A. Related Work

The recognition and classification of hand shadow puppet
images are intriguing problemspaces in the context of deep
learning, albeit relatively underexplored. After rigorously
analyzing the existing pool of research on the topic, we
could identify several quasi-related works.

A.1. Image Classification and Recognition

Among the pioneering endeavors in hand shadow image
classification was that of Huang et al. [22], who created
SHADOW VISION—a system to emulate an immersive vir-
tual shadow puppet theater experience, employing a user’s
hand gestures over an overhead projector to control the cre-
ation and manipulation of objects within a 3D Open Inven-
tor' environment. The chain of stages underlying the im-
plementation of SHADOW VISION were acquisition, seg-
mentation, feature extraction, and recognition of the in-
frared shadow puppet images. They also adopted a 3-layer
neural network and the centralized contour moments mod-
eling technique, using 13 features (7 moments of the ob-
ject, length, angle, and the 4 endpoints of the axis of iner-
tia). The data used for this study isn’t publicly available,
and the methodology can be deemed somewhat obsolete in
the modern purview, due to being supplanted by the emer-
gence of deep learning models. Some recent works ex-
plore different convolutional models to assess their efficacy
in Indonesian shadow puppet recognition. Sudiatmika and
Dewi [55], Sudiatmika et al. [56] used the deep CNN mod-
els, ALEXNET [27] and VGG-16 [52], and constructed a
dataset of 2,530 images spanning 6 classes of puppets from
museums in Bali. They also experimented with other con-
volutional models, such as MASK R-CNN [16] and MoO-
BILENET [19], in two separate studies [44, 57].

In a similar spirit, our work is an endeavor towards es-
tablishing a performance benchmark of the recent SOTA
feature extractor models for hand shadow puppet contour
images, in a more large-scale and comprehensive manner.

A.2. 3D Modeling and Human Motion Capture

One of the earliest works involving silhouettes is a study
by Brand [5] that explored the mapping of monocular
monochromatic 2D shadow image sequences of humans to
animated 3D body poses, using a configural and dynami-
cal manifold created from data with a topologically special
hidden Markov model (HMM), acquired via the process of
entropy minimization without resorting to any articulatory
body model. Several advances in vision-based human mo-
tion capture and analysis since then have leveraged human
silhouette templates [7, 42], more specifically, hand and fin-
ger silhouettes [65—-67].
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A.3. Robotics

Huang et al. [23] introduced computer vision-aided shadow
puppetry with robotics by matching shape correspondences
of input images. They claimed that due to the physical lim-
itations of human arms, it is often not feasible to construct
complex shadow forms. Instead, they developed a frame-
work that enabled them to produce shadow images with the
mechanical arms of a robot. The authors built a library of
shadow images and used them to orient the robotic arms
into a formation resembling the intended shadow puppet.
The data used for this study isn’t publicly available.

A.4. Human-Computer Interaction

The authors of [75] proposed a framework for controlling
two Chinese shadow puppets—a human model and an ani-
mal model, with the use of body gestures via a Microsoft
Kinect sensor. Carr and Brown [6] conducted a similar
work by building a real-time Indonesian shadow puppet sto-
rytelling application that is capable of mimicking the full-
body actions of the user, using the Microsoft Kinect sensor.
In order to leverage contactless gesture recognition (CGR)
to teach traditional Chinese shadow puppetry to beginners,
Tsai and Lee [64] developed a system using Leap Motion
sensors. These studies on digitizing the art of shadow pup-
petry, or puppetry in general, were influenced to some ex-
tent by other similar works in the gesture recognition do-
main [12, 13, 29, 30, 36, 71]. Tang et al. [63] developed
an intelligent shadow play system, called SHADOWTOUCH,
which includes a multidimensional somatosensory interac-
tion module coupled with an automatic choreography mod-
ule, to facilitate natural interaction between the shadow play
figures and the human users.

