of
fixed size trajectories of length T to a queue. The learner threads takes these batches of trajectories
and splits them across the remaining 6 TPU cores for computing the parameter update (these are
averaged with an all reduce across the participating cores). Updated parameters are sent to the actor
TPU devices via a fast device to device channel as soon as the new parameters are available. This
minimal unit can be replicates across multiple hosts, each connected to its own 56 CPU cores and 8
TPU cores, in which case the learner updates are synced and averaged across all learner cores (again
via fast device to device communication).



B.11 JAX-like Pseudocode

In this section, we provide a detailed pseudocode which shows how the learning updates are performed
to the manager, option-policy, option-reward and option-termination network parameters. The source
code depends on many proprietary software packages and so could not be released. The starting
point for this pseudocode in the update_all_params fn, which takes in the parameters of the
learning agent (theta refers to the option-policy network; eta to option-reward and termination
network; manager_params to the manager network) along with their optimiser states. The function
also takes a sequence of transitions produced by interacting with the environment. The algorithm,
using the sequence of transitions and through this function, applies a number of inner updates to
the option-policy parameters. Then, the final inner-loop updated option-policy parameters are used
to evaluate the outer-loss, which is used to compute gradients for the option-reward and option-
termination network parameters (via a meta-gradient). The final option-policy, option-reward and
option-termination parameters are returned along with their updated optimiser states which are used
in subsequent training updates. In addition to these updates, the sequence of transitions are used to
make a learning update to the manager’s policy parameters; the updated parameters and optimiser
state are also returned as output.

The _inner_loss and _outer_loss fns computes the loss function for the option-policy and option-
reward (and termination) network respectively. The loss function for option-policy is parameterised
by the option-rewards and terminations, while the loss function for the option-policy and terminations
is defined with the extrinsic rewards accumulated by the manager’s policy. Computing gradients and
making learning updates using these loss fns produces the learning updates for those parameters,
identical to the Eqns. 1, 5. Similarly, _manager_loss and _manager_update fns produces learning
updates to manager’s parameter according to Eqn. 2.

def _inner_loss(theta, traj, eta):
# Inner loss fn: Computes actor—critic style loss using option—policies (theta) &
# option—-rewards and terminations (eta)
discounts = traj.discount[1:] * discount
# Unroll the option—policy network to obtain each option—policy and its associated value fn
# Recall that the option—policy network does not receive the task information
learner_output = worker.unroll (theta, traj.reduced_observation)
# Unroll the option-reward and termination network to
# produce the rewards and terminations for all option—policy
meta_output = meta.unroll(eta, traj.reduced_observation)
cumulants = meta_output.cumulants[:—1]
option_discounts = meta_output.worker_discounts[1:]

pg_loss, vf_loss, ent_loss = 0., 0., 0.
# Iterate over the number of option—policies
for option_policy_idx in range(num_option_policies):
# Obtain option-rewards (called as cumulants) for the current indexed option—policy
cumulants_per_worker = cumulants[:, option_policy_idx]
option_discount_per_worker = option_discounts[:, option_policy_idx]
actions_per_worker = traj.action_tml[l:, option_policy_idx]
cumulants_per_action = jnp.take_along_axis(
cumulants_per_worker, actions_per_worker[..., None],
axis=—1).squeeze (axis=—1)
# Masks out the loss for transitions not produced by the current indexed option—policy
mask_for_update = traj.worker_masks[1l:] == worker_idx

value_output_per_worker = learner_output.value[:—1, option_policy_idx]
logits_per_worker = learner_output.logits[:—1, option_policy_idx]
bootstrap_value_per_worker = learner_output.value[l:, option_policy_idx]
discounts_per_worker = discounts * mask_for_update * option_discount_per_worker
targets_per_worker = discounted_return_f£fn(
cumulants_per_action, discounts_per_worker,
stop_gradient (bootstrap_value_per_worker), 1.)



advantages = targets_per_worker — stop_gradient(value_output_per_worker)

vf_loss += jnp.square/(
(value_output_per_worker — targets_per_worker) * mask_for_update).mean()
pg_loss += policy_gradient_loss(
logits_per_worker, actions_per_worker, advantages, mask_for_update)
ent_loss += entropy_loss(logits_per_worker, mask_for_update)
return pg_loss + 0.5 * vf_loss + 0.01 * ent_loss

def inner_loss(theta, eta, traj):
inner_loss_val = jax.vmap(_inner_loss, (None, 1, None))(theta, traj, eta)
return inner_loss_val.mean()

def inner_update(theta, theta_opt_state, theta_opt_update, traj, eta):
# Inner update: Updates option—policies using option—rewards and terminations
grads = jax.grad(inner_loss) (theta, eta, traj)
updates, new_theta_opt_state = theta_opt_update(grads, theta_opt_state)
new_theta = optax.apply_updates(theta, updates)
return new_theta, new_theta_opt_state

def _outer_loss(theta, traj, manager_params):
# Outer loss fn: Computes actor—critic style loss using the updated option—policy params (theta)
# Unroll the option—policy network to obtain each option—policy and its associated value fn
# Recall that the option—policy network does not receive the task information
learner_output = option_policy.unroll(theta, traj.reduced_observation)
# Unroll the manager network to obtain its policy and value fn
manager_output = manager.unroll (manager_params, traj.observation)

