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ABSTRACT

Knowledge distillation (KD) compresses deep neural networks by transferring task-
related knowledge from cumbersome pre-trained teacher models to more compact
student models. However, vanilla KD for image super-resolution (SR) networks
yields only limited improvements due to the inherent nature of SR tasks, where the
outputs of teacher models are noisy approximations of high-quality label images.
In this work, we show that the potential of vanilla KD has been underestimated and
demonstrate that the ingenious application of data augmentation methods can close
the gap between it and more complex, well-designed methods. Unlike conventional
training processes typically applying image augmentations simultaneously to both
low-quality inputs and high-quality labels, we propose AugKD utilizing unpaired
data augmentations to 1) generate auxiliary distillation samples and 2) impose label
consistency regularization. Comprehensive experiments show that the AugKD
significantly outperforms existing state-of-the-art KD methods across a range of
SR tasks.

1 INTRODUCTION

SR is an essential yet challenging task in computer vision (CV) that focuses on reconstructing high-
resolution (HR) image from its low-resolution (LR) counterpart (Lim et al., 2017; Zhang et al., 2018).
In recent years, the convolutional neural networks (CNNs) and Transformers (Liang et al., 2021; Yang
et al., 2020; Wang et al., 2022b; Zamir et al., 2022) have achieved significant success in SR. However,
despite the impressive performance of deep learning-based SR models, their practical deployment is
often constrained by the high computational and memory requirements (Zhang et al., 2021c). As a
result, there has been an increasing focus on developing SR model compression techniques to enable
their use in real-world applications, especially for resource-constrained devices.

KD is an effective technique for reducing computational costs and memory requirements during
model deployment, while also enhancing the performance of student models. It works by transferring
the “dark knowledge” from a well-performing but computationally heavy teacher model to a more
lightweight student model (Gao et al., 2019; Hui et al., 2019; Zhang et al., 2021b). Compared to
other model compression techniques, such as quantization (Gupta et al., 2015; Hubara et al., 2016;
Ignatov et al., 2021; Wu et al., 2016), pruning (Anwar et al., 2017; Wang et al., 2021b; Liu et al.,
2019), and neural architecture search (NAS) (Wu et al., 2019; Howard et al., 2019; Guo et al., 2020),
KD has garnered significant attention due to its outstanding performance and wide applicability.
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Figure 1: Framework of the AugKD method. Facilitates the transfer of knowledge through the
auxiliary distillation samples and label consistency regularization.

The effectiveness of KD has been well-established in natural language processing (NLP) (Gou et al.,
2021; Sanh et al., 2019) and conventional high-level CV tasks, such as classification, detection, and
segmentation (Hinton et al., 2015; Park et al., 2019; Tung & Mori, 2019). However, its application to
SR tasks remains relatively underexplored (He et al., 2020; Wang et al., 2021c; Zhang et al., 2021b;
Lee et al., 2020). The use of standard response-based KD methods (Hinton et al., 2015) or those
optimized for high-level CV tasks (Romero et al., 2014; Yim et al., 2017; Zagoruyko & Komodakis,
2016) typically results in only marginal improvements and may even have negative effects when
applied to distilling SR networks, as observed by He et al. (2020) and confirmed by our experiments
in section 4. Previous KD methods specifically designed for SR are mostly feature-based, where
the student model is forced to mimic the intermediate features of the teacher model directly (He
et al., 2020) or through a pre-trained perceptual feature extractor like VGG (Yao et al., 2022a; Wang
et al., 2021c). However, these feature-based approaches have limited applicability. In practice, the
architecture of teacher models is often inaccessible due to commercial, privacy, or safety restrictions,
making feature-based methods impractical for some real-world applications.

For the knowledge distillation of super-resolution models, most of previous explanations for the
mechanism of KD no longer hold due to the unique task characteristics. Since the teacher model’s
output, as a noisy approximation to the ground-truth (GT) high-quality image, contains barely extra
information exceeding GT, the “dark knowledge” of teacher are hardly transferred to student model
through KD. Distinct to exist feature-based methods, we propose AugKD, an alternative approach
to enhance the knowledge distillation via the data augmentations. It shifts the paradigm from
developing various knowledge types (Gou et al., 2021) to more task-adapted training data mining and
construction with effective utilization of pre-trained teacher. Specifically, the AugKD consists of two
major modules: auxiliary distillation sample generation and label consistency regularization. The
auxiliary training examples are built from (LR, HR) pairs by zoom-in and zoom-out augmentations.
Then teacher model is able to guide the student model with these image samples. It frees the teacher
model from merely echoing the GT labels inaccurately. Moreover, we realize the label consistency
regularization into the KD for SR by defining several invertible data augmentation operations. The
student model is forced to yield the same output as the teacher model, given the augmented inputs.
The regularization makes the student model exposed to a diverse range of inputs, substantially
improving performance (Oliver et al., 2018; Jeong et al., 2019; Englesson & Azizpour, 2021). The
AugKD is logits-based and independent of network architectures. It shows great universality among a
diverse array of SR model families and SR tasks. In summary, our main contributions are three-fold:

• We analyze the mechanisms of KD for SR, and propose AugKD adapted to the unique task
properties. It facilitates the student model’s learning by auxiliary training samples.