The motif of our work tessellates well with the core ob-
jectives of the aforementioned research works. The utiliza-
tion of digitized traditional arts serves as a means to pre-
serve their inherent legacies, and HASPER can be a potent
contribution to the contemporary pool of resources to facil-
itate such innovative digitization for ombromanie.

B. Experimental Setup: Additional Details

B.1. RESNET34 Architectural Enhancements

B.1.1. Silhouette Polygonization

We augment RESNET34 with handcrafted polygonal fea-
tures extracted from the silhouette contours of hand shadow
puppets, using Douglas-Peucker approximation [10] and
geometric shape descriptors [74]. These features capture
structural cues such as convexity, angularity, and polygo-
nal regularity that complement the visual representations
learned by the CNN feature extractor model. Hand shadow
puppets inherently possess distinct geometric forms and
outlines, which traditional CNNs might implicitly learn but
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Figure 13. Comparison of polygonal approximations for a hand
shadow puppet silhouette.
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not explicitly represent. To augment the classification pro-

cess with this crucial geometric information, we test the

integration of features derived from polygonal approxima-
tions and contour analysis.

1. Silhouette Preprocessing: The input image is first
converted to grayscale and then binarized using Otsu’s
method [43]. Morphological closing and opening op-
erations [51] are subsequently applied to remove small
holes, smooth contours, and eliminate noise, ensuring a
clean and consistent silhouette.

2. Basic Contour Properties: For the largest detected con-
tour (representing the main puppet silhouette), funda-
mental geometric properties (area, perimeter, compact-
ness, aspect ratio, solidity) are computed using OpenCV
[25].

3. Convexity Defects Analysis: Hand shadow puppets of-
ten feature distinct “finger-like” protrusions and inden-
tations. We analyze convexity defects (the regions be-
tween the contour and its convex hull) to quantify these
characteristics. Features include the number of signif-
icant defects, as well as the mean, standard deviation,
and maximum depth of these defects. A specific check
is incorporated to identify “finger-like” defects based on
their depth relative to the perimeter and the sharpness of
the angle at the defect point.

4. Hu Moments: These are seven scale, rotation, and
translation-invariant moments derived from the central
moments of the contour [20]. Hu moments are powerful
shape descriptors, capturing intrinsic characteristics re-
gardless of the puppet’s position, size, or orientation in
the image. We use their logarithmically scaled values for
better numerical stability.

5. Ellipse Fitting: An ellipse is fitted to the main contour,
and the ratio of the contour’s area to the fitted ellipse’s
area is computed. This metric provides insight into how
well the silhouette can be approximated by an elliptical
shape.

6. Polygon Approximation Features: The Douglas-
Peucker algorithm (cv2.approxPolyDP) [10] is
used to simplify the contour into a polygon with a re-
duced number of vertices, controlled by an epsilon (€)
factor (as evident in Fig. 13).

7. Skeleton-Based Features: A morphological skeleton
of the binary silhouette is generated [28]. This skele-

ton represents the medial axis of the shape and provides
valuable structural information.
* Skeleton Ratio: The ratio of skeleton pixels to total sil-
houette pixels, indicating the “thinness” of the shape.
e Branch Points and Endpoints: The counts of these
critical points on the skeleton, which correspond to
junctions and extremities (like fingertips) in the hand
shadow puppet.
These features collectively form a robust and comprehen-
sive polygonal descriptor vector, explicitly encoding ge-
ometric characteristics that are highly relevant for distin-
guishing between different hand shadow puppet forms.

B.1.2. Topological Features

This variant integrates RESNET34 with topological de-

scriptors derived from skeletonized silhouettes, including

branch/end-point counts and skeleton-to-area ratios [3, 28].

Such features model the internal articulation and connec-

tivity of hand shapes, enabling finer discrimination of visu-

ally similar gesture classes. While CNNs excel at extract-
ing hierarchical and abstract visual patterns, they may not
explicitly capture the fundamental “shape” or connectiv-
ity of objects, which is crucial for silhouette-based recog-
nition. To address this, we integrate topological features
derived from persistent homology [11] into the classifica-
tion pipeline. The topological feature extraction module
is designed to quantify intrinsic shape properties invariant
to continuous deformations, such as stretching or bending.

