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1. Introduction
Tensor networks (TNs) have emerged as a power-

ful tool for studying quantum many-body systems,
demonstrating remarkable versatility across various
domains of quantum physics [1, 2, 3, 4, 5, 6]. This
success has catalyzed a growing interest in harness-
ing TNs formachine learning applications [7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60], where they have shown promise in di-
verse areas such as dimensionality reduction [9, 10],
model compression [29, 54], natural language pro-
cessing [61, 62, 59], generative models [17, 49]. De-
spite their promising performance, a comprehen-
sive understanding of the underlying assumptions
and limitations of these models is still lacking. Here
we focus on the rigorous formulation of their no-
free-lunch (NFL) theorem—essential yet notoriously
challenging to formalize for specific TN machine
learning models. In particular, we rigorously ana-
lyze the generalization risks of learning target out-
put functions from input data encoded in TN states.
We first prove a NFL theorem for machine learning
models based on matrix product states (MPSs), i.e.,
the one-dimensional TN states. Furthermore, we
circumvent the challenging issue of calculating the
partition function for two-dimensional Ising model,
and prove the no-free-lunch theorem for the case of
two-dimensional projected entangled-pair state, by
introducing the combinatorial method associated to
the “puzzle of polyominoes”. This abstract is based
on our recent work [63].

2. QuantumNFL
The NFL theorem is one of the most fundamen-

tal theorems in the classical machine learning the-
ory [64, 65, 66]. It states that, averaged over all possi-
ble problems, every algorithmperforms equallywell
when applied to problems they were not specifically
designed for. Inspired by the critical role of NFL
theorem in classical machine learning, significant
progress has beenmade in developing NFL theorem
for quantum learning models [67, 68, 69, 70, 71, 72,
73]. The quantum NFL theorem establishes straight-
forward connections between quantum features and
the capabilities of quantum learning models. For in-
stance, in practical quantum learning setups with a
finite number of measurements, entangled data ex-
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Fig. 1: Upper panel: The encoding strategy. Data
samples with labels are encoded into the local ten-
sors U (i) of the unitary embedded tensor network
states. Lower panel: The learning strategy. Given
the training set S of samples with the labeled out-
puts (left), the goal is to minimize the average dis-
tance between the learned output states and the
ground truth states (acting the unitaryM† on en-
coding states) over all training samples. Unitary
circuit PS stores the variational parameters.

hibits a dual effect on prediction errors. With suffi-
cient measurements, highly entangled data can re-
duce prediction errors. This is consistent with the
ideal case of infinitemeasurements [69]. Conversely,
with few measurements, highly entangled data can
amplify predicting errors [72]. These results high-
light how quantum features contribute to the advan-
tages in quantummachine learning models.

3. NFL for Tensor networkmachine learning
We consider a task of learning the unknown uni-

tary operation M based on the input of TN states.
Without loss of generality, we take the 1D matrix
product state (MPS) for demonstration. The MPS
under periodic boundary condition has the form
|ψ⟩ =

∑
i1,...,in

tr[A(1)
i1
A

(2)
i2

· · ·A(n)
in

]|i1, i2, . . . , in⟩,
where A(k)

ik
denotes the D ×D tensor with D repre-

senting the bond dimension, |ik⟩ denotes the state of
k-th physical site with physical dimension d. We de-
fine the unitary embedded MPS by converting each
D × D × d tensor A(k) to a Dd × Dd unitary U (k)
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[74, 75, 76, 77, 78, 79], as depicted in Fig. 1. We de-
fine the labeled training set S = {(|ψj⟩, |ϕj⟩)|j =
1, 2, ...t}, where the site size |S| = t, the MPS |ψj⟩
belongs to the feature Hilbert space, and the state
|ϕj⟩ = M |ψj⟩ belongs to the label Hilbert space. We
learn the target unitary M by minimizing the loss
function L =

∑t
j=1 |(M |ψj⟩ − PS |ψj⟩) /⟨ψj |ψj⟩|2,

where PS denotes the variational quantum circuit
with sufficient expressivity. If the model is properly
trained, then one has PS |ψj⟩ =M |ψj⟩, ∀|ψj⟩ ∈ S up
to an overall phase. To quantify the predicting accu-
racy of our TN model on learning the target M , we
define the predicting risk function by the following
trace-norm formula
RM (PS)

