Published as a conference paper at ICLR 2025

GENERATING GRAPHS VIA SPECTRAL DIFFUSION

Giorgia Minello Alessandro Bicciato

Ca’ Foscari University Ca’ Foscari University
giorgia.minello@unive.it alessandro.bicciato@unive.it
Luca Rossi Andrea Torsello

The Hong Kong Polytechnic University Ca’ Foscari University
luca.rossi@polyu.edu.hk andrea.torsello@unive.it

Luca Cosmo
Ca’ Foscari University
luca.cosmo@unive. it

ABSTRACT

In this paper, we present GGSD, a novel graph generative model based on 1) the
spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and
eigenvalues from which we can reconstruct the graph Laplacian and adjacency
matrix. Using the Laplacian spectrum allows us to naturally capture the structural
characteristics of the graph and work directly in the node space while avoiding the
quadratic complexity bottleneck that limits the applicability of other diffusion-
based methods. This, in turn, is accomplished by truncating the spectrum, which,
as we show in our experiments, results in a faster yet accurate generative process,
and by designing a novel transformer-based architecture linear in the number of
nodes. Our permutation invariant model can also handle node features by con-
catenating them to the eigenvectors of each node. An extensive set of experiments
on both synthetic and real-world graphs demonstrates the strengths of our model
against state-of-the-art alternatives.

1 INTRODUCTION

Generating realistic graphs by learning from a distribution of real-world graphs has gained increas-
ing attention from researchers in many fields due to its wide range of applications. For instance,
synthetic graph generation plays a crucial role in drug design |Gomez-Bombarelli et al.| (2018)); [L1
et al.| (2018a); [You et al.| (2018a)) as well as in network science |Watts & Strogatz| (1998)); |[Leskovec
et al.[|(2010); /Albert & Barabasi|(2002).

Seminal graph generation approaches date back to the 1960s and rely on simple stochastic processes,
limiting their ability to capture complex dependencies seen in real-world networks. For example,
the Barabdsi-Albert |Albert & Barabasi| (2002)) and Kronecker Leskovec et al.| (2010) graph models
are specifically designed to generate graphs belonging to specific families and lack the ability to
learn directly from observed data. While these models may excel in capturing a set of predefined
properties, they are often unable to represent a wider range of aspects observed in real-world graphs.
In addition, in several domains, network properties are largely unknown, which further limits the
applicability of these techniques. For instance, the Barabasi-Albert model |Albert & Barabasi (2002)
allows to create graphs that exhibit the scale-free nature found in empirical degree distributions,
however it is unable to capture other facets of real-world graphs, e.g., community structure. While a
flurry of new models attempting to address these shortcomings have been introduced by the network
science community (see |Drobyshevskiy & Turdakov| (2019) for a recent review), these methods
often lack the ability to learn to mimic the characteristics of a given dataset. This in turn limits the
expressivity and fidelity of generated graphs and thus the range of possible applications of graph
generative models.

Published as a conference paper at ICLR 2025

In this paper, we introduce a new model for Generating Graphs via Spectral Diffusion (GGSD). The
ideas underpinning our approach are 1) to represent the graph using the eigendecomposition of its
Laplacian matrix and 2) to use a diffusion-based approach to learn to sample sets of eigenvalues and
eigenvectors from which a graph adjacency matrix can be reconstructed. Doing this allows us to
work directly in the space of nodes while overcoming the computational bottleneck (quadratic in the
number of graph nodes) of other methods that follow a similar approach [Vignac et al.| (2022)). By
limiting the number of eigenvalues and eigenvectors used to reconstruct the graph adjacency matrix,
we reduce the complexity of the iterative denoising process to be linear with respect to the number
of nodes while, at the same time, having a representation tablet to encapsulate graph structural
characteristics. Moreover, unlike other models conditioned on spectral representations Martinkus
et al.| (2022), our model also allows us to robustly condition the generation of new graphs on desired
spectral properties (subsets of eigenvalues and/or eigenvectors) at inference time.

The remainder of this paper is structured as follows. Section [2] reviews the related work, while
Sections |3| introduces the necessary background on denoising diffusion models. We introduce our
graph generative model in Section [and we present the experimental evaluation against state-of-
the-art alternatives in Section [} Finally, Section [6|concludes the paper.

2 RELATED WORK

In contrast to the image and text domains, where the development of generative models is well
understood and established, graphs introduce a series of additional challenges.

The first issue is the non-uniqueness of graph representations, i.e., if a graph contains n nodes, there
exist up to n! possibly distinct adjacency matrices that serve as equivalent representations of the
same graph, since there is no reason to prefer a particular node order. Ideally, a generative model
should assign equal probability to each of these n! adjacency matrices. Another crux lies in the
size of the output space, which is quadratic in the number of nodes, and that quickly becomes a
bottleneck when dealing with large graphs. Graph generative models should also be able to consider
the existence of dependencies and relationships between nodes and edges, rather than treating them
as independent, e.g., in social networks the likelihood of two nodes being connected is often higher
when they have common neighbors. Finally, standard machine learning techniques designed for
continuously differentiable objective functions are unsuitable to be directly applied to discrete graph
structures |(Guo & Zhao| (2022)).

Seminal graph generative model approaches seek to address these problems, yet focus only on the
generation of graphs displaying a limited set of structural characteristics. These initial methods
rely on identifying common characteristics in real-world graphs, such as degree distribution, graph
diameter, and clustering coefficient|Faloutsos| (2008)), and then generate synthetic graphs through the
application of a set of heuristic rules Leskovec et al.| (2010); Leskovec & Faloutsos| (2007); [Erdos
et al| (1960); |Albert & Barabasi| (2002). Although these models can produce synthetic graphs with
the given desired features, they are limited in their ability to generate node features as well as novel
structural patterns.

A breakthrough in this field has been marked by the recent progress in deep learning models
such as Variational Auto Encoders (VAEs) Kingma & Welling| (2013)), Recurrent Neural Networks
(RNNs) [Zaremba et al. (2014) and Generative Adversarial Networks (GANSs) |Goodfellow et al.
(2014). In this context, we encounter models commonly referred to as general-purpose deep graph
generative models, such as GraphRNN |You et al.| (2018b) and GRAN [Liao et al.[(2019)), which ex-
ploit deep architectures to learn the graphs distribution. Even though they represent a step forward in
the field of generative graph models, most of them are limited by exclusively focusing on the graphs
structure. Further, approaches of this type adopt evaluation metrics based only on graph statistics,
like degree distribution or clustering coefficients, and thus overlook or omit the assessment of the
generated node features.

Node and edge features are instead considered in a number of methods developed specifically for the
generation of molecules, indeed one of the most promising application scenario for modern graph
generation approaches. Models falling in this domain, referred to as molecule graph generative
models, exploit deep architectures such as GAN in|De Cao & Kipf| (2018)) or RNN in [Popova et al.
(2019) as well as other generation strategies (e.g., graph normalizing flows|Luo et al.|(2021)) or the

Published as a conference paper at ICLR 2025

combination of different approaches. For instance, Shi et al.|(2020) combines the advantages of both
autoregressive and flow-based methods.

Nevertheless, there are other deep learning approaches beyond molecule graph generative models
that are capable of generating graphs with node and edge features - even though the evaluation itself
is often still based on a molecule generation task. For instance [Simonovsky & Komodakis| (2018])
and |Grover et al.| (2019) propose general deep generative models for graphs based on variational
autoencoders. The main drawback of these architectures is that they are specialized and limited to
small-scale graphs with low-dimensional feature space|Yoon et al.|(2023).

Another category of graph generative models takes cues from the score-based generative modeling
work of [Song & Ermon| (2019) to define diffusion models for graphs. For instance, in [Huang et al.
(2022) the authors propose a forward diffusion process, specifically a continuous-time generative
diffusion process for permutation invariant graph generation. Similarly, |[Niu et al.| (2020) introduce
a different diffusion model named Edge-wise Dense Prediction Graph Neural Network (EDP-GNN),
which uses Gaussian noise and uses thresholding to address the issue of generating a discrete valued
adjacency matrix from continuous values. Crucially, the proposed method cannot fully capture node-
edge dependencies. A similar score-based generative model for graphs, where both node features
and adjacency matrix are created, is presented in Jo et al.| (2022)). Finally, |Vignac et al.| (2022)
suggest an alternative approach where a discrete diffusion process is used to generate graphs with
discrete node and edge features. This is similar to [Haefeli et al.| (2022), however the latter can only
be applied to unattributed graphs.

