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ABSTRACT

Diffusion models facilitate powerful control over the generative process. Here
we introduce training-free guidance, a method for sampling from a broad class of
conditional distributions that can be considered generalisations of inpainting. The
method is grounded in annealed Langevin dynamics which ensures convergence
to the exact conditional distribution, unlike existing methods for inpainting which
rely on heuristics. We demonstrate training-free guidance using pretrained uncon-
ditional models for image, protein structure, and protein sequence generation and
improve upon state-of-the-art approaches. We show the versatility of training-free
guidance by addressing a wide range of tasks, including multi-motif scaffolding
and amino acid mutagenesis of T cell receptors.

1 INTRODUCTION

Denoising diffusion probabilistic models (DDPMs) are a powerful class of generative models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) that have gained popularity across many domains (Hooge-
boom et al., 2022; Kong et al., 2020). Diffusion models are often trained to generate samples from a
data distribution unconditionally, but practical applications generally require sampling from a con-
ditional data distribution (Rombach et al., 2022; Karras et al., 2022).

One such conditional sampling task is inpainting, a well-studied problem where the conditioning
specifies the exact values of a subset of the sample. This task is important in several settings, in-
cluding image editing (Pathak et al., 2016; Liu et al., 2018) and protein engineering, where it is
more commonly referred to as motif scaffolding (Didi et al., 2023; Lin et al., 2024). In this work
we consider inpainting alongside a suite of other tasks such as editing sequences and optimising an
element-wise sample score. These conditions are not typically considered as extensions of inpaint-
ing, but we show that they are in fact expressible as a set of inpainting conditions linked by logical
connectives (i.e. AND/OR), possibly with varying weights. We refer to these tasks as generalised
inpainting.

Most methods for conditional sampling require new models (Dhariwal & Nichol, 2021), or modified
training procedures (Ho & Salimans, 2022), which can be costly. Several plug-and-play methods
have been proposed for both inpainting (Song & Ermon, 2019) and generalised inpainting tasks like
sequence editing (Meng et al., 2021), but these methods tend to be heuristically motivated and do
not sample from the exact conditional distribution.

In this work we present training-free guidance (TFG) of diffusion models, a method of sampling
from the exact conditional distribution for generalised inpainting tasks. We show that TFG improves
upon the current state-of-the-art for standard inpainting when applied to image and protein structure
generation, and give examples of further generalisations of the inpainting problem.

2 PRELIMINARIES

2.1 DENOISING DIFFUSION MODELS

Given some data distribution p0(x), where x ∈ Rn, we can construct a time-dependent family of
distributions through the diffusion process

1
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dx = −1

2
β(t)xdt+

√
β(t)dwt, (1)

where wt is the Wiener process. This yields the family of distributions

pt(x|x0) = N
(
x;
√
ᾱ(t)x0, 1− ᾱ(t)

)
, (2)

where ᾱ(t) := exp
∫ t

0
−β(s)ds. We can then sample from p0(x) by sampling from x ∼ pT (x) ≈

N (x; 0, I), where T is large, and simulating the reverse-time process given by (Anderson, 1982)

dx = β(t)

[
−1

2
x−∇ log pt(x)

]
dt+

√
β(t)dw̄t, (3)

where w̄t is the Wiener process with time reversed. In general, the exact score function ∇ log pt(x)
is unavailable, so an approximation to the score sθ(xt, t) is learnt by minimising the denoising score
matching objective (Vincent, 2011)∫ ∞

0

Ex0∼p0,x∼pt(·|x0)

[
∥sθ(x, t)−∇ log pt(x|x0)∥2

]
dt. (4)

In order to sample from the data distribution, DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020)
simulate Equation 3 using the discretisation

xt−∆t =
xt + βtsθ(xt, t)√

1− βt

+
√
βtzt, (5)

where βt := β(t)∆t and zt ∼ N (0, I).

2.2 ANNEALED LANGEVIN DYNAMICS

The diffusion process yields a family of distributions pt(x) that anneal to the data distribution p0(x).
Sampling from an annealed family in order to eventually sample from p0(x) has a history that
predates generative diffusion models (Kirkpatrick et al., 1983; Neal, 2001). A popular method
involves Langevin dynamics (Parisi, 1981), which relies on the fact that the stochastic process

dx = ∇ log pt(x)dτ +
√
2dwτ (6)

has the stationary distribution pt(x). Therefore we can simulate a discretisation of this process to
sample from pt(x) for each timestep t, and use this value as the initialisation for dynamics at the
next timestep t−∆t.

3 THEORY

3.1 INPAINTING AND THE PROBLEM WITH REPLACEMENT SAMPLING

Inpainting is the problem of sampling from some data distribution p0(x), where x ∈ Rn, conditioned
on a subset of dimensions M being fixed to a target value, p0(x|x∈M = x̃). An intuitive approach
to inpainting, which we refer to as replacement sampling, involves evaluating the score at each
timepoint with the value of the dimension replaced with the appropriately rescaled target value
(Song et al., 2021). That is, the reverse-time process is simulated via

x/∈M
t−∆t =

x/∈M
t + βtsθ

(
x/∈M
t ⊕

√
ᾱ(t)x̃, t

)/∈M

√
1− βt

+
√
βtz

/∈M
t . (7)

The original formulation of replacement sampling also involves the addition of noise, the details of
which do not affect the results of this section but can be found in Appendix A.

By comparison with Equation 5, we see that Equation 7 would be the discretisation of the reverse-
time process with the family of distributions

preplace
t (x/∈M ) := pt

(
x/∈M ⊕

√
ᾱ(t)x̃

)/∈M

. (8)

2
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However, this family does not correspond to a forward diffusion process, and therefore the argu-
ment of Anderson (1982) that leads to Equation 3 cannot be applied. To see this, recall that pt(x)
corresponds, by definition, to the forward diffusion process, and as such satisfies the relevant Fokker-
Planck equation (Fokker, 1914; Planck, 1917),

∂

∂t
pt −

1

2
∇ · (xpt)−

1

2
∇2pt = 0. (9)

By contrast, the left-hand side of the relevant Fokker-Planck equation for preplace
t (x/∈M ) reads

∂

∂t
preplace
t −1

2
∇/∈M · (x/∈Mpreplace

t )− 1

2
∇2

/∈Mpreplace
t

=

(
∂

∂t
pt −

1

2
∇ · (xpt)−∇2pt

)
+

1

2
∇∈M · (x∈Mpt) +

1

2
∇2

∈Mpt

=
1

2
∇∈M · (x∈Mpt) +

1

2
∇2

∈Mpt, (10)

which does not vanish in general.