This is particularly relevant for hand shadow puppets, where

variations in hand posture can alter geometric appearance

while preserving the underlying topological form.

1. Betti Curves (Simplified Persistent Homology): We
approximate Betti numbers by analyzing the image at
various filtration levels (thresholds from 0 to 1). Sy
is the number of connected components, reflecting the
fragmentation or unity of the silhouette. [ is an esti-
mation of the number of “holes” or loops within the sil-
houette. We derive this by considering the difference in
pixel counts between the binary image and its morpho-
logically filled counterpart, normalized to reduce sensi-
tivity to small noise. These Betti curves provide a multi-
scale topological signature of the image.

2. Critical Points Analysis: We identify local maxima
and minima within the smoothed grayscale image. The
counts and densities (normalized by total pixels) of these
critical points offer insights into the image’s “peaks”
and “valleys,” which correspond to salient features of
the silhouette’s shape.

3. Morphological Features: Standard morphological op-
erations, opening and closing, are applied to the binary
silhouette at various kernel sizes (3, 5, 7). The ratio of
pixels in the opened/closed image to the original binary
image’s pixel count provides measures of the object’s ro-
bustness to small protrusions/indentations and its overall



compactness.

4. Euler Characteristic at Multiple Scales: The Euler
characteristic (y = connected components — holes) is
a fundamental topological invariant. We compute this
characteristic at different binarization thresholds (0.3,
0.5, 0.7) to capture how the global topology of the sil-
houette evolves across different levels of detail.

5. Gradient-Based Features: To capture edge informa-
tion, Sobel filters are used to compute horizontal and ver-
tical gradients. Statistical properties (mean, standard de-
viation, 90th percentile) of the gradient magnitude pro-
vide a summary of the image’s edge strength and com-
plexity.

6. Contour-Based Features: Utilizing OpenCV’s contour
detection, we extract features directly from the silhou-
ette’s boundaries. This includes the number of distinct
contours, and the mean and standard deviation of their
areas and perimeters. These features directly character-
ize the complexity and size of the hand shadow’s outline.

These diverse topological features are concatenated into a

single, fixed-dimension vector, designed to provide a com-

prehensive, invariant representation of the silhouette’s in-
herent shape.

B.2. Performance Metrics

We use top-k validation accuracy values (with £k = 1,2, 3),
Precision, Recall, and Fl-score as evaluation metrics to
perform comparative analyses among the aforementioned
models. The latter three judgment criteria are used due to
the slightly imbalanced nature of HASPER’s professional
source clips, as evident in Tab. 1.

B.3. Hyperparameters and Optimizer

We use Stochastic Gradient Descent (SGD) [26], with a
learning rate o = 0.001 and momentum ~ = 0.9, as the op-
timizing method, and Cross Entropy Loss as the loss metric
for all the models. To decay the learning rate, we use Step
Scheduler, which decays « by 0.1 every 5 epochs. Each
model undergoes training for 50 epochs to ensure equitable
comparison, and we empirically ascertain that 50 epochs are
sufficient for all of the models to achieve convergence.

B.4. Data Augmentation and Preprocessing

In order to generate a more diverse pool of training samples,
we also incorporate data transformation techniques'' —
Random Resize, Random Perspective, Color Jitter, Ran-
dom Invert, Random Horizontal Flip, Random Crop, Ran-
dom Rotation, Gaussian Blur, and Random Affine with
translation and shearing—while training the models. We
choose these data augmentation techniques since the classes
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in HASPER are mostly rotationally asymmetric and incon-
gruent. Consequently, the augmented samples aid in elicit-
ing better generalization abilities and robustness for all the
models. The input images that are fed to the models are
appropriately resized a priori using Bicubic Interpolation.