More recently, [Martinkus et al.| (2022) with their SPECTRE network and |Luo et al.| (2023) take a
different approach by considering the graph spectra, thus leveraging the inherent ability of the low
frequency portion of the spectrum to capture global structural characteristics of the corresponding
graph. Although similar to our method, SPECTRE focuses on generating an adjacency matrix condi-
tioned on a set of eigenvectors, which may or may not have been generated themselves. Our method
instead only generates eigenpairs from which the adjacency matrix is recovered. As a result, unlike
SPECTRE, our method is capable of generating graphs that respect a set of given spectral properties
(see Subsection . GSDM |Luo et al.| (2023)), on the other hand, proposes to reduce the complex-
ity by performing diffusion just on the eigenvalues and optionally on the node features, while the
eigenvectors used to reconstruct the final adjacency matrix are uniformly sampled from the training
set. DiGress |Vignac et al.| (2022) is also closely related to our model, however its complexity is
quadratic in the number of nodes of the graph, making it unsuitable to work on large graphs.

Our approach is also related to recently introduced latent graph diffusion models, which employ
an autoencoder architecture to map nodes and edges of a graph to latent space where the diffusion
process takes place Yang et al.|(2024); Zhou et al.| (2024). While these approaches aim to learn a
low-dimensional embedding of the graph nodes, we rely instead on the well-established concept of
spectral embedding |Luo et al.|(2003), with eigenvectors providing a low-dimensional embedding of
the graph nodes and eigenvalues capturing global structure information.

3 DENOISING DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) are a class of generative models inspired by
considerations from non-equilibrium thermodynamics. In particular, diffusion models in deep learn-
ing were first introduced in [Sohl-Dickstein et al.| (2015) yet popularized only in 2020 |Ho et al.
(2020). They operate by iteratively introducing noise to an input signal and then learning to de-
noise it thus generating new samples from the corrupted signals. Specifically, the idea is to destroy
the structure in a data distribution through an iterative forward diffusion process (noising) and then
learn a reverse diffusion process (denoising). This reverse process restores structure in the data, thus
yielding a tractable generative model of the data.

Given a data point sampled from a real but unknown data distribution xg ~ ¢(x), we define a
forward noising process ¢ producing a sequence of noisy samples X1, ...,x7 as a Markov Chain

given by ¢ (x1,...,X7 | Xo) = Hthl q (x¢ | x¢—1), with the diffusion kernel defined as:

q (Xt | Xt—l) =N (Xt; V1= Bix_1, BtI) . (D

Published as a conference paper at ICLR 2025

o Graph Predictor
Spectral Diffusion

Po = (Br-1, M—1| By, Ar) =

&

PPGN 3

B, Ar [75 VIS K D Vi 30, X0 j{} Generator ::> A(®0, Ao)
Ao

Laay

l
l

PPGN

same model it
() Discriminator

1

Ly = ®pArd] cen e o= 80ho@]

f
f

S / PPGN
7= (20, A|®11, A1) [conorator | = [A(@ g Ag0)
- ty AL t—1y AMt—1

A\
Py, A ; A
gt gt—t\g_l/»— gt

Figure 1: GGSD pipeline. During the spectral diffusion process (left) the neural network is trained
to predict the denoising steps for the eigenvectors ¢ and eigenvalues A of the graph Laplacian. The
second stage of our method is the graph predictor (right), where we train a Provably Powerful Graph
Network (PPGN) Maron et al.| (2019) (similar to what was done in SPECTRE [Martinkus et al.
(2022)). Given the eigenvalues and eigenvectors generated, it predicts the adjacency matrix.

Note that, if we define @; = Hi:1 (1 — Bs), we can reformulate Eq. as a single step
q(x¢ | x0) = N (%45 Vaxo, (1 — @) 1) .)

In the reverse diffusion process, the goal is to recreate the true sample from a Gaussian noise input
xr ~ N(0,I) by sampling from ¢ (x;—1 | X¢), the true denoising distribution. In order to run the
reverse diffusion process, we need to learn a model py, often referred to as score model, to approxi-
mate these conditional probabilities. As [Feller|(1949) showed, in the case of Gaussian distributions
the diffusion process reversal has the same functional form of the forward process. From this it
follows that the reverse diffusion process kernel can be defined as

po(xi—1 | x¢) = N(x4—1; po (x4,), B (x¢, 1)), 3)

where 6 are the parameters of the reverse diffusion kernel at each time step, which can be learned
using a neural network. If we fix the variance to a constant 3; (i.e. Xg(x;,t) = (), we only
need to learn the distance between the means of two Gaussian distributions, i.e., between the noise
added in the forward process and the noise predicted by the model. This leads to a variational lower
bound loss expressed in terms of the Kullback—Leibler (KL) divergence between the posterior of the
forward process and the parameterized reverse diffusion process.

4 QOUR METHOD

Consider an undirected unweighted graph G = (V, &), where V is the set of n nodes connected
by the edge set £. Recall that for a graph with adjacency matrix A, the graph Laplacian L is
defined as L = D — A, where D is the diagonal degree matrix. Finally, let & and A be the
orthonormal matrix of eigenvectors (as columns) and the diagonal matrix of eigenvalues given by
the eigendecomposition L = ®A® ", respectively. In the following sections, we use X to denote
the vector of eigenvalues of the graph Laplacian.

The fundamental intuition underpinning our model is that we can represent the graph connectivity
with (possibly a subset of) the eigenvectors ® and the corresponding eigenvalues A of the graph
Laplacian. The connection between the spectrum of the graph Laplacian and the structural properties
of the underlying graph is well known and studied. For example, it is well established that the low
frequency portion of the spectrum captures the global structural characteristic of the graph, while
the high frequencies are essential in the reconstruction of local connectivity patterns Chung|(1997).

Fig.[I] shows an overview of the proposed pipeline. This is made of two main components, namely
1) a spectral diffusion process that generates a set of eigenvalues and eigenvectors from which an
approximation of the Laplacian matrix can be reconstructed and 2) a graph predictor, which outputs
a binary adjacency matrix from the (noisy) Laplacian reconstruction. The two components are
discussed in detail in the following subsections.

Published as a conference paper at ICLR 2025

L layers
@l >
0 1 t Cross Ay FHlitl
2, - 2, >)‘i 3y Attention K '§t MLP £e
t
Al—> b4
T RIS S U
t

Figure 2: The score model takes as input the noisy eigenvector matrix and eigenvalues at time ¢ and
predicts the noise of the data to be used in the denoising step. The k node feature eigenvectors ®?
are projected through an MLP to a d dimensional space. The sequence of k eigenvalues is given as
input to a 1D convolutional layer, which outputs d features for each eigenvalue. Both eigenvectors
and eigenvalues go through a series of L layers composed of two multi-head cross-attention blocks,
one updating the eigenvectors conditioned by the eigenvalues and one updating the eigenvalues
conditioned on the eigenvectors. After each layer, we apply a residual block ¢, which adds to the
layer input the updated values scaled and shifted by time-dependent factors. Finally, % and AF are
projected to a k dimensional space through an MLP and a 1D convolution.

4.1 SPECTRAL DIFFUSION

Moving from the Laplacian to its spectrum reduces the double row-, column-covariance with respect
to node permutations of the Laplacian matrix, to a single covariance over the rows of the eigenvec-
tor matrix. To address this covariance, we represent the eigenvector matrix as a series of spectral
embedding of the nodes, i.e., we interpret the ¢-th component of the j-th eigenvector as the j-th
component of the ¢-th node embedding, or alternatively, we see the rows of ® as vectors. To this we
add the eigenvalues A as a global graph descriptor. We can then define the reverse diffusion step as

Po(®r—1, M1 [P, Ae) = N ({®io1, Aim1}s po (Ro, Mgy 1), 071) 4)

where the normal distribution is over the product set of the spectral embeddings and the global
spectral descriptor.