3.2 A TOY PROBLEM

Even in very simple settings, replacement sampling can fail drastically. Consider the joint distribu-
tion, plotted in Figure 1, given by

p0(x, y) =


0.9 if x = +1 and y = +1,

0.09 if x = −1 and y = −1,
0.01 if x = +1 and y = −1,

(11)

and suppose we want to sample from the conditional distribution

p0(x|y = −1) =
{
0.9 if x = −1,
0.1 if x = +1.

(12)

Empirically, we see in Figure 1 that replacement sampling of this conditional distribution is plagued
by the influence of the marginal distribution

p0(x) =

{
0.09 if x = −1,
0.91 if x = +1.

(13)

Moreover, it is also clear from this experiment that this issue cannot be rectified by simply increasing
the number of sampling steps; the replacement sampling method inevitably converges to the wrong
distribution. Indeed, we show explicitly that the Fokker-Planck equation is not satisfied for this dis-
tribution in Appendix B, so replacement sampling does not sample from the conditional distribution.

Figure 1: Replacement sampling fails in a toy example in which the conditional distribution is
significantly different to the marginal distribution. By contrast, the samples generated from TFG
with both preplace

t (x) and pproduct
t (x) match the conditional distribution, given sufficient number of

timesteps.

3
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3.3 A SOLUTION TO THE AFOREMENTIONED PROBLEM

For simplicity of notation, we consider the case where only the final of the n dimensions is fixed
to a target x̃. That is, consider sampling from p0(x|x(n) = x̃). Notice that although the family of
distributions preplace

t (x(1:n−1)) does not correspond to a forward diffusion process, it does anneal to
the desired distribution p0(x|x(n) = x̃), so we are at liberty to use annealed MCMC approaches.
This leads us to the simplest form of TFG, where we use annealed Langevin dynamics (Parisi, 1981)
to sample from preplace

t (x), as presented in Algorithm 1.

Annealed Langevin dynamics is a familiar technique for the sampling of unconditional DDPMs, and
is inherent to the predictor-corrector framework (Song et al., 2021). The key insight that enables us
to generalise TFG to a much wider range of tasks is that we do not have to use preplace

t (x(1:n−1)) as
our annealed family. Instead, we can define any family of distributions – including a family that can
be adapted for generalised inpainting problems. To this end, we define a new family of distributions
as the normalised product of the unconditional diffusion process and a condition-forcing term:

pproduct
t (x) :=

1

Zt
pt(x)×N

(
x(n);

√
ᾱ(t)x̃, 1− ᾱ(t)

)
. (14)

In Algorithm 2 we show the procedure for TFG with pproduct
t (x). Revisiting our toy problem, Figure 1

shows that applying either Algorithm 1 or 2 samples from the conditional distribution correctly
provided one takes sufficiently many timesteps.

Algorithm 1 Training-free guidance for inpainting using preplace
t (x)

Require: target value x̃, step size η, number of inner loop iterations Ninner
1: xT ∼ N (0, I)
2: for t = T, . . . ,∆t do
3: η(t)← η

√
1− ᾱ(t)

4: for u = 1, . . . , Ninner do
5: z ∼ N (0, I)

6: xt ← xt + η(t)sθ

(
x
(1:n−1)
t ⊕

√
ᾱ(t)x̃, t

)
+ z
√
2η(t)

7: end for
8: xt−∆t ← xt

9: end for
10: return x0

Algorithm 2 Training-free guidance for inpainting using pproduct
t (x)

Require: target value x̃, step size η, number of inner loop iterations Ninner
1: xT ∼ N (0, I)
2: for t = T, . . . ,∆t do
3: η(t)← η

√
1− ᾱ(t)

4: for u = 1, . . . , Ninner do
5: z ∼ N (0, I)

6: xt ← xt + η(t)

[
sθ(xt, t)−

(
0⊕ · · · ⊕ 0⊕ x

(n)
t −
√

ᾱ(t)x̃

1−ᾱ(t)

)]
+ z
√
2η(t)

7: end for
8: xt−∆t ← xt

9: end for
10: return x0

3.4 EXTENSION TO GENERALISED INPAINTING

Let us now turn our attention towards generalised inpainting conditions, which can be expressed as
logical combinations of inpainting conditions. For each such task there is a corresponding condition-
forcing term, which can be obtained by replacing AND connectives (∧) with a relevant product of

4
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distributions and OR connectives (∨) with a relevant sum of distributions. We state some examples
of this procedure in this section and list the corresponding score functions in Appendix D.

Floating inpainting Suppose we want to fix Nfix = 1 dimensions to some target value x̃, but that
we do not know which dimensions to fix. This can be posed as a composition of inpainting tasks via
(x(1) = x̃) ∨ (x(2) = x̃) ∨ . . . ∨ (x(n) = x̃). This corresponds to the distribution

pfloat
t (x) :=

1

Zt
pt(x)×

n∑
i=1

N
(
x(i);

√
ᾱ(t)x̃, 1− ᾱ(t)

)
. (15)

Sequence editing Suppose we start with a sample x̃ and want to generate a new sample with at
most Nedit = 1 dimensions changed, but we do not know which dimensions to edit. This can be
posed as a composition of inpainting tasks via ((x(2) = x̃(2)) ∧ (x(3) = x̃(3)) ∧ . . . ∧ (x(n) =
x̃(n))) ∨ ((x(1) = x̃(1)) ∧ (x(3) = x̃(3)) ∧ . . . ∧ (x(n) = x̃(n))) ∨ . . . ∨ ((x(1) = x̃(1)) ∧ (x(2) =
x̃(2)) ∧ . . . ∧ (x(n−1) = x̃(n−1))). This corresponds to the distribution

pperturb
t (x) :=

1

Zt
pt(x)×

n∑
i=1

∏
j ̸=i

N
(
x(j);