C. Feature Space Visualization and Analysis

In order to visualize the learned feature space of
RESNET34, we resort to the dimensionality reduction tech-
nique called ¢-Distributed Stochastic Neighbor Embedding
[69] since it can preserve the proximity of high-dimensional
data points. For high-dimensional data residing on or prox-
imate to a low-dimensional, non-linear manifold, it be-
comes imperative to preserve this proximity of the col-
lapsed low-dimensional representations for closely resem-
bling data points. Achieving such proximity preservation
is often unattainable through linear mappings such as Prin-
cipal Component Analysis (PCA), which is why we opt
for the ¢-SNE dimensionality reduction approach. We can
pragmatically infer from the 2D-collapsed visualizations of
the high-dimensional feature representations in Fig. 14, that
the classes are nicely clustered and congealed with minimal
overlaps and outliers. This enables the model to easily de-
termine the decision surface in the high-dimensional feature
space and perform very well on the classification task.

D. Additional Requirements for Teaching App

The system must operate with minimal computational over-
head, ensure real-time responsiveness, and maintain low la-
tency. This necessitates a pragmatic tradeoff between the
FLOP count and classification accuracy, with the requisite
model compression and optimization techniques. Given the
potential variability in device camera capabilities, the ap-
plication must have preprocessing steps including, but not
limited to, denoising, adaptive contrast enhancement, and
sharpening the input feed to mitigate artifacts. In recogni-
tion of the diverse motor capabilities of users, particularly
younger learners and users with dexterity impairments, the
application must have intelligent motion compensation to
stabilize the shaky camera inputs. Adding to the desider-
ata is the consideration of a suitable UI/UX that is tailored
for the pediatric user base, as is done in handwriting teach-
ing apps for children [2], because an intuitive and enjoyable
learning experience is of paramount importance for educa-
tional apps. This includes providing step-by-step tutorials,
interactive guides with progressive difficulty, and illustra-
tive diagrams to demonstrate the creation of hand shadow

puppets.

E. Avenues of Improvement

To reduce the number of misclassifications, models need to
be imbued with the ability to learn certain nuanced features.
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Figure 14. t-Distributed Stochastic Neighbor Embedding (¢-SNE) feature representations of RESNET34.

In light of the contemporary image classification literature,
we can opt to use Kolmogorov—Arnold Networks (KAN)
[35] instead of a simple Multilayer Perceptron (MLP) as the
classifier block. The use of Convolutional KANs [4] has
yielded good results in many image classification bench-
marks. The task of image classification on HASPER can be
dubbed as a silhouette classification task, which is why we
can leverage topological features of the shadow contours to
achieve better results [31]. The silhouette polygonization
algorithm (PoG), as proposed by Go¢men and Akata [14],
may aid in achieving better classification accuracy. Other
possible avenues may involve the use of ensemble methods
coupled with voting schemes, or resorting to data augmen-
tation with synthetically generated samples, but we defer
the exploration of these hypotheses for future research en-
deavors.

F. Impact Statement

This research is an impetus towards utilizing Al tools to
revitalize the hitherto underexplored cinematic art form of
hand shadow puppetry. Such tools may help understand the
creativity frontier in generative models, facilitate the devel-
opment of applications to teach shadowgraphy, and unveil
several prospects for entertainment. The existing works,
though distally relevant to shadowgraphy, explore the dig-
itization of such precursory art forms via approaches that
have since been rendered primitive and obsolete. The novel
dataset that we introduce in this paper, namely HASPER,
consists of 15,000 diverse samples garnered from perfor-

mance clips of variably skilled puppeteers. Our extensive
benchmarking reveals that the task of classifying the pup-
pet silhouettes is reasonably solvable using lightweight and
convolutional feature extractor models, with accuracies of
94.97% by RESNET34 and 92.38% by MOBILENETV2.
HASPER, as a data resource for all intents and purposes,
can be a potential stride towards systematically preserving
this artistic practice.
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