Following DDPM Ho et al.| (2020), we train a neural network to predict the denoising step. We
design the backbone of our spectral diffusion process of Eq. 4] as a neural network composed of
a sequence of layers containing a pair of multi-head attention blocks [Vaswani et al.| (2017), one
operating on the eigenvectors conditioned on the eigenvalues and one operating on the eigenvalues
conditioned by the eigenvectors. This choice allows us to achieve both a node permutation invariant
model and to let the eigenvectors and eigenvalues condition each other on the prediction of the de-
noising step. Moreover, this model can easily handle node features X by simply concatenating them
to the eigenvectors of each node. Fig.[2]shows the overall structure of the proposed neural network.
Note that the conv1d layer is applied to the eigenvalues, which are invariant with respect to node
permutations, while the diffusion process itself acts in an invariant way on node embeddings, which
are permutationally covariant. As a consequence, the whole process is permutationally invariant.

Crucially, our model allows us to reduce the memory footprint of the diffusion component from
O(n?) to O(kn), where n denotes the number of graph nodes, by fixing the maximum number of
eigenvectors to k, resulting in a faster generative process. For this reason, for larger graphs, we

perform diffusion on a subset of &k eigenvectors. In this case, after the denoising diffusion process,
we obtain a subset ® of columns of ® with the corresponding subset of eigenvalues X, which allows
for an approximated reconstruction of L = ®A® ~ L, from which the adjacency matrix can be
inferred. In addition, since the eigenvector associated with the null eigenvalue does not contribute

to the reconstruction of the Laplacian matrix, we can safely ignore it in the generation process.

Note that the optimal number of eigenvalues/vectors (k) to use is not fixed. We determined its range
through preliminary analyses on the SBM and Planar datasets (see Appendix [E), and in general, we
treat it as a hyper-parameter of the model. Interestingly, our experiments reveal that the eigenvec-
tors corresponding to the smallest eigenvalues (lowest frequencies) do not consistently offer more
information about connectivity or result in better reconstructions of the original adjacency matrix.

Published as a conference paper at ICLR 2025

Table 1: Comparison with other graph generative models using MMD metrics (the smaller, the
better) on synthetic datasets.

Community-Small Planar Stochastic Block Model (SBM)
Deg. | Clus. | Spect. | Orb.] | Deg. | Clus.] Spect.| Orb.| | Deg.] Clus.| Spect.| Orb.]

GraphRNN 0.0271 0.1072 0.0520 0.1469 | 0.0096 0.2985 0.0389 1.4022 | 0.0178 0.0151 0.0104 0.0351

GRAN 0.0013 0.0843 0.0282 0.0201 | 0.0202 0.2985 0.0248 0.1964 | 0.0135 0.0149 0.0034 0.0352
DiGress 0.0096 0.1035 0.0506 0.0372 | 0.0005 0.0178 0.0020 0.0115 | 0.0166 0.0246 0.0064 0.1327
GSDM 0.0099 0.0446 0.0131 0.0155 | 0.0220 0.0222 0.0096 0.0371 | 0.2295 0.2280 0.1578 0.2876
GDSS 0.0107 0.1060 0.0450 0.0356 | 0.0701 0.3025 0.0403 1.0345 | 0.2658 0.0442 0.0551 0.2780
SPECTRE 0.0079 0.1067 0.0460 0.0250 | 0.0008 0.0859 0.0147 0.0058 | 0.0044 0.0118 0.0015 0.0140
GGSD 0.0016 0.0590 0.0153 0.0142 | 0.0007 0.1881 0.0125 0.0047 | 0.0005 0.0115 0.0045 0.0289

4.2 GRAPH PREDICTOR

The main drawback of considering a subset of the eigenvectors is the introduction of noise on the
reconstructed adjacency matrix. We adopt a strategy similar to the one proposed in SPECTRE Mar-
tinkus et al.| (2022) to predict a binary adjacency matrix starting from a noisy reconstruction. We
train a [-layer Provably Powerful Graph Network (PPGN) Maron et al.|(2019)), which takes as input
the generated eigenvectors P scaled by the square root of the eigenvalues A as node features as well
as the noisy adjacency matrix A = D — L and predicts the binary adjacency matrix

A(®,X) = 0(PPGN/(A, ®A 1)),)

where o is a sigmoid activation function and PPGN; is a sequence of PPGN layers. We train this
network with two losses: 1) a reconstruction loss encouraging the adjacency matrix predicted from
the reduced ground-truth eigenvectors ®gt and eigenvalues Ay to match the corresponding input

adjacency matrix Ay, and 2) an adversarial loss on the generated adjacency matrix A(‘i, 5\), ie.,
Liee = BCE(A ¢, A(® 41, Ayt)) and Lygy = log(D(A,)) + log(1 — D(A(®, X)), (6)

where BCE is the standard binary cross entropy loss and D is a discriminator network composed
of a sequence of PPGN layers followed by a global pooling for the final graph-level classification.
Note that, unlike in SPECTRE Martinkus et al.| (2022)), this refining step is not generative, meaning
that the output is deterministic and depends solely on the input eigenvectors/values.

5 EXPERIMENTAL EVALUATION

Datasets. We compare the performance of our model against that of state-of-the-art alternatives on
both synthetic and real-world datasets. In line withh prior work, we use three synthetic datasets and
two real-world datasets. The synthetic datasets we consider are (i) Community-small (12 < |V| <
20), (ii) Planar (|[V| = 64), and (iii) Stochastic Block Model (SBM) (2-5 communities and 20-40
nodes per community). The real-world datasets are both from the molecular domain, namely (i)
Proteins (100-500 nodes) |Dobson & Doig|(2003)) and (ii) QM9 (9 nodes) Ruddigkeit et al.| (2012);
Ramakrishnan et al| (2014). Detailed descriptions of all datasets can be found in Appendix [Al

Evaluation Metrics. We assess the ability of the models to generate graphs with structural char-
acteristics close to those of the training graphs by following the methodology outlined in|Liao et al.
(2019), which aims to address the difficulties of measuring likelihoods when evaluating autoregres-
sive graph generative models reliant on orderings. In particular, we adopt the approach proposed
by [You et al.| (2018b) and [Li et al.| (2018b) and used by many others [Krawczuk et al.| (2020) as
well. Our evaluation centers on contrasting the distributions of graph statistics between the gen-
erated and actual graphs. Specifically, we consider the following key graph statistics: 1) degree
distribution (Deg.), 2) clustering coefficient (Clus.), 3) eigenvalues of the normalized graph Lapla-
cian (Spec.), and 4) the occurrence frequency of all 4-node orbits (Orb.). Moreover, for QM9, we
follow the literature and evaluate the quality of the generated graphs by computing the validity of
the generated molecules, their uniqueness, and their novelty w.r.t. to the molecules in the training set
and vicerversa |Samanta et al.| (2020); Guo & Zhao|(2022). Detailed information on the evaluation
metrics used can be found in Appendix [B]

Published as a conference paper at ICLR 2025

Baselines. We evaluate the effectiveness of our model by comparing it against a number of well-
known graph generative models as well as some recently developed deep graph generative models.
In particular, we consider GraphRNN You et al.| (2018b), GRAN Liao et al.[(2019), DiGress|Vignac
et al.[(2022), SPECTRE Martinkus et al.|(2022)), GDSSJo et al.| (2022) and GSDM |Luo et al.|(2023)).
For the molecule generation task we also include GraphVAE [Simonovsky & Komodakis|(2018]).