• We leverage the label consistency regularization into KD for SR by specifying several invertible
data augmentations. It improves the model’s generalizability.

• The proposed AugKD, applies broadly to multiple teacher-student configurations, promising a
cutting-edge KD approach for SR.
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Figure 2: Similarity between the student and teacher ×4 EDSR models under different training
approaches (x-axis). PSNR(S,T) represents the average PSNR between the student and teacher
outputs, with higher values indicating greater similarity. PSNR(S,GT) shows the average PSNR
between the student output and ground-truth HR image, with higher values indicating better fitting
(left: training set) or generalization (right: testing set).

2 RELATED WORKS

2.1 IMAGE SUPER-RESOLUTION

Deep neural networks (DNNs) have achieved impressive success in image SR. Dong et al. (2014)
introduced a CNN SR model with only three convolutional layers first. Subsequently, residual
learning was incorporated into the VDSR model (Kim et al., 2016), which expanded the network
to 20 convolutional layers. Lim et al. (2017) proposed EDSR, which utilized simplified residual
blocks (He et al., 2016), and Zhang et al. (2018) introduced the even deeper RCAN network. These
methods, among others, have set state-of-the-art performance benchmarks by increasing network
depth and width. More recently, Transformers have gained significant attention in the field of image
restoration. The SwinIR model (Liang et al., 2021) applies the Swin Transformer architecture for
deep feature extraction. The Restormer model (Zamir et al., 2022) proposed a hierarchical multi-scale
structure, introducing a more efficient Transformer blocks that alters the attention mechanisms and
the feed-forward network. While CNNs and Transformers models demonstrate extraordinary effect
in SR, they are often associated with high memory and computational costs.

2.2 KNOWLEDGE DISTILLATION

KD for high-level CV. Knowledge distillation is widely recognized as an effective model com-
pression method that can significantly reduce the computation overload and improve student’s
capability (Hinton et al., 2015; Yim et al., 2017; Gou et al., 2021). The response-based KD methods
are simple yet effective where the student models directly imitate the predictions or logits of the
teacher model (Hinton et al., 2015; Zhao et al., 2022; Chen et al., 2017). The proposed AugKD
method falls into this category since only the final outputs of models are aligned. Besides the output
of the networks, the intermediate features can also be used to improve the student model, by matching
feature maps directly, after dimension standardization (Zagoruyko & Komodakis, 2016) or extra
modules (Kim et al., 2018; Passban et al., 2021; Guo et al., 2021). The relations between layers
or samples can be used for KD, such as correlation (Yim et al., 2017; You et al., 2017), mutual
information (Passalis et al., 2020), or pairwise or triple-wise geometric relations (Park et al., 2019).

KD for super resolution. Lately, there has been an increasing number of efforts made on the
KD for super-resolution networks. He et al. (2020) proposed the FAKD to align the dimensions
of models’ feature maps by spatial affinity matrix to train the student model. Lee et al. (2020)
employed an encoder to extract the compact features from HR images to initialize the generator
network and thereby perform feature distillation. Wang et al. (2021c) proposed a channel-sharing
self-distillation method with perceptual contrastive losses. To train SR network under the privacy
and data transmission limitations, Zhang et al. (2021b) employed a generator to support data-free
KD. MTKDSR (Yao et al., 2022b) employed two teacher models with different SR objectives (PSNR,
perceptual) to guide the student model simultaneously. CrossKD (Fang et al., 2023) divides the
teacher and student networks into two segments that are interchanged and connected to perform
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Figure 3: Comparison between the logits-KD, Data Free KD, and AugKD. The first two fail to enable
the function of teacher model.

forward propagation. The common limitation of these methods is that they are only applicable to
CNN-based models and have certain requirements on the teacher-student structure.

3 METHODOLOGY

3.1 NOTATIONS AND PRELIMINARIES

Let T (x; θt) and S(x; θs) be a teacher and a student SR model with parameters θt and θs for the
super-resolution of input x, respectively. Given an input LR image I

(i)
LR ∈ RH×W×3, the output

SR images of the two networks are denoted by I
T (i)
SR = T (I

(i)
LR; θ

t) ∈ RscH×scW×3 and I
S(i)
SR =

S(I(i)LR; θ
s) ∈ RscH×scW×3, where H ×W is the input size and sc ∈ Z+ is the scaling factor. The

L1-norm reconstruction loss is computed as:

Lrec = ∥IS(i)
SR − I

(i)
HR∥1, (1)

where I
(i)
HR is the ground-truth HR label. And the vanilla response-based KD loss is given by

Lkd = ∥IS(i)
SR − I

T (i)
SR ∥1, (2)

which is computed directly by the output of teacher and student models.