√
ᾱ(t)x̃(j), 1− ᾱ(t)

)
. (16)

Element-wise score optimisation Suppose that each of the possible values of a dimension {x̃j}
can be assigned a corresponding score {wj}, and we want to generate samples such that the total
sum of the scores in each dimension is controllable. This can be posed as a composition of inpainting
tasks via ((w1(x

(1) = x̃1)∨w2(x
(1) = x̃2)∨. . .∨wj(x

(1) = x̃j))∧. . .∧(w1(x
(n) = x̃1)∨w2(x

(n) =

x̃2) ∨ . . . ∨ wj(x
(n) = x̃j)). This corresponds to the distribution

plinear
t (x) :=

1

Zt
pt(x)× µ

n∏
i=1

∑
j

wjN
(
x(i);

√
ᾱ(t)x̃j , 1− ᾱ(t)

)
, (17)

where varying µ enables control of the score.

Element-wise mean score optimisation Suppose now that the sample is of variable length, and
that we want to control the mean score rather than the total score. In this case, we should divide
the weighting assigned to a sample from the distribution through by the length of that sample. This
corresponds to the distribution

pmean
t (x) :=

1

Zt
pt(x)×

µ
∏n

i=1

∑
j wjN

(
x(i);

√
ᾱ(t)x̃j , 1− ᾱ(t)

)
∏n

i=1

∑
j ̸=PADN

(
x(i);

√
ᾱ(t)x̃j , 1− ᾱ(t)

) . (18)

3.5 INTERLUDE: THE SURPRISING BUT ENTIRELY REASONABLE EFFECTIVENESS OF
REPAINT

RePaint is an extension of replacement sampling that leads to a marked improvement in sample
quality (Lugmayr et al., 2022). Instead of performing one forward pass at each timepoint, RePaint
repeatedly denoises the sample using Equation 7 and then renoises it via

xt =
√
1− βt−∆txt−∆t + βt−∆tz, (19)

where z ∼ N (0, I). Having demonstrated the problem with replacement sampling in Section 3.1,
it may seem surprising that RePaint is able to provide significant improvements over replacement
sampling, as it also appears to rely on the reverse-time diffusion process. However, in Appendix C
we show that in the limit of small ∆t, RePaint performs the update

xt ← xt + β(t)∆t∇ log prepaint
t (xt) +

√
2β(t)∆tz, (20)

where prepaint
t (xt) is a family of distributions that anneals to p0(x|x(n) = x̃). Notice that despite the

heuristic motivation for RePaint, in this limit we recapitulate a similar form to TFG framework for
prepaint
t (x), but with step size β(t)∆t.

5
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4 EXPERIMENTS

4.1 INPAINTING

Images We first demonstrate TFG on the standard inpainting task using a pretrained unconditional
DDPM on the CIFAR10 dataset (Krizhevsky et al., 2009). We consider four standard inpainting
tasks, which we denote Left, Top, Inner, and Outer, corresponding to the portion of the image
provided to the model. We compare TFG to unconditional generation, replacement sampling (Song
et al., 2021), manifold constrained gradients (MCG) (Chung et al., 2022), and RePaint (Lugmayr
et al., 2022). For implementation details, refer to Appendix F. We calculate the mean squared error
(MSE) and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) to assess the
similarity between the original and reconstructed images. TFG outperforms baseline methods with
preplace
t (x) and pproduct

t (x) performing similarly. We show two examples in Figure 2.

Left Top Inner Outer

MSE (↓) LPIPS (↓) MSE (↓) LPIPS (↓) MSE (↓) LPIPS (↓) MSE (↓) LPIPS (↓)

Unconditional 0.240±0.002 0.107±0.001 0.220±0.002 0.111±0.002 0.377±0.006 0.134±0.002 0.106±0.001 0.104±0.002
Replacement 0.169±0.003 0.072±0.001 0.187±0.003 0.078±0.001 0.323±0.006 0.108±0.001 0.066±0.001 0.059±0.001
MCG 0.119±0.002 0.061±0.001 0.157±0.004 0.078±0.001 0.251±0.005 0.097±0.001 0.054±0.001 0.059±0.001
RePaint 0.124±0.003 0.056±0.001 0.167±0.003 0.075±0.001 0.252±0.004 0.081±0.001 0.040±0.001 0.040±0.001
TFG (preplace

t ) 0.100±0.001 0.047±0.001 0.136±0.006 0.065±0.002 0.171±0.004 0.063±0.001 0.038±0.001 0.041±0.001
TFG (pproduct

t ) 0.099±0.002 0.052±0.000 0.116±0.002 0.067±0.001 0.178±0.004 0.073±0.001 0.038±0.001 0.040±0.001

Table 1: Quantitative comparison between different sampling methods for inpainting on CIFAR10.

Figure 2: Qualitative comparison between different sampling methods for inpainting on CIFAR10.

Both TFG and RePaint require iterating over Ninner inner loop steps at each timestep. In Table 1
we fix Ninner = 10, and demonstrate the effect of varying Ninner in Figure 3 (left). The perceptual
quality of RePaint generated images deteriorates at greater values of Ninner whereas TFG continues
to improve. In Figure 3 (right) we show that image quality also improves at increased values of
temperature, with the effect more signficant for TFG than replacement sampling and RePaint. We
hypothesise that is due to the fact that multiplying the score by a constant factor does not sample
from the tempered distribution when using the reverse-time diffusion process, as we demonstrate in
Appendix E.