Experimental Setup. To maximize the robustness of the experimental results, we follow a slightly
different experimental setup compared to previous works. Specifically, for the synthetic datasets, we
decided to create a larger set of test graphs: 200 graphs for Planar and SBM, and 100 graphs for
community-small. Accordingly, we let each model generate an equivalent number of graphs (200
for Planar and SBM, 100 for community-small) to compute the MMD measures. Due to the limited
number of graphs in the Proteins dataset (see Appendix [A)), we also followed a different and more
robust protocol to evaluate the generated graphs on this dataset. Rather than utilizing a single subset
of the dataset as a test set, we created 10 folds (identical for each method) allowing us to report the
average of each metric (& standard deviation) over the 10 folds. Further detailed information on the
model settings and training setup, both for our model and the baselines, is provided in Appendix D]

5.1 EVALUATING THE GENERATED GRAPHS

Synthetic Datasets The experimental results for community-small, SBM, and Planar are shown
in Table |1} In this table, we report the MMD metrics for the graph statistics, where the smaller
the statistics, the better. The results of our method (GGSD) are chosen from those obtained using
either the lower or upper range of eigenvalues. Specifically, for the Planar, the results refer to the
16 smallest eigenvalues, whereas for the community-small dataset and SBM we used the largest
ones, 8 and 32 respectively. The best performance is highlighted in bold, while the second-best
value is underlined. Overall, our model consistently achieves the best or second-best results across
all datasets, with the exception of Clus. in Planar and Spect. in SBM and Planar. We posit that
the lower performance on planar graphs may be related to the behaviour of the eigenvectors of
this type of graphs. Note in fact that there is no clear class structure in this dataset but rather the
graphs are related by the (hard) property of planarity. Indeed, graphs with similar spectra can lie on
opposite sides of the discrimination boundary, i.e., between planar and non-planar graphs. As such,
the addition or removal of an edge connecting local substructures can easily break the planarity of
the graph without significantly affecting its spectral representation. Finally, for Planar and SBM, we
also evaluated the quality of the generated graphs in terms of validity, uniqueness, and novelty in
Appendix [C] showing the ability of our method to generate graphs that are at the same time valid,
unique, and novel.

Real-world Datasets Results for real-world dataset generations on Proteins and QM9 are reported
in Table |2} left and right, respectively. Also in this series of experiments, we achieve good perfor-
mance. Again, we selected the best results from either the highest or lowest frequencies. Notably,
for the Proteins dataset, we utilized the 16 smallest eigenvalues, while for QM9, we used the entire
spectrum. The Proteins dataset is especially challenging due to the size of the graphs, which can
reach 500 nodes. For this dataset, GGSD ranks as the best in all metrics Table 2] (left). QM9, on
the other hand, is composed by small graphs of up to 9 nodes, with both node and edge features. In
Table |2| (right), it is important to note that the last column is of particular interest as it summarizes
all values, where we emerge as the second top performer.

5.2 GRAPH PREDICTOR ABLATION

Given that the “Graph Predictor” is trained using a discriminative loss, one may think that it is this
component that is doing all the “heavy lifting” of the graph generation task, while the “Spectral
Diffusion” may be just producing noisy data.

To assess that this is not the case, we designed an experiment training our model to predict all the
eigenvectors and eigenvalues on the community-small dataset. The small size of the graphs in this
datasets allows us to generate all the eigenvectors ® and eigenvalues A and reconstruct the exact
Laplacian L = ®A® T and the (almost) binary adjacency matrix A = D — L, where D is the
diagonal of the Laplacian. To obtain a binary adjacency matrix, we further threshold A to get the
actual edges of the generated graph (i.e., every entry above 0.5 is considered an edge).

Published as a conference paper at ICLR 2025

Table 2: Comparison on real datasets with other graph generative models. Left: Proteins, using
MMD metrics (the lower, the better) and mean + standard deviation (over 10 folds). Right: QM9,
based on (V)validity, (U)niqueness, and (N)ovelty metrics (the higher, the better). Results denoted
by * and T are taken from Martinkus et al.|(2022) and Vignac et al. (2022) respectively.

Proteins QM9
Deg. | Clus. | Spect Orbit | Valt V&UA V& U&NA
GraphRNN 0.006540.0011 0.1658=+0.0088 0.0170£0.0009 0.814240.0273 GraphVAE* 0.5570 0.4200 0.2610
GRAN 0.056940.0056 0.162240.0092 0.014640.0007 0.3430+40.0363 DiGress™ 09900 0.9523 0.3180
GSDM 0.379240.0041 0.465340.0089 0.3024+0.0032 0.9589+0.0285 GDSS 0.8335 0.8281 0.7257
GDSS 0.0653+0.0063 0.41601+0.0089 0.070640.0021 0.8168+0.0118 SPECTRE* 0.8730 0.3120 0.2910

SPECTRE 0.008240.0021 0.0988+0.0071 0.0066+0.0004 0.03284-0.0039
GGSD 0.0014+0.0003 0.0856+0.0066 0.0059+0.0007 0.02964-0.0066

GGSD 0.966 0.864 0.847

In Table [3] we show three different configurations of our method: 1) “Only Diffusion”: we use the
technique we just described, in which the graph is constructed directly from the generated ® and
A without using the “Graph Predictor”; 2) “Noise + Predictor”: we give as input to the “Graph
Predictor” noise drawn from a Gaussian distribution; 3) “Diff. + Prediction”: this is the full model
used in all the other experiments. For each configuration, we provide results for two cases: 1) using
the full set of eigenpairs - all eigenbasis to train the model, and 2) using a subset of the eigenpairs -
model trained using the 8 largest eigenvalues and their corresponding eigenvectors.

Reconstructing the graph directly from the Laplacian (referred to as “Only Diffusion”) using the
complete spectrum yields the best results. Conversely, using either random noise or the reconstructed
Laplacian as input to the Predictor results in significantly inferior outcomes. This suggests that the
“Spectral Diffusion” part of the network is responsible for the actual generation process. On the
other hand, if we consider a truncated eigenbase for the training phase, the Predictor becomes useful
as it helps to refine the results further.

To provide a comprehensive overview, we also provide some qualitative examples in Figure[3] com-
paring the eigenvectors generated by the diffusion module of GGSD with those of the Laplacian
computed on the adjacency matrix predicted by the PPGN module. In smaller graphs, the eigenvec-
tors are almost perfectly preserved, while only minor local differences emerge in larger graphs. In
contrast, the generative approach used by SPECTRE fails to maintain the relationship between the
conditioning eigenvectors and the final generated graph.

5.3 EIGENVECTORS ORTHOGONALITY

The general framework of DDPM cannot guarantee the orthonormality of the generated eigenvec-
tors. While in principle this might pose a problem, in practice we observed that this property is well
preserved in the generations. In Appendix [F| we present both quantitative and qualitative analyses
to evaluate the orthogonality of the generated eigenvectors, demonstrating that they exhibit approxi-
mate orthonormality. Moreover, in order to test if having an exact orthonormality of the eigenvectors
brings any advantage, we tried to reproject the final generated eigenvectors to an orthonormal ma-
trix through QR decomposition before the PPGN predictor step. As reported in Figure @] we did
not observe a clear benefit in having orthonormal basis. We argue that, even if orthonormality is a
well-known characteristic of the eigendecomposition of the graph Laplacian (indeed, of the eigen-
decomposition of any symmetric matrix), it is probably not the most important (nor essential) to
guarantee a good reconstruction of a valid graph Laplacian, which exhibits more complex properties
that need to be learned directly from data.

Table 3: Ablation of the Graph Predictor network on the community-small dataset.