3.2 MOTIVATION

Since the introduction of knowledge distillation by Hinton et al. (2015), numerous studies have
analyzed and discussed the mechanisms through which teacher supervision enhances the performance
of student models (Tang et al., 2020; Stanton et al., 2021; Wang et al., 2021a; Zhang et al., 2022;
Harutyunyan et al., 2023). It is widely accepted that in response-based KD, the "dark knowledge"
from the teacher model encompasses the inter-class and inter-example relational information found
in the output logits, which is not present in the ground-truth labels.

However, there is barely such a benefit in SR tasks that reconstruct image pixels. Since the outputs
of the SR network I

T (i)
SR are noisy and inaccurate approximations of the ground-truth distribution of

high-resolution image I
(i)
HR, as shown in Figure 3 (a). Directly aligning the model outputs hardly

transfers knowledge and may even mislead the student model. The guide capability of the teacher
model is shaded by I

(i)
HR, resulting in limited KD effects. To verify this hypothesis, we train an EDSR

network of scale ×4 using different training methods (data-free KD, supervised training without
distillation, Logits-KD, FAKD, CSD and the proposed AugKD). To make the models comparable, the
data-free KD uses the LR of the training set and discards HR, assuming that there is an oracle image
generator G. Then we compute the PSNR metrics between the outputs of teacher and student models,
on the training and testing sets, respectively. It reflects the similarities between networks, and the
extent to which the student model is impacted by the teacher model. The results shown in Figure 2
indicate that the existing KD approaches make the student model performs more like teacher only
to a small extent, since the the improvements of PSNR(S,T) over training without KD are limited.
Therefore, the PSNR referring to GT, PSNR(S,GT), are also low on both training and testing sets.
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Figure 4: Comparison of the label consistency regularization in high-level CV and KD for SR. The
augmentations should be invertible to make the models’ output comparable.

This issue cannot be addressed by simple data augmentation that reuses the training image pairs to
produce augmented LR and HR with pairwise rotations or flips, i.e. (ILR, IHR) ⇒ (IaugLR , IaugHR ).
The “recycled” data are inadequate to enable the function of teacher model. The data-free knowledge
distillation methods (Zhang et al., 2021b) stay out of this problem due to the discard of HR references
from the training data. The supervision signals solely come from the teacher model, as illustrated
in Figure 3 (b). Although teacher model’s knowledge are transferred to student model (it’s only
supervised by the teacher model’s output), it’s impractical to discard the labels from training data
especially when they are available. Besides, the teacher model may yield noisier output on the
generated training images.

Above findings motivate us to build a more task-adapted KD framework by mining information from
the training data. Specifically, we construct auxiliary training inputs through data augmentations to
function the KD. These data are closely related with the training set to prevent distributional bias.
And we introduce the label consistency regularization through invertible data augmentations.

3.3 AUXILIARY DISTILLATION SAMPLES

Since the teacher model’s knowledge is shaded by the ground-truth HR labels, we perform knowledge
distillation by extra LR images rather than the raw training data. To make the generation process
efficient and the generated images distributed closely with the original, the auxiliary training samples
are obtained from original LR, HR pairs, as demonstrated in Figure 1. Two image zooming oper-
ations are employed: The zoom-in ßoperation is facilitated by randomly cropping patches from
I
(i)
HR. The cropped patches have the same size as the LR image I

(i)
LR, for the convenience of batch

processing. Conversely, the zoom-out Þoperation is carried out by down-sampling the LR image
in the same manner of degradation as I(i)LR. The two obtained auxiliary LR images are denoted as
I
(i)
LRzo

∈ RH/sc×W/sc×3 and I
(i)
LRzi

∈ RH×W×3.

For a pair of original training examples (I(i)LR, I(i)HR), the output of the zoom-out operation is unique,
but the zoom-in operation on I

(i)
HR could result in various outcomes according to the strategy of

patch selection. Beyond random cropping, regions can also be selected based on their reconstruction
difficulty or texture complexity. It’s observed in our experiments that adapted selection would incur a
higher computational cost with marginal performance gains.

After generating auxiliary distillation samples, the teacher model provides corresponding SR images
for the zoom-in and zoom-out LR inputs to supervise the student model. Since there is only the teacher
model’s supervision for these training samples, teacher’s distribution information are unshaded from
GT and able to impact the student model. AugKD provides a more refined and data-centric approach
to KD, reflecting its benefits in effective data utilization and superior performance in SR tasks. The
overall loss is constructed by adding an extra loss term that is computed on the auxiliary distillation
samples to the reconstruction loss (Equation (1)) and conventional KD loss (Equation (2)),

Laugkd = ∥IS(i)
SRzo

− I
T (i)
SRzo

∥1 + ∥IS(i)
SRzi

− I
T (i)
SRzi

∥1, (3)

where I
S(i)
SRzo

= S(I(i)LRzo
; θs), IT (i)

SRzo
= T (I

(i)
LRzo

; θt) and the other terms are computed similarly. If
zoom-out is performed, we compute the reconstruction loss between I

S(i)
SRzo

and I
(i)
LR also. To sum up,

L = Lrec + λkdLkd + λaugkdLaugkd, (4)
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Table 1: SR model specifications and statistics (×4 scale). The FLOPs and frames per second
(FPS) are computed with a 3×256×256 input image on single V100 GPU of 64GB VRAM. The
block denotes the number of residual blocks for EDSR and RCAN (in each residual group) or Swin
transformer blocks for SwinIR models.