Proteins In protein engineering, keeping a structural motif fixed and using a generative model
to propose a supporting scaffold is a key technique for preservation and optimisation of protein
function. To assess TFG in this setting, we use the unconditional version of RFDiffusion (Watson
et al., 2023), and evaluate performance on their set of 25 scaffolding tasks. We report the number
of successes and unique successes, defined by Lin et al. (2024) to be the number of sequences
that satisfy a set of spatial and model confidence criteria upon refolding sequences derived from
generated backbones. Details of this benchmark can be found in Appendix G. Figure 4 shows that
TFG once again outperforms baseline methods. We see that preplace

t (x) achieves more successes,
although pproduct

t (x) performs comparably when considering the diversity of results.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: (Left) Increasing the number of inner loops to Ninner = 20 improves perceptual quality for
TFG, but not for RePaint. (Right) Perceptual image quality improves for temperatures greater than
one.

Figure 4: TFG generates more successful samples than other baselines. Although sampling with
preplace
t (x) produces many more total successful scaffolds than pproduct

t (x), it generates a comparable
number of unique successful scaffolds after clustering similar structures.

4.2 FLOATING INPAINTING

A natural extension of the standard inpainting task is floating inpainting, whereby a subset of target
values are specified but their position is allowed vary within the sample (Liu et al., 2024). Existing
methods for sampling necessarily require a position to be fixed prior to sampling. In this section we
demonstrate that this relative positional knowledge is already encoded in the diffusion model and
can be extracted with TFG.

Images We consider the case in which a model is conditioned to include one quadrant of an image
of a face – top left (TL), top right (TR), bottom right (BR), or bottom left (BL) – but no information
about which of the four quadrants the patch originates from is provided. We use a DDPM pretrained
on the CelebA dataset (Liu et al., 2015) and calculate the proportion of samples for which TFG
samples the correct quadrant for 1000 images from the test set. As shown in Figure 5, TFG with
pfloat
t (x) both correctly assigns the correct patch location and preserves the perceptual quality of the

inpainted image. Further details can be found in Appendix H.

Proteins It is valuable in protein design to be able to generate scaffolds given multiple motifs. To
demonstrate TFG in this case, we consider a protein with two motifs, of length six and fourteen
amino acids, respectively. We scaffold the multi-motif using the same unconditional model setup
as in Section 4.1. We compare the quality of structures generated by TFG with pfloat

t (x) with the
structures generated by replacement sampling and TFG with pfloat

t (x). In the latter two cases, the
number of amino acids between the two motifs is chosen randomly prior to sampling, whereas no a
priori choice is required for TFG with pfloat

t (x). The quality of the resulting structures is measured
by the predicted Local Distance Difference Test output of the denoising model (pLDDTRF), and

7
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Figure 5: TFG with pfloat
t (x) selects the correct quadrant in which to place an image patch in the vast

majority of cases. We show a particular example of the results of TFG that arise from conditioning
from the same image for each of the four quadrants.

an illustrative example for each method is shown in Figure 6. Our results show that allowing the
sampling method to choose the relative position of the fixed motifs, via pfloat

t (x), over the course of
the sampling process results in an improvement to protein generation. Further details can be found
in Appendix K.

Figure 6: (Left) Using TFG on pfloat
t (x) results in better scaffold design than choosing the number

of intervening amino acids prior to sampling with replacement sampling or TFG with pproduct
t (x).

(Right) Example structures conditioned on the same multi-motif (white), sampled using replacement
sampling (blue), TFG with pproduct

t (x) (orange), and TFG with pfloat
t (x) (green).

4.3 SEQUENCE EDITING

Sequence editing is a generalised inpainting problem that involves altering an existing sample so
that the result is no more than Nedit edits away from the original.

Proteins Amino acid mutagenesis is a problem in sequence-level protein design that requires tak-
ing a protein and identifying amino acids to mutate. The crucial challenge here is that the positions
to mutate are unknown a priori. SDEdit (Meng et al., 2021) is a popular method to address this
challenge (Vázquez Torres et al., 2024). It involves partially noising the sample, and then using the
diffusion model to remove the noise. In Section 3.4 we show that this task can be addressed by TFG
with the family pperturb

t (x) given in Equation 16.

We perform amino acid mutagenesis on the third complementarity determining region on the T cell
receptor beta chain (CDR3β), a highly variable span of protein sequence that mediates cell-mediated
immune system activation (Murphy & Weaver, 2016; Want et al., 2023). Modifying CDR3β is a
key strategy for designing new T cell receptor-based therapies, and operating in sequence space is
advantageous since the structure of this region is highly flexible.

We train a DDPM on a large set of CDR3β chains (refer to Appendix J for details on the model
architecture and training). To validate TFG, we take several batches of 1000 CDR3β sequences
from the test set and for each sequence generate a new sequence that is at most Nedit = 1 edit
distance away from the original. A likelihood measure of CDR3β sequences can be calculated
for the batch before and after mutagenesis using OLGA (Sethna et al., 2019). In addition to our

8
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comparison of TFG to SDEdit, we demonstrate the value of using TFG with pperturb
t (x) over naively

selecting the position to mutate ahead of sampling with TFG on preplace
t (x). We use two strategies

for selecting the mutation position: sampling in proportion to the entropy of the data distribution at
that position, and sampling the position uniformly randomly. The results are presented in Figure 7
(left) and show that TFG with pperturb

t (x) outperforms all other baselines.

4.4 ELEMENT-WISE SCORE OPTIMISATION

A further task that can be considered generalised inpainting is the optimisation of a score that can
be calculated as the mean of the scores of individual components of a sample.

Proteins Hydrophobicity is a property of proteins that plays a crucial role in protein folding (Dob-
son, 2003). The Kyte-Doolittle (KD) scale (Kyte & Doolittle, 1982) is a measure of hydrophobicity
that assigns a numerical value to the twenty different amino acids. To optimise the mean KD score
of a protein sequence, we can sample using the distribution pmean

t (x) with varying values of µ, as
defined in Equation 18. To demonstrate control over hydrophobicity, we sample several batches of
1000 CDR3βs with different values of µ. The results in Figure 7 (right) demonstrate that we are
able to control the mean KD score of generated CDR3β. Further details can be found in Appendix
K.