Full Set of Eigenpairs First 8 Eigenpairs
Deg. | Clus. | Spect. | Orb. | \ Deg. | Clus. | Spect. | Orb. |

Only Diffusion 0.00134 0.05484 0.01574 0.00514 0.00936 0.09753 0.04341 0.01255
Noise + Predictor ~ 0.04428 0.11129 0.05691 0.46051 0.06681 0.12330 0.05972 0.45137
Diff. + Predictor 0.00562 0.07887 0.02232 0.00942 0.00423 0.05464 0.01832 0.00866

Published as a conference paper at ICLR 2025

GGSD SPECTRE
< ¥, A _;1 { H A A,
g 'gk 3\(/\@ g\g\ N SN 2 'g;\g\ 5/\% Y
?g \V\\ \I/\\\ A \ W \\\ \(\\ .-§
= Vv vV v B
o o
@] O
//\ / A //\

& @ o g\g\ 'ﬁ\/w W\j J g\ &\‘\/* R}g\g\ s
é \/{\\ \V\\\ \ \ W \\\ \/{\\ ?‘é
% Vv \/ \/ \/ \/ \/ §
° P2 ¢3 o o o7 P8

[&3 o W <
e eld NP
o ’ =]
E i) g 2
=] 4 . | 4 =
o, Y ! p (=9
: t‘ % e :
Q o

- Te
& ¥ ol e Q g 2
b1 P2 ¢3 N o3 ol o7 ol

Figure 3: Left column: Comparison of the eigenvectors generated by the diffusion module of
GGSD with the eigenvectors recomputed on the Laplacian computed on the adjacency matrix pre-
dicted by the PPGN module on the Community (top) and SBM (bottom) datasets. The models have
been trained with the 8 smallest eigenvectors. In the smaller dataset (Community) the diffusion
generates nearly perfect eigenvectors. In the more challenging SBM dataset we can notice that the
generated eigenfunction are slightly different from the one computed on the predicted graph while
preserving the overall structure. Right column: comparison of the interpolated eigenvectors that
SPECTRE uses to condition the PPGN module to the actual eigenvectors of the generated graph. In
this case the eigenvectors structure is completely lost in the generative process.

Community

SBM

| = Generated

mm Orthogonal

mmm Generated
B Orthogonal

Average error
Average error
IS

N)

wd bl

Number of eigenpairs

ﬁil

— 8]
Number of eigenpairs

12

Figure 4: Performance analysis without (Generated) and with (Orthonormal) reprojecting the gen-
erated eigenvectors to an orthonormal basis. The average error represents the mean degradation of
metrics between the generated graphs and the training set. We report both the mean and the standard
deviation as error bars on 10 generations of 200 graphs. Specifically, Degree, Cluster, and Spectral
metrics are calculated between the generated graphs and the test set, then normalized by the metrics
between the training and test sets.

5.4 SPECTRAL CONDITIONED GENERATION

The spectrum of the Laplacian plays an important role in many applications, from graph classifi-

cation and mesh analysis [Cosmo et al| (2020} 2022); [Bai et al.| (2015); [Hu et al.| (2014); Minello
et al| (2019); [Gasparetto et al.| (2015aib) to reconstructing the underlying geometry of a triangulated

3D shape |Cosmo et al.| (2019); [Marin et al.[(2021); Moschella et al.| (2022) and to define universal
adversarial attacks Rampini et al|(2021). Being able to generate a graph given a spectrum is thus an
important feature of a generative method. We pose the graph generation problem conditioned on a
sequence of eigenvalues and/or eigenvectors as an inpainting problem |Lugmayr et al.| (2022).

Published as a conference paper at ICLR 2025

. Donor Graph SPECTRE #gen.comm.. 2 3 4

N i L GGSD
T S Xof 2comm. 76 19 5
ke Aof3comm. 12 88 0
Py Tt
""ré-'-.'ffo.,: SR SPECTRE
s 0o oo gas N e

Tor e etmeth NSNS teap | fagle ", Xof2comm. 93 7 0
S .‘C.'.’f ("‘.3.??-'..‘..,-: J % Aof3comm. 96 4 0

Figure 5 & Table 4: Conditioning of the generation on the first 3 smallest eigenvectors as an in-
painting task using RePaint Lugmayr et al.|(2022)) (Figure). Number of communities in the graphs
generated with spectrum conditioning (Table). Higher values should appear in the bold diagonal.

Eigenvalues conditioned generation In this setup, the eigenvectors at time ¢ — 1 are computed
according to Eq. @ while the eigenvalues are derived from the target ones through the diffusion
process of Eq.[2} i.e.,

Aot ~ N (Vaho, (1 —a)TI), Qi1 ~N (i1 po (Pr, Aist), Bed) @)

To validate the generation conditioned on the eigenvalues, we generate graphs of the SBM data
distribution by fixing the number of nodes as the average number of nodes of graphs containing 2
and 3 communities (70 nodes). We randomly choose one graph with 2 communities and one graph
with 3 communities from the test set, and we consider their spectra. We use these to condition the
generation of two sets of 100 graphs, for the 2 and 3 communities eigenvalue sequences, respectively.
The results reported in Table] show that spectral conditioning is able to influence the properties of
the generated graphs, while the spectral conditioning provided by SPECTRE fails to do so.

Eigenvectors conditioned generation We adopt a similar strategy to condition on a subset of the
eigenvectors. In this case, the portion of &’ known eigenvectors ®’ = [¢y, . . . ¢x/] at time ¢ — 1 are
derived from the target ones through the forward diffusion process, while the remaining eigenvectors
@’ = [ppry1,. .. ¢r) and the eigenvalues are computed according to Eq. El The three groups of
4 graphs in Figure [5] show the donor graphs (left) from which the first three eigenvectors were
computed, the graphs conditioned on the given eigenvectors using GGSD (center) and SPECTRE
(right). The color is the 2D color encoding of 2 of the three first eigenvectors manually selected
to highlight the different clusters. The colors from the donor graph have then been transported on
the generated graphs’ corresponding node (same node index). While GGSD is able to preserve the
community structure encoded by the given eigenvectors, in SPECTRE this information is completely
lost, causing nodes from the same community in the donor graph to randomly spread over different
communities of the generated graph. This may be due to the particular generation mechanism of
SPECTRE. Specifically, SPECTRE learns a set of reduced orthogonal bases during training, which
are left and right-rotated according to a rotation matrix predicted by a PointNetST [Segol & Lipman
(2019) network based on some input (generated) eigenvalues. This requires an alignment of the
graphs to the learned bases, which makes the training more complex. Our approach on the other
hand is fully covariant.

6 CONCLUSION

We have introduced GGSD, a diffusion-based generative model for graphs where the spectrum of
the graph Laplacian is used to retain structural information while reducing the computational com-
plexity. Our approach has a number of advantages, from the ability to directly generate eigenvectors
and eigenvalues, to the possibility of naturally encapsulate node feature information as well as con-
ditioning the generation on target spectral properties.

Our model suffers from two main limitations. Firstly, while using low/high frequencies to recon-
struct the spectrum is theoretically grounded, in practice it would be interesting to allow the model
to select the most informative frequencies for a given dataset. We will explore this possibility in
future work. Secondly, while the diffusion model is linear, the bottleneck of our model is the PPGN-
based predictor, which has quadratic complexity. In the future, it would be interesting to investigate
alternative methods using a sparse representation of the adjacency matrix reconstructed from the
Laplacian.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

L.C. and A.B. are supported by the PRIN 2022 project n. 2022AL45R2 (EYE-FLAI, CUP
H53D2300350-0001). G.M. acknowledges financial support from the European Union NextGen-
erationEU in the framework of the iNEST - Interconnected Nord-Est Innovation Ecosystem (iN-
EST ECS_00000043 — CUP H43C22000540006). In this regard, the views and opinions expressed
are solely those of the authors and do not necessarily reflect those of the European Union, nor
can the European Union be held responsible for them. A.T.’s work was partially supported by the
project “Perturbation problems and asymptotics for elliptic differential equations: variational and
potential theoretic method” funded by the program NextGenerationEU and by MUR-PRIN, grant
2022SENJZ3.

REFERENCES

Réka Albert and Albert-Laszl6 Barabési. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Lu Bai, Luca Rossi, Andrea Torsello, and Edwin R Hancock. A quantum jensen—shannon graph
kernel for unattributed graphs. Pattern Recognition, 48(2):344-355, 2015.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Luca Cosmo, Emanuele Rodola, Jonathan Masci, Andrea Torsello, and Michael M Bronstein.
Matching deformable objects in clutter. In 2016 Fourth international conference on 3D vision
(3DV), pp. 1-10. IEEE, 2016.

Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael M. Bronstein, and
Emanuele Rodola. Isospectralization, or how to hear shape, style, and correspondence. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pp. 7529-7538. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00771.

Luca Cosmo, Giorgia Minello, Michael Bronstein, Luca Rossi, and Andrea Torsello. The average
mixing kernel signature. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm
(eds.), Computer Vision — ECCV 2020, pp. 1-17, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-58565-5.