Model Role Network FLOPs (G) #Params FPS
Channel Block Group

EDSR Teacher 256 32 - 3293.35 43.09 M 3.233
Student 64 32 - 207.28 2.70 M 33.958

RCAN Teacher 64 20 10 1044.03 15.59 M 6.162
Student 64 6 10 366.98 5.17 M 12.337

SwinIR Teacher 180 6 - 861.27 11.90 M 0.459
Student 60 4 - 121.48 1.24 M 0.874

where λkd and λaugkd are the loss weights.

3.4 LABEL CONSISTENCY REGULARIZATION

Consistency regularization is commonly used in semi-supervised and self-supervised learning. As
illustrated in Figure 4 (a), it encourages the prediction of the network to be consistent over perturbed
training examples, leading to robustness against corrupted data in test time (Oliver et al., 2018;
Englesson & Azizpour, 2021; Jeong et al., 2019). The model is trained to identify the crucial
semantic information related to specific tasks from the input images, despite the possible noise and
perturbations. The regularization is based on various image augmentation techniques, like rotation,
shearing, cutout, and translation.

KD encourages the student model to produce the same predictions as the teacher model. Such
characteristic should hold even their inputs are differently augmented, as the task-related semantic
information remains unchanged and the input perturbations should not significantly distinguish
between the outputs of the teacher and student models. To realize label consistency regularization,
we apply data augmentations on the input of student model while keeping the teacher model’s input
unperturbed. This approach allows the student to learn invariant representations across diverse
transformations. Meanwhile, the student is guided by a more powerful teacher model, whose
supervision are from non-perturbed inputs that inherently provide superior quality compared to those
from augmented inputs. Thereby the auxiliary distillation samples and the teacher model are fully
leveraged. Taking the zoom-in LR sample as an example, the consistency regularization can be
represented as:

L = ||S(F(IHRzi
); θs)− T (IHRzi

; θt)||1,

where F(·) denotes the perturbation function.

However, as super resolution is a pixel-level image-to-image CV task that is weakly relevant to
semantic information of image subject, any tweak on the input can alter the model’s output. For KD,
the student model’s output would consequently be incomparable with the teacher model’s. Therefore,
we need to perform inverse augmentation, namely F−1(·), on the output of the student model. The
label consistency regularization becomes:

L = ||F−1(S(F(IHRzi
); θs))− T (IHRzi

; θt)||1.

The selected augmentations should be invertible and relevant to the SR task for maintaining the
crucial pixel-level details after augmentation. It requires that for any input image I , F−1(F(I)) = I .
Hence, a number of popular image augmentations, such as blurring, cutout, brightness adjustment,
and cropping, are not applicable as they do not meet this prerequisite. Instead, we employ two
geometric transformations, horizontal/vertical flip and 90°/180°/270° rotations, along with the color
inversion transformation that subtracts each pixel intensity value of the input image from 255 (or 1 if
normalized): F(I) = 255− I . The color inversion is invertible and maintains the relative magnitude
among pixel values. It also prompts the student models to be more sensitive to essential structural
features such as lines and edges. Right bottom of Figure 1 illustrates the three types of invertible data
augmentations employed to realize label consistency.
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Table 2: Quantitative comparison (average PSNR/SSIM) between AugKD and other distillation
methods for EDSR of three SR scales. The best and second-best performances are highlighted in bold
and underlined, respectively. An asterisk indicates that the results in a row are from reproduction.

Scale Method
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Scratch 38.00/0.9605 33.57/0.9171 32.17/0.8996 31.96/0.9268
KD 38.04/0.9606 33.58/0.9172 32.19/0.8998 31.98/0.9269
FitNet 37.59/0.9589 33.09/0.9136 31.79/0.8953 30.46/0.9111
AT 37.96/0.9603 33.48/0.9167 32.12/0.8990 31.71/0.9241
RKD 38.03/0.9606 33.57/0.9173 32.18/0.8998 31.96/0.9270
FAKD∗ 37.99/0.9606 33.60/0.9173 32.19/0.8998 32.04/0.9275
CSD∗ 38.06/0.9607 33.65/0.9179 32.22/0.9004 32.26/0.9300
AugKD 38.15/0.9610 33.80/0.9195 32.27/0.9007 32.53/0.9320