Figure 7: (Left) TFG with pperturb
t (x) increases the likelihood of a perturbed batch of CDR3βs more

than SDEdit. Moreover, comparison with sampling using preplace
t (x) demonstrates the importance of

allowing the sampler to choose the mutated position, rather than naively choosing it ahead of sample
time. (Right) The hydrophobicity of a generated batch of CDR3βs can be controlled using pmean

t (x).

5 LIMITATIONS AND FURTHER WORK

In this work we have developed training-free guidance, a new method of exact sampling for gen-
eralised inpainting conditions. We now highlight some limitations to the approach and suggest
possible avenues for further research.

We have restricted ourselves here to Langevin dynamics as an approach for annealed MCMC. The
sampling time scales linearly with the number of Langevin steps, which limits the applicability of
TFG in scenarios where speed of generation is critical. Improving the efficiency of MCMC methods
is a rich field (Andrieu et al., 2010; Neal, 2012) with direct implications for such contexts.

Despite the broad nature of generalised inpainting tasks, they do not comprise all interesting condi-
tional tasks, and we give two possible directions of further generalisation. First, generalised inpaint-
ing tasks are straightforward functions in the original data space, not a latent space. Future work
could explore the applicability of TFG to conditioning on preferred values in latent spaces, with
consequences for latent diffusion models (Rombach et al., 2022). Second, we have not explored
condition-forcing terms that cannot be expressed solely in terms of the score, but also require esti-
mates of the raw probabilities pt(x). These probabilities can be accessed by training energy-based
diffusion models (Du et al., 2023), enabling sampling from a wider range of conditions.

9
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Max Planck. Über einen satz der statistischen dynamik und seine erweiterung in der quantentheorie.
Sitzungberichte der, 1917.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Zachary Sethna, Yuval Elhanati, Curtis G Callan Jr, Aleksandra M Walczak, and Thierry Mora.
Olga: fast computation of generation probabilities of b-and t-cell receptor amino acid sequences
and motifs. Bioinformatics, 35(17):2974–2981, 2019.

Mikhail Shugay, Dmitriy V Bagaev, Ivan V Zvyagin, Renske M Vroomans, Jeremy Chase Crawford,
Garry Dolton, Ekaterina A Komech, Anastasiya L Sycheva, Anna E Koneva, Evgeniy S Egorov,
et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity.
Nucleic Acids Research, 46(D1):419–427, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Nili Tickotsky, Tal Sagiv, Jaime Prilusky, Eric Shifrut, and Nir Friedman. McPAS-TCR: a manually
curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics, 33(18):
2924–2929, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Susana Vázquez Torres, Philip JY Leung, Preetham Venkatesh, Isaac D Lutz, Fabian Hink, Huu-
Hien Huynh, Jessica Becker, Andy Hsien-Wei Yeh, David Juergens, Nathaniel R Bennett, et al.
De novo design of high-affinity binders of bioactive helical peptides. Nature, 626(7998):435–442,
2024.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Randi Vita, Swapnil Mahajan, James A Overton, Sandeep Kumar Dhanda, Sheridan Martini, Jason R
Cantrell, Daniel K Wheeler, Alessandro Sette, and Bjoern Peters. The Immune Epitope Database
(IEDB): 2018 update. Nucleic Acids Research, 47(D1):339–343, 2019.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Ra-
sul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and
Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

Muzamil Y Want, Zeenat Bashir, and Rauf A Najar. T cell based immunotherapy for cancer: ap-
proaches and strategies. Vaccines, 11(4):835, 2023.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

A REPLACEMENT SAMPLING WITH NOISE

In most treatments of replacement sampling, noise is added to the known region after scaling it. That
is, rather than updating the sample using (via a learnt approximation)

x/∈M
t−∆t =

x/∈M
t + βt∇ log pt

(
x/∈M
t ⊕

√
ᾱ(t)x̃

)
√
1− βt

+
√
βtz

/∈M
t , (21)

we have

x/∈M
t−∆t =

x/∈M
t + βt∇ log pt

(
x/∈M
t ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z∈M

t

)
√
1− βt

+
√
βtz

∈M
t , (22)

where at each timestep we draw z∈M
t ∼ N (0, I) and z /∈M

t ∼ N (0, I) independently. In the limit
∆t→ 0, the gradient step approaches

Ez∼N (0,I)

[
∇ log pt

(
x/∈M
t ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z

)]
, (23)
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so that

x/∈M
t−∆t =

x/∈M
t + βt∇ log preplace*

t (x/∈M
t )√

1− βt
+
√
βtz

/∈M
t , (24)

where

preplace*
t (x/∈M ) :=

1

Zt
expEz∼N (0,I)

[
log pt

(
x/∈M
t ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z

)]
(25)

is the implied family of distributions that the backward process obeys, where Zt are the appropriate
normalisation factors. To see that adding noise into the replacement process does not solve the
problem with replacement sampling by satisfing the relevant Fokker-Planck equation, we note that
only the dimensions x ∈M depend on z, so derivatives with respect to t and x /∈M can be moved
inside the expectation, and

∂

∂t
preplace*
t − 1

2
∇/∈M · (x/∈Mpreplace*

t )− 1

2
∇2

/∈Mpreplace*
t

= preplace*
t × E

[
∂

∂t
log pt −

1

2
∇/∈M · (x/∈M log pt)−

1

2
∇2

/∈M log pt

]
= preplace*

t × E
[
1

pt

(
1

2
∇∈M · (x∈Mpt) +

1

2
∇2

∈Mpt

)]
. (26)

The term inside the innermost bracket is now identical to the non-vanishing term we found when
performing the same derivation for replacement sampling without noise, and we recover the same
issue with replacement sampling.