Luca Cosmo, Giorgia Minello, Michael Bronstein, Emanuele Rodola, Luca Rossi, and Andrea
Torsello. 3d shape analysis through a quantum lens: the average mixing kernel signature. In-
ternational Journal of Computer Vision, 130(6):1474—1493, 2022.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Hubert de Fraysseix and Patrice Ossona de Mendez. Trémaux trees and planarity. European Jour-
nal of Combinatorics, 33(3):279-293, 2012. ISSN 0195-6698. doi: https://doi.org/10.1016/j.ejc.
2011.09.012. URL https://www.sciencedirect.com/science/article/pii/
S0195669811001600. Topological and Geometric Graph Theory.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771-783, 2003.

Mikhail Drobyshevskiy and Denis Turdakov. Random graph modeling: A survey of the concepts.
ACM computing surveys (CSUR), 52(6):1-36, 2019.

Paul Erd6s, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad.
sci, 5(1):17-60, 1960.

Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, Brian Marx, Ludwig Fahrmeir, Thomas Kneib,
Stefan Lang, and Brian Marx. Regression models. Springer, 2013.

Christos Faloutsos. Graph mining: Laws, generators and tools. Lecture Notes in Computer Science,
5012:1, 2008.

11

https://www.sciencedirect.com/science/article/pii/S0195669811001600
https://www.sciencedirect.com/science/article/pii/S0195669811001600

Published as a conference paper at ICLR 2025

W. Feller. On the theory of stochastic processes, with particular reference to applications. In Pro-
ceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability, pp. 403—
432, 1949.

Andrea Gasparetto, Giorgia Minello, and Andrea Torsello. A non-parametric spectral model for
graph classification. In International Conference on Pattern Recognition Applications and Meth-
ods, volume 2, pp. 312-319. SciTePress, 2015a.

Andrea Gasparetto, Giorgia Minello, and Andrea Torsello. Non-parametric spectral model for shape
retrieval. In 2015 International Conference on 3D Vision, pp. 344-352. IEEE, 2015b.

Rafael Gomez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernandez-Lobato,
Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alan Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268-276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In International conference on machine learning, pp. 2434-2444. PMLR, 2019.

Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5370-5390, 2022.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaél Perraudin, and Roger Wattenhofer. Dif-
fusion models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Nan Hu, Raif M Rustamov, and Leonidas Guibas. Stable and informative spectral signatures for
graph matching. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 2305-2312, 2014.

Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. Graphgdp: Generative diffusion
processes for permutation invariant graph generation. In 2022 IEEFE International Conference on
Data Mining (ICDM), pp. 201-210. IEEE, 2022.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning,
pp. 10362-10383. PMLR, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Igor Krawczuk, Pedro Abranches, Andreas Loukas, and Volkan Cevher. Gg-gan: A geometric graph
generative adversarial network. 2020.

Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using kronecker multipli-
cation. In Proceedings of the 24th international conference on Machine learning, pp. 497-504,
2007.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: an approach to modeling networks. Journal of Machine Learning Research,
11(2), 2010.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 10:1-24, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018b.

12

Published as a conference paper at ICLR 2025

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. 2022.

Bin Luo, Richard C Wilson, and Edwin R Hancock. Spectral embedding of graphs. Pattern recog-
nition, 36(10):2213-2230, 2003.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192-7203. PMLR, 2021.

Riccardo Marin, Arianna Rampini, Umberto Castellani, Emanuele Rodola, Maks Ovsjanikov, and
Simone Melzi. Spectral shape recovery and analysis via data-driven connections. Int. J. Comput.
Vision, 129(10):2745-2760, oct 2021. ISSN 0920-5691. doi: 10.1007/s11263-021-01492-6.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bb04afOf7ecaecedaaec62035497dal387-Paper.pdf.

Karolis Martinkus, Andreas Loukas, Nathana&l Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. In Interna-
tional Conference on Machine Learning, pp. 15159-15179. PMLR, 2022.

Giorgia Minello, Luca Rossi, and Andrea Torsello. On the von neumann entropy of graphs. Journal
of Complex Networks, 7(4):491-514, 2019.

Luca Moschella, Simone Melzi, Luca Cosmo, Filippo Maggioli, Or Litany, Maks Ovsjanikov,
Leonidas Guibas, and Emanuele Rodola. Learning spectral unions of partial deformable 3d
shapes. In Computer Graphics Forum, volume 41, pp. 407—417. Wiley Online Library, 2022.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In International Con-
ference on Artificial Intelligence and Statistics, pp. 4474-4484. PMLR, 2020.

Tiago P. Peixoto. Hierarchical block structures and high-resolution model selection in large net-
works. Phys. Rev. X, 4:011047, Mar 2014. doi: 10.1103/PhysRevX.4.011047. URL https:
//1link.aps.org/doi/10.1103/PhysRevX.4.011047.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1-7, 2014.

Arianna Rampini, Franco Pestarini, Luca Cosmo, Simone Melzi, and Emanuele Rodola. Universal
spectral adversarial attacks for deformable shapes. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3216-3226, 2021.

Emanuele Rodola, Luca Cosmo, Michael M Bronstein, Andrea Torsello, and Daniel Cremers. Partial
functional correspondence. In Computer graphics forum, volume 36, pp. 222-236. Wiley Online
Library, 2017.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166

billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864-2875, 2012.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://link.aps.org/doi/10.1103/PhysRevX.4.011047
https://link.aps.org/doi/10.1103/PhysRevX.4.011047

Published as a conference paper at ICLR 2025

Bidisha Samanta, Abir De, Gourhari Jana, Viceng Gémez, Pratim Chattaraj, Niloy Ganguly, and
Manuel Gomez-Rodriguez. Nevae: A deep generative model for molecular graphs. Journal of
machine learning research, 21(114):1-33, 2020.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International Confer-
ence on Learning Representations, 2019.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint
arXiv:2001.09382, 2020.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning—ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part 1 27, pp. 412-422. Springer, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440-442, 1998.

Ling Yang, Zhilin Huang, Zhilong Zhang, Zhongyi Liu, Shenda Hong, Wentao Zhang, Wenming
Yang, Bin Cui, and Luxia Zhang. Graphusion: Latent diffusion for graph generation. IEEE
Transactions on Knowledge and Data Engineering, 2024.

Minji Yoon, Yue Wu, John Palowitch, Bryan Perozzi, and Russ Salakhutdinov. Graph generative
model for benchmarking graph neural networks. 2023.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing
systems, 31, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708-5717. PMLR, 2018b.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. Unifying generation and prediction on graphs with
latent graph diffusion. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at ICLR 2025

Figure 6: Visual comparison between training set graph samples and generated graph samples pro-
duced by GGSD. Each column represents a graph type (Planar, Stochastic Block Model with 2,3,4,
and 5 communities, and Proteins). Top row (Original): training set graphs. Bottom row (Generated):
graph generated by GGSD.

A DATASETS.

We utilize five commonly used datasets for graph generative tasks. Some examples of the graphs
contained in these datasets alongside a similar graph generated by GGSD are shown in Figure|[6]

Community-small: A synthetic dataset consisting of 100 random community graphs, with [12, 20]
nodes.

Stochastic Block Model (SBM): A synthetic dataset from Martinkus et al.| (2022) comprising 200
Stochastic Block Model graphs, each with a random selection of 2 to 5 communities and 20 to 40
nodes within each community. The probability of edges between communities is set at 0.3, while
the probability of edges within communities is set at 0.05.

Planar: A synthetic dataset from Martinkus et al.| (2022) of 200 planar graphs, each containing
64 nodes. Graphs are created through the application of Delaunay triangulation to a randomly and
uniformly placed set of points.

QM9 Ramakrishnan et al.|(2014); |[Ruddigkeit et al.|(2012): This real-world dataset comprises 134k
organic molecules with a maximum of 9 heavy atoms (carbon, oxygen, nitrogen, and fluorine).
By following [Simonovsky & Komodakis| (2018)) we allocate 10k molecules for validation, 10k for
testing, and the rest for training.

Proteins |Dobson & Doig| (2003): The dataset encompasses 918 protein graphs, each ranging from
100 to 500 nodes. In this representation, each protein is depicted as a graph, with nodes correspond-
ing to amino acids. Nodes are connected by an edge if they are within a distance of less than 6
Angstroms from each other.