×3

Scratch 34.39/0.9270 30.32/0.8417 29.08/0.8046 27.99/0.8489
KD 34.43/0.9273 30.34/0.8422 29.10/0.8050 28.00/0.8491
FitNet 33.35/0.9178 29.71/0.8323 28.62/0.7949 26.61/0.8167
AT 34.29/0.9262 30.26/0.8406 29.03/0.8035 27.76/0.8443
RKD 34.43/0.9274 30.33/0.8423 29.09/0.8051 27.96/0.8493
FAKD∗ 34.39/0.9272 30.34/0.8426 29.10/0.8052 28.07/0.8511
CSD∗ 34.45/0.9275 30.32/0.8430 29.11/0.8061 28.21/0.8549
AugKD 34.59/0.9287 30.47/0.8448 29.20/0.8073 28.44/0.8578

×4

Scratch 32.29/0.8965 28.68/0.7840 27.64/0.7380 26.21/0.7893
KD 32.30/0.8965 28.70/0.7842 27.64/0.7382 26.21/0.7897
FitNet 31.65/0.8873 28.33/0.7768 27.38/0.7309 25.40/0.7637
AT 32.22/0.8952 28.63/0.7825 27.59/0.7365 25.97/0.7825
RKD 32.30/0.8965 28.69/0.7842 27.64/0.7383 26.20/0.7899
FAKD∗ 32.27/0.8960 28.65/0.7836 27.62/0.7379 26.18/0.7895
CSD 32.34/0.8974 28.72/0.7856 27.68/0.7396 26.34/0.7948
AugKD 32.47/0.8981 28.80/0.7866 27.71/0.7403 26.45/0.7963

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Backbones and Baselines. We use EDSR (Lim et al., 2017), RCAN (Zhang et al., 2018), and
SwinIR (Liang et al., 2021) as backbone models to evaluate AugKD and compare it with existing
KD methods. The specifications of the teacher and student networks, along with statistics such
as FLOPs, number of parameters, and inference speed (FPS), are shown in Table 1. We compare
AugKD with the following baseline methods: training from scratch, response-based KD (Hinton
et al., 2015), FitNet (Romero et al., 2014), AT (Zagoruyko & Komodakis, 2016), RKD (Park et al.,
2019), FAKD (He et al., 2020), CSD (Wang et al., 2021c), and CrossKD (Fang et al., 2023). While
FitNet, AT, and RKD were originally designed for high-level CV tasks, they are also applicable to
SR models. However, CSD, being a self-distillation method, is not suitable for distilling RCAN
(depth compression) and SwinIR (transformer-based) models. Performance is evaluated using peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) on the Y channel of the YCbCr
color space. Detailed training settings are provided in Appendix A.1.

4.2 RESULTS AND COMPARISON

Comparison with Baseline Methods. The quantitative results (PSNR / SSIM) for training EDSR,
RCAN, and SwinIR networks are presented in Table 2, 3, and 10 respectively, for ×2, ×3, and ×4
scales. The following conclusions can be drawn from these results: (1) Existing KD methods have
limited benefits and some even result in student models worse than those trained without KD. For
instance, EDSR models trained with FAKD sometimes underperform the ones trained from scratch.
It showcases that the “dark knowledge” cannot be directly simply transferred to the student SR model.
(2) The KD methods initially designed for high-level CV tasks (FitNet, AT, RKD), while applicable,
hardly improve the SR models over training from scratch. It’s caused by the intrinsic difference
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Table 3: Quantitative comparison between AugKD and other distillation methods for RCAN. The
best and second-best performances are highlighted in bold and underlined, respectively.

Scale Method
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

Scratch 38.13/0.9610 33.78/0.9194 32.26/0.9007 32.63/0.9327
KD 38.18/0.9611 33.83/0.9197 32.29/0.9010 32.67/0.9329
FitNet 37.97/0.9602 33.57/0.9174 32.19/0.8999 32.06/0.9279
AT 38.13/0.9610 33.70/0.9187 32.25/0.9005 32.48/0.9313
RKD 38.18/0.9612 33.78/0.9191 32.29/0.9011 32.70/0.9330
FAKD∗ 38.17/0.9612 33.83/0.9199 32.29/0.9011 32.65/0.9330
CrossKD 38.18/0.9612 33.81/0.9194 32.30/0.9011 32.66/0.9332
AugKD 38.23/0.9614 33.90/0.9201 32.33/0.9016 32.87/0.9349

×3

Scratch 34.61/0.9288 30.45/0.8444 29.18/0.8074 28.59/0.8610
KD 34.61/0.9291 30.47/0.8447 29.21/0.8080 28.62/0.8612
FitNet 34.21/0.9248 30.20/0.8399 29.05/0.8044 27.89/0.8472
AT 34.55/0.9287 30.43/0.8438 29.17/0.8070 28.43/0.8577
RKD 34.67/0.9292 30.48/0.8451 29.21/0.8080 28.60/0.8610
FAKD∗ 34.63/0.9290 30.51/0.8453 29.21/0.8079 28.62/0.8612
CrossKD 34.65/0.9290 30.50/0.8449 29.21/0.8079 28.60/0.8610
AugKD 34.74/0.9296 30.54/0.8458 29.25/0.8088 28.79/0.8646