B MATHEMATICAL DETAILS OF THE TOY EXAMPLE

The forward diffusion process

dx = −1

2
β(t)xdt+

√
β(t)dwt (27)

applied to the initial distribution

p0(x, y) = 0.9δ(x− 1)δ(y − 1) + 0.09δ(x+ 1)δ(y + 1) + 0.01δ(x− 1)δ(y + 1) (28)

leads to the family of distributions

pt(x, y) =
1√

2π(1− ᾱ(t))

[
0.9 exp

(
−
(x−

√
ᾱ(t))2 + (y −

√
ᾱ(t))2

2(1− ᾱ(t))

)

+0.09 exp

(
−
(x+

√
ᾱ(t))2 + (y +

√
ᾱ(t))2

2(1− ᾱ(t))

)

+0.01 exp

(
−
(x−

√
ᾱ(t))2 + (y +

√
ᾱ(t))2

2(1− ᾱ(t))

)]
. (29)

In the toy example in Section 3.2, we look to sample the conditional distribution with the y-
dimension fixed to −1 by considering

preplace
t (x) = pt(x,−

√
ᾱ(t))

=
1√

2π(1− ᾱ(t))

[(
0.9e−2ᾱ/(1−ᾱ) + 0.01

)
exp

(
−
(x−

√
ᾱ(t))2

2(1− ᾱ(t))

)

+ 0.09 exp

(
−
(x+

√
ᾱ(t))2

2(1− ᾱ(t))

)]
. (30)
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Now

∂

∂t
preplace
t − 1

2
∇/∈M · (x/∈Mpreplace

t )− 1

2
∇2

/∈Mpreplace
t

=
1

2
∇∈M · (x∈Mpt) +

1

2
∇2

∈Mpt

=
1

2

∂

∂y
(ypt) +

1

2

∂2pt
∂y2

=
1√

8π(1− ᾱ)3

[
0.9e−

(x−
√

ᾱ)2+(y−
√

ᾱ)2

2(1−ᾱ(t))

(
(y −

√
ᾱ)(yᾱ−

√
ᾱ)− ᾱ(1− ᾱ)

)
+ 0.09e−

(x+
√

ᾱ)2+(y+
√

ᾱ)2

2(1−ᾱ(t))

(
(y +

√
ᾱ)(yᾱ+

√
ᾱ)− ᾱ(1− ᾱ)

)
+ 0.01e−

(x−
√

ᾱ)2+(y+
√

ᾱ)2

2(1−ᾱ(t))

(
(y +

√
ᾱ)(yᾱ+

√
ᾱ)− ᾱ(1− ᾱ)

)]
, (31)

which crucially does not vanish for all y. Hence the Fokker-Planck equation that governs the dis-
tributions of the forward diffusion process is not satisfied for preplace

t (x), and replacement sampling
will not sample from the true conditional distribution.

C REPAINT AS LANGEVIN DYNAMICS

The algorithm that RePaint uses for inpainting is presented in Algorithm 3. We can combine Lines
6 and 9, we can compute the result of inner loop iterations with u ̸= Ninner in one update as

xt ←

√
1− βt−∆t

1− βt

(
xt − βtsθ

(
x
(1:n−1)
t ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z′, t

))
+
√
βt(1− βt−∆t)z +

√
βt−∆tz

′′ (32)

←

√
1− β(t−∆t)∆t

1− β(t)∆t

(
xt − β(t)∆tsθ

(
x
(1:n−1)
t ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z′, t

))
+
√
β(t)∆t(1− β(t−∆t)∆t) + β(t−∆t)∆tz, (33)

where in the final line we have used βt = β(t)∆t and the identity aN (0, I) + bN (0, I) ∼√
a2 + b2N (0, I). To leading order in ∆t, we now have

xt ← xt − β(t)∆tsθ

(
x
(1:n−1)
t ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z′, t

)
+
√
2β(t)∆tz, (34)

which is Langevin dynamics with step size β(t)∆t and target distribution defined implicitly by

∇ log prepaint
t (x) = Ez∼N (0,I)

[
sθ

(
x(1:n−1) ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z, t

)]
. (35)

Recalling that sθ(x, t) is an approximation to the score, we have

lim
t→0
∇ log prepaint

t (x) ≈ ∇ log p0

(
x(1:n−1) ⊕ x̃

)
, (36)

so prepaint
t (x) anneals to p0(x|x(n) = x̃).

D SCORE FUNCTIONS FOR TRAINING-FREE GUIDANCE

For reference, we list the families of distributions expounded in Sections 3.3 and 3.4 and their
corresponding score functions used in Section 4.
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Algorithm 3 RePaint for inpainting
Require: target value x̃, step size η, number of inner loop iterations Ninner

1: xT ∼ N (0, I)
2: for t = T, . . . ,∆t do
3: for u = 1, . . . , Ninner do
4: z ∼ N (0, I)
5: z′ ∼ N (0, I)

6: xt−∆t ← 1√
1−βt

(
xt − βtsθ

(
x
(1:n−1)
t ⊕

√
ᾱ(t)x̃+

√
1− ᾱ(t)z′, t

))
+
√
βtz

7: if u < N then
8: z′′ ∼ N (0, I)

9: xt ←
√
1− βt−∆txt−∆t +

√
βt−∆tz

′′

10: end if
11: end for
12: end for
13: return x0

D.1 DISTRIBUTIONS

pproduct
t (x) :=

1

Zt
pt(x)×N

(
x(n);

√
ᾱ(t)x̃, 1− ᾱ(t)

)
(37)

pfloat
t (x) :=

1

Zt
pt(x)×

n∑
i=1

N
(
x(i);

√
ᾱ(t)x̃, 1− ᾱ(t)

)
(38)

pperturb
t (x) :=

1

Zt
pt(x)×

n∑
i=1

∏
j ̸=i

N
(
x(j);

√
ᾱ(t)x̃(j), 1− ᾱ(t)

)
(39)

plinear
t (x) :=

1

Zt
pt(x)× µ

n∏
i=1

∑
j

wjN
(
x(i);

√
ᾱ(t)x̃j , 1− ᾱ(t)

)
(40)

pmean
t (x) :=

1

Zt
pt(x)×

µ
∏n

i=1

∑
j wjN

(
x(i);

√
ᾱ(t)x̃j , 1− ᾱ(t)

)
∏n

i=1

∑
j ̸=PADN

(
x(i);

√
ᾱ(t)x̃j , 1− ᾱ(t)