B EVALUATION METRICS

B.1 STATISTICS-BASED

We consider the following key graph statistics: degree distribution (Deg.), clustering coefficient
(Clus.), and the occurrence frequency of all 4-node orbits (Orb.). The deviation of these metrics
between the generated graphs and the actual ones is measured using the maximum mean discrep-
ancy (MMD) |You et al.[(2018b). In its initial formulation, the computation of the MMD relied on
the Earth Mover’s Distance (EMD) and as a result was very slow. For this reason, as suggested
in [Liao et al.| (2019), we use the total variational (TV) Gaussian kernel. This in turn significantly
accelerates the evaluation process while maintaining consistency with EMD. In addition to assess-
ing node degree, clustering coefficient, and orbit counts, we also extend our evaluation to include
a spectral analysis (Spect.), following [Liao et al|(2019). This involves computing the eigenvalues
of the normalized graph Laplacian, quantized to approximate a probability density. The spectral

15

Published as a conference paper at ICLR 2025

Table 5: Comparison with other graph generative models based on validity, uniqueness, and novelty
metrics (the higher the better) on synthetic datasets.

Planar Stochastic Block Model (SBM)
Val.t Unig.t Nov.t V&U&NT | Valt Unigt Nov.t V&U&N T

GraphRNN 0.00 - - 0.00 013 100 1.00 0.13
GRAN 003 100 1.00 0.03 020 1.00 1.00 0.20
DiGress 070 098 0.95 0.65 013 098 1.00 0.13
GSDM 085 050 028 0.12 008 088 050 0.04
GDSS 0.00 - - 0.00 001 100 1.00 0.01
SPECTRE 0.14 100 1.00 0.14 051 100 1.00 0.51
GGSD 0.5 100 1.00 015 | 049 100 1.00 0.49

comparison offers insights into the global properties of the graphs, complementing the local graph
statistics emphasized by previous metrics.

B.2 INTRINSIC-QUALITY-BASED

The validity is determined by the ratio of valid molecules to all generated molecules. For molecule
graphs (QM9), the validity in molecule generation represents the percentage of chemically valid
molecules based on specific domain rules. We measure it using RDKit anitizatimﬂ For Planar
graphs, we use the NetworkX python library based on the left-right planarity test (de Fraysseix &
Ossona de Mendez, [2012)). For the stochastic block model graphs (SBM), we use a Monte Carlo
and greedy heuristic for the inference of the stochastic block model parameters (as implemented
by cdlib (Peixoto, 2014)). We consider a graph valid if its probability, assessed by a Wald test
(Fahrmeir et al., [2013)), of having been generated by the SBM model with inter-edge probability of
0.3 and intra-edge probability of 0.005 is higher than 0.9, and if the number of communities is in the
range 2-5 with a number of nodes for each community between 20 and 40.

The novelty gauges the percentage of valid graphs that are not sub-graphs of the training set, and
vice versa. It checks if the model has successfully learned to generalize to unseen graphs and it
considers two graphs identical if they are isomorphic.

The uniqueness is defined as the ratio of unique samples to valid and novel samples, measuring
the level of variety during sampling. To calculate uniqueness, generated graphs that are sub-graph
isomorphic to others are initially removed, and the remaining percentage represents uniqueness. For
instance, if a model generates 100 identical graphs, the uniqueness is 1/100 = 1%.

The product of these three metrics is referred to as V&U&N (or VUN) and summarizes the ability
of the method to generate graphs that are at the same time novel, unique, and valid.

C VUN EXPERIMENTS

Table [3] presents the results on the quality of the synthetic graphs generated for the Planar and
SBM datasets, analyzing the metrics of validity, uniqueness, novelty, and their combination. As
highlighted in Section[5.1} our method achieves 100% uniqueness and novelty on both datasets while
showing the second-best score in terms of VUN. Specifically, for SBM, the gap of SPECTRE and
our method with respect to other methods is considerable, due to a higher validity score compared to
competitors. On the other hand, the validity score of our method on the Planar dataset is lower than
the top-performing method (DiGress) of some margin. This behavior is not unexpected and can be
explained by the insensibility of the eigenvectors to small local changes of the topology as discussed
in Section[5.1] It is worth noticing how GSDM, despite showing the best validity performance on
planar graphs, is not able to generate novel graphs, with a novelty score of just 28% in Planar, and
50% in SBM. This does not come as a surprise, since in GSDM the eigenvectors used to reconstruct
the final adjacency matrix are uniformly sampled from the training set. This limits the generative
power of the method, since most of the information about the graph connectivity is contained in the

'https://www.rdkit.org/docs/RDKit_Book.html

16

https://www.rdkit.org/docs/RDKit_Book.html

Published as a conference paper at ICLR 2025

eigenvectors. As such, the obtained graphs are not actually generated but rather slight modifications
of the training set graphs.

D MODEL SETTINGS AND IMPLEMENTATION DETAILS

For all datasets except for QM9, we retrained the models using the configurations recommended
by the authors. When no recommended hyper-parameters setups or model weights were available,
we explored the space of hyper-parameters tuning them according to the ranges mentioned for other
datasets. Finally, for our method (GGSD), we use the k largest/smallest eigenvalues of the unnor-
malized Laplacian. The values of k are experimentally determined as explained in Appendix [E] We
stress that these are only a fraction of the full set of eigenvectors.

We used the unnormalized Laplacian since it yields an easier graph reconstruction by simple thresh-
olding (as explained in Section[5.2)). In order to handle potential scaling issues, we simply normal-
ized the eigenvalues and eigenvectors based on the training data so as to reflect a normal distribution.

For the training of the diffusion model, we split each dataset into 90% train and 10% test, and
we train the Spectral Diffusion on the whole dataset for 100k epochs, using early stopping on the
reconstruction loss. We performed a grid search on the number of layers between 6, 9 and 12, and
selected the best model according to the degree metric computed from the graphs reconstructed
directly from the eigenvectors/values and the graphs of the training set. The sampling has been done
using DDIM with 200 steps. Moreover, we generate each sample 4 times and keep the one with the
lower deviation from orthogonality.

For the training of the Graph Predictor, we used the same splits of the Spectral Diffusion, and trained
for 100k epochs. We performed early stopping by comparing the degree distribution of the generated
graphs with the training graphs. We used 6 PPGN layers and 3 PPGN layers for the Graph Predictor
and the discriminator network respectively, except for QM9 in which also the Graph Predictor is
composed of three layers. For QM9, we let the Graph Predictor to generate also edge features,
similarly to|Martinkus et al.[(2022).

For all datasets, following the observations in Appendix [E] we train both Spectral Diffusion and
Predictor on the 16 smallest and 32 largest eigenpairs and select the final model according to the
best average metrics on the validation set.

In order to guarantee the reproducibility of both our model architecture and results, we have made
our code accessible on an online public repository ﬂ

E NUMBER OF EIGENVECTORS

To evaluate which part of the spectrum is more relevant and the proper number of eigenvectors to
use, we performed an experiment. We trained our model focusing on either the smallest eigenvalues
(Smallest) or the largest ones (Largest), while gradually increasing the corresponding number of
eigenvectors taken into consideration. The results obtained from two synthetic datasets, Planar and
SBM, are shown in Figure[7] Regarding the optimal number of eigenvectors, it appears that too many
eigenvectors do not yield the best results, either considering low or high frequencies. Specifically, in
the case of the Planar dataset, both smaller and larger eigenvalues exhibit the best performance with
16 eigenvectors. However, for SBM, while the optimal count for lower frequencies remains at 16,
for higher frequencies, it increases to 32. These results are not entirely surprising, considering the
inherent trade-off between the diffusion model’s capability to manage high-dimensional data and
the quantity of information (number of eigenvectors) accessible to the Predictor. All in all, it should
be noted that the selection of the number of eigenvectors can generally be regarded as a model
hyperparameter for optimization, acknowledging its potential dependence on the specific dataset.