×4

Scratch 32.31/0.8966 28.69/0.7842 27.64/0.7384 26.37/0.7949
KD 32.45/0.8980 28.76/0.7860 27.67/0.7400 26.49/0.7980
FitNet 31.99/0.8899 28.50/0.7789 27.55/0.7353 25.90/0.7791
AT 32.31/0.8967 28.69/0.7839 27.64/0.7385 26.29/0.7927
RKD 32.39/0.8974 28.74/0.7856 27.67/0.7399 26.47/0.7981
FAKD∗ 32.46/0.8980 28.77/0.7860 27.68/0.7400 26.50/0.7980
CrossKD 32.46/0.8984 28.79/0.7863 27.69/0.7405 26.52/0.7992
AugKD 32.56/0.8990 28.83/0.7870 27.72/0.7410 26.62/0.8020

between SR and other CV tasks. (3) The proposed AugKD method consistently outperforms the
existing KD methods in all experimental settings by a large margin. For example, compared with the
response-based KD method, the average PSNR improvements for the three types of networks on the
Urban100 test set over three SR scales are 0.43 dB, 0.31 dB, 0.31 dB, respectively. Most existed KD
methods are inapplicable to the transformer architecture network, but AugKD, as a response-based
KD method, is able to compress the SwinIR model while exhibiting great performance.

AugKD facilitates the student model to mimic the teacher model. In Figure 2, we compare the
effect of different KD methods by comparing the similarity of students’ output and teacher’s on the
training and Urban100 testing sets, to evaluate how well the student learns to mimic the teacher
model. It shows that AugKD makes the student not only effectively fit the teacher model on the
training set but also imitate it on the test sets so that it can generalize better.

Table 4: The results of heterogeneous
distillation using AugKD on the ×4 scale
RCAN model.

Teacher
BSD100 Urban100

PSNR/SSIM PSNR/SSIM

(Scratch) 27.64/0.7384 26.37/0.7949

EDSR 27.71/0.7406 26.59/0.8014
SwinIR 27.72/0.7408 26.59/0.8007

Table 5: NIQE scores on several real-world SR test-
ing datasets. The lower, the better. Visual compar-
isons are provided in the appendix.

Method #Params RealSR DRealSR OST300

Scratch 11.9M 4.771 4.847 2.932

Scratch
1.24M

5.810 5.757 3.788
KD 5.425 5.408 3.652
AugKD 5.398 5.378 3.494

Experiment Results on Heterogeneous Settings. We extend the experiments to heterogeneous
settings where the teacher and student models have different network architectures, as presented
in Table 4. Conventional feature-based KD or self-distillation methods are inapplicable to the cross-
architecture setting, while AugKD can still effectively improve the student models. For instance,
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img004

HR(PSNR)

FAKD (15.39)

Scratch (17.4)

CSD (17.98)

KD (17.07)

AugKD (19.96) img089

HR(PSNR)

FAKD (25.39)

Scratch (25.5)

CSD (25.82)

KD (25.48)

AugKD (26.61)

img019

HR(PSNR)

FAKD (15.55)

Scratch (16.7

CSD (18.21)

KD (16.83)

AugKD (19.52) img096

HR(PSNR)

FAKD (17.59)

Scratch (18.2

CSD (19.24)

KD (18.39)

AugKD (20.74)

Figure 5: The ×4 SR examples of EDSR models on img004, img019, img089 and img096 from
Urban100. PSNRs (dB) of the cropped regions are annotated below each image.

compared to the RCAN model trained from scratch, utilizing AugKD with an EDSR or SwinIR
teacher model yields an increase in PSNR by 0.22dB at ×4 scale on Urban100 test set.

Visual Comparison. In Figure 5, we compare the visual quality of output images of the ×4 EDSR
model trained by AugKD and other methods. To underscore the differences in detailed pattern and
texture reconstruction, we took relatively small cropped portions and computed local PSNR metrics.
Generally, a higher PSNR aligns with superior visual effect. For the reconstruction of textures (e.g.
lines, edges, and complex patterns), the model trained with AugKD yields outputs that are both
sharper and more similar to HR, indicating the superiority of AugKD.

Experiment Results on Real-world SR task.

To evaluate the performance of AugKD in real-world SR, we continue training the PSNR-oriented
student SwinIR models at ×4 scale using the BSRGAN degradation model (Zhang et al., 2021a; Liang
et al., 2021) on the DF2K dataset. The models are tested on three benchmark datasets: RealSR (Cai
et al., 2019), DRealSR (Wei et al., 2020), and OST300 (Wang et al., 2018). The non-reference image
quality assessment (NIQE) scores (Mittal et al., 2012) are presented in Table 5. The model trained
with AugKD achieves lower NIQE scores and produces output images with more visually pleasing
results, as shown in the supplementary material.