) (41)

D.2 SCORE FUNCTIONS

∇ log pproduct
t (x) = ∇ log pt(x)−

x(n) −
√
ᾱx̃

1− ᾱ
(42)

∇ log pfloat
t (x) = ∇ log pt(x)−

n⊕
i=1

softmaxi

(
− (x(i) −

√
ᾱx̃)2

2(1− ᾱ)

)
x(i) −

√
ᾱx̃

1− ᾱ
(43)

∇ log pperturb
t (x) = ∇ log pt(x)

−
n⊕

i=1

(
1− softmaxi

(
−
∑

j ̸=i (x
(j) −

√
ᾱx̃(j))2

2(1− ᾱ)

))
x(i) −

√
ᾱx̃(i)

1− ᾱ
(44)

∇ log plinear
t (x) = ∇ log pt(x)

− µ

n⊕
i=1

∑
j

softmaxj

(
logwj −

(x(i) −
√

ᾱ(t)x̃j)
2

2(1− ᾱ(t))

)
x(i) −

√
ᾱ(t)x̃j

1− ᾱ(t)
(45)

∇ log pmean
t (x) = ∇ log pt(x)

− µ

n⊕
i=1

∑
j

softmaxj

(
logwj −

(x(i) −
√

ᾱ(t)x̃j)
2

2(1− ᾱ(t))

)
x(i) −

√
ᾱ(t)x̃j

1− ᾱ(t)
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− µ

n⊕
i=1

∑
j ̸=PAD

softmaxj ̸=PAD

(
−
(x(i) −

√
ᾱ(t)x̃j)

2

2(1− ᾱ(t))

)
x(i) −

√
ᾱ(t)x̃j

1− ᾱ(t)
(46)

E TEMPERATURE IN THE REVERSE-TIME PROCESS

In Langevin dynamics, and by extension TFG, we can always sample from a tempered version of
the distribution by multiplying through by a constant parameter τ , as

∇ log(pt(x)
τ ) = τ∇ log pt(x). (47)

By contrast, we cannot simply multiply the score by τ and sample from the standard reverse-time
diffusion process (Du et al., 2023) by simulating

xt−∆t =
xt + τβtsθ(xt, t)√

1− βt
+
√
βtzt. (48)

To see this, observe that Fokker-Planck equation for the tempered distribution is not satisfied, as
∂

∂t
pτt −

1

2
∇ · (xpτt )−

1

2
∇2pτt

= τpτ−1
t

(
∂

∂t
pt −

1

2
∇ · (xpt)−

1

2
∇2pt

)
+ (τ − 1)pτt −

1

2
τ(τ − 1)pτ−2

t (∇pt)2

= (τ − 1)pτt −
1

2
τ(τ − 1)pτ−2

t (∇pt)2, (49)

which does not vanish in general.

F IMAGE INPAINTING TASK DETAILS

For our image inpainting experiments we use google/ddpm-cifar10-32 from diffusers
(von Platen et al., 2022) with 100 timesteps. We randomly select 1000 images from the held-out test
set, mask the appropriate region, and sample from the model.

We find a perceptual improvement to generated images across all sampling methods when multi-
plying the output of the predicted score function by a constant factor τ , so we modify each of the
baselines to include such a temperature parameter. We fix τ = 1.1 for RePaint and MCG, and
τ = 1.2 for replacement sampling and TFG following hyperparameter tuning in the range [0.5, 2.0].
For MCG, we use the mean squared error as the conditioning loss and find optimal results with
γ = 0.011 following hyperparameter tuning in the range [0.001, 0.1]. For TFG, we fix the step size
η = 0.04 when sampling from both preplace

t (x) and pproduct
t (x) after tuning in the range [0.001, 0.1].

G PROTEIN MOTIF SCAFFOLDING TASK DETAILS

During training, RFDiffusion is exposed to the motif scaffolding task in a classifier-free setting (80%
conditional, 20% unconditional); for sampling, RFDiffusion uses a variant of replacement sampling
that does not noise the motif according to diffusion time t but fixes the 3D coordinates throughout the
reverse process. To emphasise the difference between sampling methodologies we choose to use the
RoseTTAFold denoising network unconditionally across all sampling methods to avoid confounding
effects of the task-specific conditioning signal.

We adopt the backbone structure representation of RoseTTAFold (Baek et al., 2021), i.e. x =
(r, z), with z ∈ R3 the translation and r ∈ SO(3) the rigid rotation of each of the residues, and
we decompose the score vectors into their translation and rotation components, i.e. sθ(xt, t) :=(
sθ(zt, t), sθ(rt, t)

)
. We perform the TFG updates following the two-part reverse process introduced

in RFdiffusion for the translations and rotations separately (see Algorithm 2 in the supp material of
Watson et al. (2023)). Specifically, the translation z updates are performed as outlined in Algorithms
1 and 2. For the rotation component we define our TFG score vectors for pproduct

t (x) to be

τ
(
sθ(rt, t) +

n⊕
i=1

∇r(t) log IGSO(3)(r
(ai)
t , r̃(ai), σ2

t )
)
, (50)
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where we have used the rotation score approximation on SO(3) defined in Watson et al. (2023), r̃(ai)

the ai-th indexed residue of the protein motifs of total length n, allowing for non-contiguous multi-
motifs. σ2

t is the unchanged variance schedule from RFdiffusion, and τ the overall temperature.
We introduce a separate translation- and rotation-specific Langevin step size parameters ηz , ηr. The
update for the rotation component is then

rt−∆t ← rt exp
{
η2r(σ

2
t − σ2

t−1)rtτ
(
sθ(rt, t) +

n⊕
i=1

∇r(t) log IGSO(3)(r
(ai)
t , r̃(ai), σ2

t )
)

+ ηr

√
σ2
t − σ2

t−1

3∑
d=1

ϵdfd

}
, (51)

where exp is the exponential map on so(3), the Lie algebra of SO(3), and ϵd ∼ N(0, I) and fd the
chosen orthonormal basis of so(3).