Building on the findings outlined above, in our experiments we employed the 32 largest eigenvalues
and the 16 smallest eigenvalues - and their corresponding eigenvectors - for all datasets, except for
the community-small dataset, for which we utilized the top 8 largest/smallest eigenvalues, and QM9,
for which we used the full set of eigenpairs.

https://github.com/lcosmo/GGSD

17

https://github.com/lcosmo/GGSD

Published as a conference paper at ICLR 2025

Planar SBM

17.5 == Smallest 121 = Smallest

B Largest 4 B Largest

15.0
5 12,54
10.0

7.54

Average err
Average error

5.0
2,51

0.0~

< c ©

< < © ©
©

64

N
™

N =
Number of eigenpairs

Number ofHeigenpairs
Figure 7: Performance analysis with varying numbers of eigenpairs and different spectrum parts,
for the SBM (left) and Planar (right) datasets. The average error represents the mean degradation
of all metrics between the generated graphs and the training set. We report both the mean and
the standard deviation as error bars on 10 generations of 200 graphs. Specifically, we consider the
Degree, Cluster, and Spectral metrics. For each metric, the degradation is computed as the ratio
between (1) the MMD value computed between the generated graphs and the training graphs and
(2) the MMD computed between the test graphs and the training graphs. A value of 1 indicates that
the generated graphs exhibit the same statistical difference wrt the training graphs as the test set
graphs do. The ratios computed for each metric are then averaged to get a single value indicating
the quality of the generation.

F EIGENVECTORS ORTHOGONALITY STUDY

We conducted some experiments to provide both quantitative and qualitative analyses of the or-
thogonality behavior of the generated eigenvectors. In Figure [§] (left), we show how the generated
eigenvectors deviate from forming an orthonormal basis. Here we vary the number of generated
eigenvectors between 4 and 12 for Community, and between 4 and 64 for SBM. This choice re-
flects the fact that the graphs in the Community dataset have between 12 and 20 nodes, while in
the case of SBM we observed that using more than 64 eigenvectors appears to lead to a degrada-
tion in performance (see Figure[8). As expected, increasing the number of generated eigenvectors
introduces greater deviations from orthogonality, which aligns with our findings in Appendix [E]
In Figure [§] (right), we provide qualitative examples by comparing the generated eigenvectors with
those computed from the adjacency matrix predicted by the PPGN. We can observe that in simpler
datasets, such as the Community dataset, the eigenvectors are perfectly aligned. In more challenging
datasets, such as SBM, while the alignment is not exact, the overall correspondence remains good
and significant.

Community SBM
k=4

Community SBM

0.025

_ 0.020

nality RMS error
°
e

g
°
4

8 o0.010

orthogonality RMS error

orth

0.005 002

0.000

8 16 32
number of eigenvectors k

Figure 8: Left: the two bar plots show the deviation of the eigenvectors generated by GGSD from
an orthonormal basis on two datasets for different numbers of eigenpairs. The deviation from or-
thogonality is computed as the average root mean squared difference of the inner product of the
eigenvectors with the identity matrix, i.e., RMS(®o) = (5 1(®4 8o — I)?17)3, with 2 being
the elementwise square operator and k the number of eigenvectors. Right: Qualitative results show-
ing the inner product of the generated eigenvectors.

18

Published as a conference paper at ICLR 2025

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SBM 1.11 254 3.62 488 6.65 688 7.11 742 751 775 747 7.84 7.6 7.85 8.26 8.13
Community 1.09 2.97 341 4.18 471 546 577 6.13 646 679 6.87 7.54 - - - -

Table 6: Average Dirichlet energy computed on 500 generated graphs from the SBM and Commu-
nity datasets, trained on the lower part of the spectrum (smaller eigenvalues).

The two experiments described above demonstrate that the generated eigenvectors exhibit the
smoothness property and are often very similar, sometimes nearly identical, to the eigenvectors com-
puted from the final predicted graph. To further investigate this, we computed the Dirichlet energy
of the generated approximate eigenvectors on the final generated graph. We observed a consistent
pattern, with the energy increasing as the eigenvalues grow larger. In Table[6] we report the average
Dirichlet energy computed from 500 generated graphs in the SBM and Community datasets. We ex-
clude the first eigenvector (A = 0) from the analysis, as it does not contribute to the reconstruction
of the Laplacian, and the diffusion process is trained only on non-zero eigenvalues.

G RUNTIME COMPARISON

Table 7: For each dataset, every method generates 100 graphs. We report the total generation time
in seconds.

Planar SBM Comm. Proteins QM9

GraphRNN 330 4.19 3.16 1687 —
GRAN 858 4843 290 20547 —
DiGress 859.64 388230 7049 OOM 68.11
GSDM 1071 3151 974 16009 —
GDSS 81.10 160.88 45630 3177.03 1.32

SPECTRE 171 363 072 OOM 0.06

GGSD 9.51 18.63 441 124.07 2.50

Table shows the total generation time (in seconds) for our method and the baseline methods across
the datasets analyzed in this paper. For a fair comparison, we generated 100 graphs for each dataset
and method. These experiments were conducted on a computer equipped with an AMD Ryzen 7
3700X processor, 64GB of RAM, and an NVIDIA RTX 3070 8GB graphics card. We achieve a
significant speedup compared to DiGress, thus showing that we are able to overcome the computa-
tional bottleneck of diffusion-based methods which, unlike GGSD, work on a diffusion space that is
quadratic in the number of nodes of the graph. Additionally, our hardware configuration could not
register the time for large datasets like Proteins due to their space complexity. While our method
outperforms GDSS in terms of speed, it is less efficient than simpler algorithms such as GRAN and
GraphRNN.

H STABILITY OF THE SPECTRAL DECOMPOSITION OF THE GRAPH
LAPLACIAN

In the spectral graph theory literature, the instability of the Laplacian has become a true-ism. Yet,
this claim requires further qualification as several spectral approaches have shown to be robust even
under severe deformation Rodola et al.[(2017); |Cosmo et al.| (2016). In general, random structural
perturbation can cause major topological changes which will reflect on the eigenvectors and eigen-
values of the Laplacian quite dramatically, but it strongly depends on the location of the actual
perturbation, and it is linked with small gaps in the eigenvalues.

From spectral perturbation theory, we note that under a perturbation €, as long as the eigenvalues
are and remain distinct, the eigenvalues of the perturbed Laplacian L = L + € are perturbed by a

19

Published as a conference paper at ICLR 2025

quantity
ANi ~ ¢ Ei, ®)
while the eigenvectors are perturbed by A® ~ ®B. Here the matrix B = (b;;) is defined as:
o] E¢;
by =) 9
D Y ©)

As a consequence, the mixing can become large even for small perturbations if the gap between
the eigenvalues is small, and in general only eigenvectors with close eigenvalues will mix in a
significant way. All this being said, this characterizes what happens when we perturb the graph,
which is not what is happening here. By recreating the spectrum through a stable diffusion process,
the perturbation is in the spectrum, and, in general, small perturbations of the spectrum do not cause
major topological changes in the structure (which, as we said, are associated with large spectral
variations). Let us say that the eigenvectors are perturbed by a factor of A® and the eigenvalues by
a factor of AA, then the reconstructed Laplacian is

L=(®+A®)(A+AA)(®+AD) = BADT + BAADT + BAADT + ADPADT +
I order error terms

BAANADPT + ABAAPT + ABAADT + ABAAADT | (10)

1I order error terms IIT order error term

which varies smoothly with noise and does not have elements at the denominator that force the terms
to explode. Indeed, we have not observed topological instabilities in any of the datasets considered
in this study.

20

	Introduction
	Related Work
	Denoising Diffusion Models
	Our Method
	Spectral Diffusion
	Graph Predictor

	Experimental Evaluation
	Evaluating the Generated Graphs
	Graph Predictor Ablation
	Eigenvectors Orthogonality
	Spectral Conditioned Generation

	Conclusion
	Datasets.
	Evaluation Metrics
	Statistics-Based
	Intrinsic-Quality-Based

	VUN Experiments
	Model Settings and Implementation Details
	Number of Eigenvectors
	Eigenvectors Orthogonality Study
	Runtime Comparison
	Stability of the Spectral Decomposition of the Graph Laplacian