=

∫
dx
∥∥∥(M |x⟩⟨x|M† − PS |x⟩⟨x|P †

S

)
/⟨x|x⟩

∥∥∥2
1
,
(1)

where ∥A∥1 = 1
2 tr[

√
A†A] denotes the trace norm

ofA, |x⟩ represents the unitary embedded MPS, and
the integral is over the Haarmeasure of all local uni-
tary tensors {U (i)|i = 1, 2, · · ·n} in Fig. 1. RM (PS)
represents the prediction error of the trainedmodel.
For proper learningwithout training errors,RM (PS)
is equivalent to the generalizationerror [80]. Wenote
that the norm ⟨x|x⟩ is exponentially concentrated
around one [79]. With the above risk function, one
can then study the NFL theorem for both 1D and 2D
TN-based models.
Theorem 1 (1DMPS). Define the risk functionRM (PS)
in Eq. (1) for learning a target n-qubit unitaryM based
on the input ofMPSs, wherePS represents the hypothesis
unitary learned from the training set S. Given a linear
independent training set with size tk = dn − dn−k, the
integer k ∈ [1, n−1], d is the physical dimension ofMPS,
and n denotes the qubit number of the system. The aver-
age risk is lower bounded by

EM,S [RM (PS)] ≥ 1− (1− 2

dk
)(1 + (dAB)n)

− (
1

dn
+

1

dk
)(Ak +Bk)(1 + (dAB)n−k),

(2)

whereA = D+1
Dd+1 ,B = D−1

Dd−1 , andD is the bond dimen-
sion of MPS.

Theorem 2 (2D PEPS). Define the risk function
RM (PS) in Eq. (1) for learning a target L2-qubit uni-
tary M based on the input of PEPS, where PS repre-
sents the hypothesis unitary learned from the training
set S. Given a linear independent training set with size
tk = dL

2 − dL
2−k, the integer k ∈ [1, L2 − 1], d rep-

resents the physical dimension and virtual dimension of
PEPS, and L2 denotes the qubit number of the system.
The average risk is lower bounded by

EM,S [RM (PS)] ≥

1− (1 + c(0.7)L)

[
1− 2

dk
+ (1 +

1

dL2−k
)

·
(
2D4d− 2

D4d3 − d

)k (
1 +D

2D

)2k

(1 +G(1/d, 1/D2))2l

]
,

(3)

where l = ⌈
√
k⌉, G(q, p) =

p
2

(√
(1+q)(1+q−qp)

1−q(2+p)+q2(1−p) − 1
)
, D is the bond dimen-

sion of the PEPS and c is a constant.

The above two Theorems establish the analytical
lower bounds for the average risk of the TN-based
machine learning model, and thus quantify the ca-
pability of the model in learning an arbitrary tar-
get unitary with an arbitrary training set. Rigorous
proofs show that the average risk is lower bounded
by zero for the full training set, whereas the average
risk is lower bounded by one for the empty training
set. These results formalize the NFL theorems for
MPS and PEPS-based machine learning models.

4. Conclusion
Our results provide a fundamental understand-

ing on the generalization limits of TN-basedmodels,
extract how the performance of these specifically
structured models would be limited by the NFL the-
orem, and analytically unveil that the lower bound
of the average risk depends on both the bound and
physical dimensions of TNs. Our findings would
inspire further research on the learning capabili-
ties of TN-based models with quantum computer,
where TNs are employed as efficient representations
of quantum circuit models. One potential direction
is to incorporate the issues of practical quantum
computing hardware, such as the noise and finite
measurement times [72], into the analytical study
of generalization ability for TN-based learning mod-
els. From the perspective of experiments, future re-
search could focus on experimentally validatingNFL
bounds in practical quantum computing environ-
ments. As quantum hardware continues to advance,
testing these theoretical predictions on real quan-
tum systems will be crucial to understanding how
NFL constraints manifest in noisy, resource-limited
settings. Such experiments would also help refine
our theoretical models, potentially revealing new
strategies for optimizing TN-based machine learn-
ing models for practical applications.
In summary, we have rigorously formulated the

NFL theorems in the TN-based machine learning
models. Particularly, we consider the supervised
task of learning arbitrary target unitary based on the
TN models, and then present the analytical lower
bounds for the average risk of the models. Our re-
sults reveal the intrinsic limitations in learning ar-
bitrary unitaries from input states encoded via TNs.
The risk bounds, which depend on both the bond
and physical dimensions, provide a quantitative un-
derstanding of the connections between model gen-
eralization and training set size. Our results of-
fer valuable guidelines for designing more efficient
models, and open promising research directions
aimed at improving the generalization capabilities
of quantum-inspired TN machine learning systems.
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Appendix A. Numerical details