4.3 ABLATION ANALYSIS

Impact of auxiliary distillation samples and label consistency regularization. Table 6 shows the
effect of the presented two modules, using EDSR baseline model (#Channel=64, #Block=16) distilled
by our student model (#Channel=64, #Block=32). Further, Table 7 ablates the zoom-in ßand zoom-
out Þoperations. The result shows that adopting auxiliary distillation samples and label consistency
regularization could lead to significant performance improvement upon logits-KD, whether used
separately or together. For example, simply introduce the auxiliary images by zoom-in draws 0.31dB
PSNR increment on Urban100 test set, and adding zoom-out and label consistency regularization
yields an additional 0.16dB improvement.

Integrate AugKD into other model compression methods. We integrate AugKD with a SOTA
SR network quantization method, Distribution-Aware Quantization (DAQ) (Hong et al., 2022), and
use the full-precision model to supervise the quantized ones. Figure 6 shows the PSNR of quantized
×4 scale EDSR baseline models trained with and without KD, and the full results are provided in
supplementary. It shows that vanilla Logits-KD has barely effects on the quantization, while AugKD
could improve the quantized model by a large margin. We also integrate AugKD with the FAKD
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Table 6: Ablation study of auxiliary distillation samples
and label consistency regularization.

Auxiliary
samples

Label
consistency

Urban100

PSNR/SSIM

✗ ✗ 24.87 / 0.7431
✓ ✗ 25.20 / 0.7558
✓ ✓ 25.34 / 0.7609

Table 7: Ablation study of the
zoom in and zoom out operations.

Zoom In Zoom Out Urban100

ß Þ PSNR / SSIM

✗ ✗ 24.87 / 0.7431
✓ ✗ 25.18 / 0.7551
✗ ✓ 25.18 / 0.7552
✓ ✓ 25.20 / 0.7558

method in Table 8. The resulting models outperform the ones trained by FAKD greatly. The results
indicate that AugKD can be effectively aggregated with other model compression techniques.

w2a2 w4a4 w32a32
Quantization Precision

24.5

24.6

24.7

24.8

24.9

25.0

25.1

25.2

25.3

PS
N

R
 (

dB
)

24.63

24.72

24.61

24.7224.73

24.85

25.13

PSNR of quantized baseline EDSR models on Urban100

DAQ DAQ with KD DAQ with     AugKD

Figure 6: PSNR of quantized baseline EDSR
model trained with and without KD.

Table 8: Experiment results of combin-
ing AugKD and FAKD.

Model Method
Urban100

PSNR / SSIM

EDSR

Logits KD 26.21 / 0.7897
FAKD 26.18 / 0.7895
FAKD+AugKD 26.30 / 0.7930
AugKD 26.45 / 0.7966

Table 9: Comparison with data expansion. DF2K denotes DIV2K+Flickr2K.

Training
set #Images Training steps Method

BSD100 Urban100

PSNR/SSIM PSNR/SSIM

DIV2K 800 2.5× 105
Scratch 27.57/0.7356 25.94/0.7809
AugKD 27.68/0.7390 26.32/0.7927

DF2K 3450 5× 105
Scratch 27.62/0.7372 26.15/0.7872

KD 27.67/0.7390 26.31/0.7925

Comparison with data expansion The proposed AugKD generates auxiliary distillation samples by
simple data augmentations. Comparing with using a parametric generator or introducing additional
training image data sources, it’s more efficient and able to keep the training data have similar inputs.
Table 9 compares AugKD with training or distilling with expanded data. We train the ×4 scale EDSR
models on a much larger dataset (DF2K: DIV2K+Flickr2K (Timofte et al., 2017) with 3450 images).
The number of iterations is doubled for the larger training set since the previous configuration
(2.5 × 105) is insufficient for the models to converge. Except that the ×4 SR networks are not
initialized with the ×2 ones in this comparison, the other settings of the training recipe are the same.
AugKD is superior to training with more input data in terms of both efficiency and performance.

5 CONCLUSION

In this work, we investigated the issues existing in KD for SR networks. Motivated by the findings, we
present AugKD, a simple yet significant KD framework for SR, which outperforms existing methods
and is applicable to a wide array of network architecture and SR tasks. Central to our approach is the
auxiliary distillation samples generated by zooming augmentations, which facilitates the knowledge
transfer from teacher to student model. Besides, we realize label consistency regularization in KD for
SR, which further bolsters the student model’s generalization capabilities. Extensive experiments are
conducted across various SR tasks, benchmark datasets and diverse network backbones, consistently
showing the out-performance of AugKD and endorsing its robust and effective.
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A SUPPLYMENTARY EXPERIMENT RESULTS