The RFDiffusion motif scaffolding benchmark contains 25 motif scaffolding tasks defined by contig
strings. We generate 50 backbone designs for each task and use the insilico validation pipeline pub-
lished by Lin et al. (2024) to attribute design success. This pipeline uses the inverse folding method
ProteinMPNN (Dauparas et al., 2022) to decode eight sequences from each generated backbone, and
ESMFold (Lin et al., 2023) to refold these sequences. For each backbone design, the best refolding
structure is considered that with the lowest scRMSD to the original designed backbone. Backbone
designs are deemed a success if they satisfy pLDDT > 70, pAE < 5, scRMSD < 2.0 Å and
motif bb rmsd < 1.0 Å. To assess the diversity of designed backbones we also report the num-
ber of unique successes, which is determined using single linkage hierarchical clustering to group
structures based on structural similarity (TM-score).

We note that the reimplementation of the original RFDiffusion benchmark includes minor differ-
ences, particularly the motifs specified by tasks 6exz, 6e6r and 5trv are shifted by one, one and
two residues respectively. We choose to match our generations to the Lin et al. (2023) implementa-
tion since this allows us to reuse their published evaluation pipeline.

For TFG, we fix τ = 1.75, ηz = 0.05, and ηr = 0.005 across the experiments on protein structures
following hyperparameter tuning of values in the ranges [1.0, 2.0], [0.001, 0.1], and [0.001, 0.1]
respectively. For replacement sampling and RePaint we fix τ = 1.5 following tuning in the range
[1.0, 2.0].

H FLOATING IMAGE INPAINTING TASK DETAILS

For our floating inpainting experiment, we use google/ddpm-celebahq-256 from
diffusers (von Platen et al., 2022) with the number of timesteps fixed to 100.

We peform sampling with TFG on pfloat
t (x) on 1000 images across the four quadrants – that is, we

generate 4000 total samples. We declare that TFG has selected the correct quadrant if the mean
squared error between the original condition and each of the four quadrants of the generated sample
is minimised by the same from which the condition is originally taken. Following hyperparameter
tuning in the ranges [0.001, 0.1] and [1.0, 2.0], we fix η = 0.025 and τ = 1.2.

I MULTI-MOTIF SCAFFOLDING TASK DETAILS AND FURTHER RESULTS

We use the same experimental setup and hyperparameters described in Section 4.1, and sample from
RFDiffusion to scaffold the multi-motif. For a total number M possible locations of a motif of length
n, the TFG rotation score vector for pfloat

t (x) is defined to be

τ
(
sθ(rt, t) +

M∑
m=1

λm

n⊕
i=1

∇r(t) log IGSO(3)(r
(ai)
t , r̃(ai)

m , σ2
t )
)
, (52)

where ami indexes the i-th residue index of the m-th motif (z̃m, r̃m), and

λm = softmaxm

(
− (zt −

√
ᾱz̃m)2

2(1− ᾱ)

)
, (53)
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where inner product is defined over each motif m residue indices and across the 3D coordinates.
Note that for simplicity, we have defined the coefficients λm only in terms of the translation compo-
nents, ignoring the rotation distribution entirely. In practice we have found that this simplification is
sufficient for guiding the motif to preferable locations.

In our experiment, we select the PDB ID 1bcf from the RCSB Protein Data Bank (Armstrong et al.,
2020) and define a multi-motif by the residue maps A112-125 and A129-134. The separation of the
two motifs is chosen to be 3 amino-acid residues long. We define the set of M = 5 candidate motif
locations with separations of (3, 9, 15, 21, 28) amino-acids residues and the task is to recover the
original separation (i.e. 3) by sampling from pfloat

t (x) with score defined in Equation 52. We perform
100 motif scaffolding tasks for pfloat

t (x), pproduct
t (x), and replacement sampling, where for the latter

two methods, we perform sampling with maps A112-125/10-20/A129-134/10-20, demonstrating the
consequence of mis-specification of the inter-motif gap sizes.

As shown in the main text, the freedom to place the motif leads higher pLDDTRF scores. Here we use
the pLDDT score directly from the RoseTTAFold denoising model. We also examine the coefficients
λm. As shown in Figure 8, the score modification as given in Equation 53 drives the motif to its
eventual position after ∼ 25 (out of T = 50) reverse timesteps and the TFG with pfloat

t (x) strongly
favors the original inter-motif gap size of 3, which coincides with higher confidence structures.

Figure 8: (Left) Mean motif placement probabilities λm (Equation 53) over 100 tasks across the
diffusion process. (Right) The pLDDTRF scores for structures as a function of inter-motif gap size.

J CDR3β SEQUENCE DIFFUSION MODEL

We collect CDR3β sequences from three public databases: VDJdb (Shugay et al., 2018), IEDB (Vita
et al., 2019), and McPAS-TCR (Tickotsky et al., 2017). After removing duplicates, 89928 unique
sequences remain. Sequence are converted to points in Euclidean space by one-hot encoding the
amino acid sequence. We corrupt the encodings by adding Gaussian noise according to a continuous-
time noise schedule, where ᾱ(t) is sampled from N (−1.3, 1), which was chosen as to increase the
sampling importance where the .

The denoising model is a modification a transformer-like architecture (Vaswani et al., 2017) for
sequence-level proteins, ESM-2 (Lin et al., 2023). We modify the architecture of ESM-2 so that the
noise level ᾱ(t) is appended to the amino acid encoding, and the model head is replace with a linear
layer that predicts the noise. We train from scratch with a learning rate of 3 × 10−4. We perform
two learning rate rescalings by 0.1 after the score matching loss has plateaued for five epochs.

K CDR3β SEQUENCE TASK DETAILS

For all experiments we use the same unconditional model with training procedure described in Ap-
pendix J. For all sampling methods, we select timepoints distributed according to a probability
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density function proportional to the normal distribution N (−1.3, 1), i.e. the distribution used for
importance sampling of timepoints during training. For TFG we fix η = 0.001 (following hyperpa-
rameter tuning in the range [0.001, 0.1]) and Ninner = 5.
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