rewards = traj.reward[1l:] — switching_cost * traj.manager_masks[:—1]
discounts = traj.discount[1:] * discount
returns = discounted_return_fn(rewards, discounts, manager_output.value[—1]))
advantages = stop_gradient(returns — manager_output.value[:—1])
pg_loss, ent_loss = 0., 0.
# Iterate over the option—policies, computing its outer—loss
for option_policy_idx in range(num_option_policies):
# Mask out the loss for transitions not produced by the current indexed option—policy
mask_for_update = traj.worker_masks[1:] == option_policy_idx
logits_per_worker = learner_output.logits[:—1, option_policy_idx]
actions_per_worker = traj.action_tml[l:, option_policy_idx]
pg_loss += policy_gradient_loss(
logits_per_worker, actions_per_worker, advantages, mask_for_update)
ent_loss += entropy_loss(logits_per_worker, mask_for_update)
return pg_loss + 0.01 * ent_loss

def outer_loss(eta, theta, theta_opt_state, manager_params, trajs, theta_opt_update):
# Iterate over the sequence of trajectories,
# performing a sequence of updates to the option—policy params (theta)
for j in range(len(trajs) — 1):
theta, theta_opt_state = inner_update(

theta, theta_opt_state, theta_opt_update, trajs[j]l, eta)
# Use the final option—policy param to evaluate the outer—loss
outer_loss_val = jax.vmap(_outer_loss, (None, 1, None))(

theta, trajs[—1], manager_params)

# Applies update to option—policy on the last batch of trajectory
# that was used in evaluating the outer—loss
theta, theta_opt_state = inner_update(

theta, theta_opt_state, theta_opt_update, trajs[—1], eta)
return outer_loss_val.mean(), (theta, theta_opt_state)



def outer_update(eta, theta, manager_params, eta_opt_state, theta_opt_state,
trajs, eta_opt_update, theta_opt_update):
# Outer update: M inner updates of option—policies and then use that for computing outer—loss,
# which is used to obtain meta—gradients for option—rewards and terminations (eta)
eta_grads, (new_theta, new_theta_opt_state) = jax.grad(outer_loss, has_aux=True) (
eta, theta, theta_opt_state, manager_params, trajs, theta_opt_update)
updates, new_eta_opt_state = eta_opt_update(eta_grads, eta_opt_state)
new_eta = optax.apply_updates(eta, updates)
return new_eta, new_eta_opt_state, new_theta, new_theta_opt_state

def _manager_loss(manager_params, traj):
# Manager loss fn: Computes actor—critic style loss for manager’s policy
# Adds a switching cost whenever the manager makes a decision
rewards = traj.reward[1l:] — switching_cost * traj.manager_masks[:—1]
discounts = traj.discount[1l:] * discount
# Unroll the manager network to obtain its policy and value estimates
manager_output = manager.unroll (mu, traj.observation)

returns = discounted_return_fn(rewards, discounts, manager_output.value[—1])

advantages = stop_gradient(returns — manager_output.value[:—1])

# Computes policy—gradient, value fn and entropy regulariser losses

# Apply the policy—gradient and entropy regulariser

# on the transitions where the manager made a decision

pg_loss = policy_gradient_loss(manager_output.logits[:—1], traj.worker_masks[1l:],
advantages, traj.manager_masks[:—1])

vf_loss = jnp.square(manager_output.value[:—1] — returns).mean()

ent_loss = entropy_loss(manager_output.logits[:—1], traj.manager_masks[:—1])

return pg_loss + 0.5 * vf_loss + 0.01 * ent_loss

def manager_loss(manager_params, trajs):
# Evaluates the manager’s policy performance on the batch of trajectories
losses = jax.vmap(_manager_loss, (None, 1)) (manager_params, trajs)
return losses.mean()

def manager_update (manager_params, manager_opt_state, manager_opt_update, trajs):
# Manager update: Updates the manager’s policy after
# evaluating its performance on batch of trajectories
grads = jax.grad(manager_loss) (manager_params, trajs)
updates, new_manager_opt_state = manager_opt_update(grads, manager_opt_state)
new_manager_params = optax.apply_updates(manager_params, updates)
return new_manager_params, new_manager_opt_state

def update_all_params(theta, theta_opt_state, theta_opt_update, eta, eta_opt_state, eta_opt_update,
manager_params, manager_opt_state, manager_opt_update, trajs):
# Updates option—policies (theta), option—reward and termination (eta) params
new_eta, new_eta_opt_state, new_theta, new_theta_opt_state = outer_update(
eta, theta, manager_params, eta_opt_state,
theta_opt_state, trajs, eta_opt_update, theta_opt_update)
# Updates manager params
new_manager_params, new_manager_opt_state = manager_update(
manager_params, manager_opt_state, manager_opt_update, trajs)
return new_theta, new_theta_opt_state, new_eta, new_eta_opt_state,
new_manager_params, new_manager_opt_state
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General Hyperparameters Value
Number of environment steps 200M
n-step return 20
Batch size 32
Number of learners 1
Number of parallel actors 200
Learning rate schedule Constant
Manager, Option-Policies Value
Value loss coefficient 0.5
Entropy coefficient 0.01

Learning rate
Switching cost

0.0006 (Atari), 0.0001 (DeepMind Lab)
0.1 (Atari), 0.03 (DeepMind Lab)

Number of Options 5
RMSProp momentum 0.0
RMSProp decay 0.99
RMSProp € 0.01
Global gradient norm clip 40
Option-Rewards, Option-Terminations Value
Meta-gradient norm clip 1
Learning rate 0.0001
RMSProp momentum 0.0
RMSProp decay 0.99
RMSProp € 0.01
Inner update steps 5

Table 1: Detailed hyperparameters used by MODAC.
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