In our previous theorems, we have analytically ob-
tained the lower bound of the average generalization
risk. To show how these theorems perform in prac-
tice, we carry out numerical simulations based on
the open-source package ITensors.jl [81, 82] in the
Julia programming language. Based on the MPSma-
chine learning model, we consider the supervised
task of learning target unitaries U with the labeled
training samples {(|ψj⟩, U |ψj⟩)}, where |ψj⟩ denotes
the normalized MPS. We then plot the average gen-
eralization risks of the trained MPS-based learning
models with respect to different qubit size n of learn-
ing models, as depicted in Fig. A1. For example, in
n = 4, we randomly generate a 16-dimensional tar-
get unitary and a training set of MPSs, and conduct
the MPS-based supervised task. By repeatedly con-
ducting learning tasks for different target unitaries,
one obtains the average generalization risk for dif-
ferent size of training sets. We see from Fig. A1 that
the average error risks decrease with respect to the
training set size. This is consistent with the analyti-
cal lower bound of the average risks predicted in our
theorems.

Appendix B. The polynominoes

To address the 2D TN problem, we initially intro-
duce a statistical model for enumerating lattice con-
figurations on a two-dimensional plane, known as
the polyomino. The focus of this model is on di-
rected figures that encompass a specific number of
sites within an infinite square grid. We will find that
the partition function of the two-dimensional Ising
model can be translated into a problem sets on a pe-
riodic plane of an infinite square lattice grid, mak-
ing the application of polyomino calculationmethod
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Fig. A1: Average risk of the trained MPS-based ma-
chine learning models with respect to the train-
ing set size tk = 2n − 2n−k, where the system
qubit size n varies from four to five. The phys-
ical dimension d = 2, and the bond dimension
D = 2. The solid lines represent the analyti-
cal lower bounds of the average risk predicted by
Theorem 1. And the dotted lines denote the aver-
age risk of the trainedMPS-basedmachine learn-
ing models for predicting target unitaries.

particularly effective. We first provide some defini-
tions related to polyominoes [83], and then map our
problem to this framework. The formal definition of
the directed polyomino(shown in Fig. A2) is listed as
follows:

Definition 1. (Directed polyomino). A directed poly-
omino is a finite subset τ⃗ ⊆ Z × Z (Z denotes the set of
integers) in the Euclidean plane rooted at (x0, y0) such
that

• (x0, y0) ∈ τ⃗ ,

• for (x, y) ∈ τ⃗ and (x, y) ̸= (x0, y0), at least one of
(x+ 1, y) ∈ τ⃗ and (x, y + 1) ∈ τ⃗ are in τ⃗ as well.

Thepolyominoes canbe characterized by their ar-
eas, perimeters and upper perimeters as their prop-
erties, whose formal definitions are as follows:

Definition 2. (area, perimeter and upper perimeter).
Let τ⃗ be a directed polyomino.

• The aream of τ⃗ is the size of the polyomino, i.e.|τ⃗ |.

• The perimeter p of τ⃗ is the number of edges on the
boundary of τ⃗ . Formally speaking, p = |{(x, y) ∈
Z×Z : τx,y ̸= τx+1,y}|+ |{(x, y) ∈ Z×Z : τx,y ̸=
τx,y+1}|.

• The upper perimeter n of τ⃗ is the number of hor-
izontal edges on the top boundary of τ⃗ . Formally
speaking,n = |{(x, y) ∈ Z×Z : τx,y = 0, τx+1,y =
1}|.

Thenwe can enumerate directed polyominoes ex-
actly via their generating function by the following
lemma:
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Fig. A2: Illustrations of the general polyomino and the directed polyomino. (a) Illustration of the various types
of general polyominoes with the area ranging from 1 to 4. Here we regard the different rotations of a
polyomino as being of the same type. (b) Illustration of a directed polyomino rooted at the gray site with
area m = 6, perimeter p = 14, and upper perimeter n = 3 (depicted as the black lines).

Lemma 1. LetDm,n be the number of directed polyomi-
noes rooted at (0,0) with area and upper perimeterm,n
respectively. p and q are two variables. We introduce the
generating function ofDm,n as

G(q, p) =
∑
m,n

Dm,nq
mpn. (A1)

When p, q ∈ (0, 1] such that |q(2 + p)− q2(1− p)| < 1,
the power series converges to a finite value

G(q, p) =
p

2

(√
(1 + q)(1 + q − qp)

1− q(2 + p) + q2(1− p)
− 1

)
.

(A2)

This lemma implies that when q, p ∈ (0, 1]
such that |q(2 + p) + q2(1 − p)| ≤ 1, the power
series

∑
m,nDm,nq

mpn converges to a finite value
G(q, p). Wewill see theproblemofpartition function
for two-dimensional lattice having a similar power-
series form reduces to determining the number of
configurationsDm,n.
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