A.1 TRAINING DETAILS

The SR models are trained using 800 images from the DIV2K dataset (Timofte et al., 2017) and
evaluated on four benchmark datasets: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2012),
BSD100 (Martin et al., 2001), and Urban100 (Huang et al., 2015). The low-resolution (LR) images
used for training are generated by down-sampling the high-resolution (HR) images using bicubic
degradation. The ×4 scale SR models are initialized from the corresponding ×2 scale models. During
training, the input LR images are randomly cropped into 48 × 48 patches and augmented with
random horizontal and vertical flips and rotations. For the FAKD and CSD methods, we follow the
hyperparameter settings specified in the original papers and train the models ourselves if checkpoints
are not provided, as noted in the results table. The zoom-in ßoperation for AugKD is performed by
randomly cropping for efficiency. The zoom-out Þoperation is skipped during training for SwinIR,
as the ILRzo

would be too small to serve as valid input to the model. The models are trained using the
Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.99, and ϵ = 10−8, with a batch size of
16 and a total of 2.5×105 updates. The initial learning rate is set to 10−4 and decays by a factor of 10
every 105 iterations. The proposed KD method is implemented using the BasicSR framework (Wang
et al., 2022a) and PyTorch 1.10, with training performed on 4 NVIDIA V100 GPUs.

A.2 EXPERIMENT RESULTS OF SWINIR NETWORK

We compare AugKD with other applicable KD methods on distilling transformer-based SR model,
SwinIR. The result shows the superiority and universality of AugKD.

Table 10: Quantitative comparison (average PSNR/SSIM) between AugKD and other applicable
distillation methods for SwinIR of three SR scales. Best performance is highlighted in bold.

Scale Method
Set5 Set14 BSD100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2
Scratch 38.01/0.9607 33.57/0.9178 32.19/0.9000 32.05/0.9279
KD 38.04/0.9608 33.61/0.9184 32.22/0.9003 32.09/0.9282
AugKD 38.13/0.9610 33.78/0.9194 32.26/0.9007 32.63/0.9327

×3
Scratch 34.41/0.9273 30.43/0.8437 29.12/0.8062 28.20/0.8537
KD 34.44/0.9275 30.45/0.8443 29.14/0.8066 28.23/0.8545
AugKD 34.55/0.9285 30.53/0.8456 29.20/0.8080 28.53/0.8604

×4
Scratch 32.31/0.8955 28.67/0.7833 27.61/0.7379 26.15/0.7884
KD 32.27/0.8954 28.67/0.7833 27.62/0.7380 26.15/0.7887
AugKD 32.41/0.8973 28.79/0.7860 27.69/0.7405 26.43/0.7972

A.3 COMPARISON OF TRAINING COSTS

As shown in Table 11, AugKD outperforms Logits-KD by 0.55dB PSNR with an increase of only
0.21s training time per step. Considering the significant performance gains from AugKD, the extra
cost on training time is mild and acceptable.

Table 11: Training expenses of KD methods for ×2 SR on EDSR.

KD methods KD FitNet FAKD CSD AugKD

Time (s/step) 0.49 0.56 0.56 1.18 0.70
Urban100 PSNR 31.98 30.46 32.04 32.26 32.53

A.4 TEACHER MODELS’ RESULTS

In this work, we use EDSR, RCAN, and SwinIR as backbone models for the experiments. Their
specifications and statistics are provided in Table 1. We use the public checkpoints of these teacher
models for distilling the student models, with quantitative results summarized in Table 12.
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Table 12: Quantitative results of teacher models

Scale Model Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2
EDSR 38.20/0.9610 34.02/0.9204 32.37/0.9018 33.10/0.9363
RCAN 38.27/0.9614 34.13/0.9216 32.39/0.9024 33.18/0.9371
SwinIR 38.36/0.9620 34.14/0.9227 32.45/0.9030 33.40/0.9394

×3
EDSR 34.76/0.9290 30.66/0.8481 29.32/0.8104 29.02/0.8685
RCAN 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702
SwinIR 34.89/0.9312 30.77/0.8503 29.37/0.8124 29.29/0.8744

×4
EDSR 32.65/0.9005 28.95/0.7903 27.81/0.7440 26.87/0.8086
RCAN 32.64/0.9000 28.85/0.7890 27.74/0.7430 26.75/0.8070
SwinIR 32.72/0.9021 28.94/0.7914 27.83/0.7459 27.07/0.8164

B MORE VISUAL RESULTS

In Figure 7, we present additional visual comparisons of AugKD with other KD methods on Urban100.
AugKD restores more structural details and reduces blurring artifacts. The AugKD was evaluated
on the real-world SR task in Table 5, where it outperformed the baselines across several testing
datasets. In Figure 8, we show visual comparisons for real-world SR, further highlighting its superior
performance.
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Figure 7: The ×4 super resolution results of EDSR models on image 033, 078, 058 and 024 from
Urban100. PSNRs (dB) of the cropped regions are annotated below each image. Zoom in ßfor the
best view.
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Figure 8: Visual comparisons of representative real-world SR images at ×4 SR scale. AugKD
outperforms other methods in artifact removal and detail restoration, producing outputs more similar
to the teacher model. Zoom in ßfor optimal viewing.
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