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ABSTRACT

Diffusion models have made significant advancements in recent years. However,
their performance often deteriorates when trained or fine-tuned on imbalanced
datasets. This degradation is largely due to the disproportionate representation of
majority and minority data in image-text pairs. In this paper, we propose a general
fine-tuning approach, dubbed PoGDiff, to address this challenge. Rather than
directly minimizing the KL divergence between the predicted and ground-truth
distributions, PoGDiff replaces the ground-truth distribution with a Product of
Gaussians (PoG), which is constructed by combining the original ground-truth
targets with the predicted distribution conditioned on a neighboring text embed-
ding. Experiments on real-world datasets demonstrate that our method effectively
addresses the imbalance problem in diffusion models, improving both generation
accuracy and quality.

1 INTRODUCTION

The development of diffusion models (Ho et al., 2020; Song et al., 2020b) and their subsequent exten-
sions (Song et al., 2020a; Nichol & Dhariwal, 2021; Huang et al., 2023) has significantly advanced the
learning of complex probability distributions across various data types, including images (Ho et al.,
2022; Rombach et al., 2022; Saharia et al., 2022; Ho & Salimans, 2022), audio (Kong et al., 2020),
and 3D biomedical imaging data (Luo & Hu, 2021; Poole et al., 2022; Shi et al., 2023; Pinaya et al.,
2022). For these generative models, the amount of training data plays a critical role in determining
both the accuracy of probability estimation and the model’s ability to generalize, which enables
effective extrapolation within the probability space.

Data diversity and abundance are key to improving the generative capabilities of large-scale models,
enabling them to capture intricate details within a vast probability space. However, many data-driven
modeling tasks often rely on small, imbalanced real-world datasets, leading to poor generation quality,
particularly for minority groups. For example, when training and fine-tuning a diffusion model with
an imbalanced dataset of individuals, existing models often struggle to generate accurate images for
those who appear less frequently (i.e., minorities) in the training data (Fig. 1).

This limitation is true even for finetuning large diffusion models pretrained on large-scale datasets
like LAION-5B (Schuhmann et al., 2022), e.g., Stable Diffusion (Rombach et al., 2022). Imagine
an imbalanced dataset consisting of employees in a small company, senior employees might have
more photos available, while new employees only have a very limited number of them. Since none of
the employees appear in the LAION-5B dataset, generating photos of them require finetuning the
Stable Diffusion model. Unfortunately, finetuning the model on such an imbalanced dataset might
enable the model to generate accurate images for the majority group (i.e., senior employees), but it
will perform poorly for the minority group (i.e., new employees).

To address this challenge, we propose a general fine-tuning approach, dubbed PoGDiff. Rather than
directly minimizing the KL divergence between the predicted and ground-truth distributions, PoGDiff
replaces the ground-truth distribution with a Product of Gaussians (PoG), which is constructed
by combining the original ground-truth targets with the predicted distribution conditioned on a
neighboring text embedding. Our contributions are as follows:
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Figure 1: PoGDiff for imbalanced text-to-image (IT2I) generation. Existing methods such as
Stable Diffusion (Rombach et al., 2022) and CBDM (Qin et al., 2023) fall short for minority data (Low
Density). In contrast, Our PoGDiff successfully generates high-quality images even for minority
data, outperforming all the baselines.

• We identify the problem of imbalanced text-to-image generation (IT2I) and introduce the
first general diffusion model, dubbed Product-of-Gaussians Diffusion Models (PoGDiff),
for addressing this problem.

• Our theoretical analysis shows that training of PoGDiff is equivalent to training a normal
diffusion model while encouraging the model to generate the same image given similar text
prompts (conditions).

• Our empirical results on real-world datasets demonstrate the effectiveness of our method,
outperforming all state-of-the-art baselines.

2 RELATED WORK

Long-Tailed Recognition. Addressing the challenges posed by long-tailed data distributions has
been a critical area of research in machine learning, for both classification and regression problems.
Traditional methods, such as re-sampling and re-weighting techniques, have been used to mitigate
class imbalances by either over-sampling minority classes or assigning higher weights to them during
training (Chawla et al., 2002; He & Garcia, 2009; Torgo et al., 2013; Branco et al., 2017; 2018).
Such algorithms fail to measure the distance in continuous label space and fall short in handling
high-dimensional data (e.g., images and text). Deep imbalanced regression methods (Yang et al.,
2021; Ren et al., 2022; Gong et al., 2022; Keramati et al., 2023; Wang & Wang, 2024) address this
challenge by reweighting the data using the effective label density during representation learning.
However, all these methods above are designed for recognition tasks such as classification and
regression, and are therefore not applicable to our generation task.

Diffusion Models Related to Long-Tailed Data. There are also works that related to both diffusion
models and long-tailed data. They aim at improving generation robustness using noisy label (Na
et al., 2024), improving fairness in image generation (Shen et al., 2023), and improving classification
accuracy using diffusion models (Zhang et al., 2024). However, these works have different goals and
therefore are not applicable to our setting.

Most relevant to our work is Class Balancing Diffusion Model (CBDM) (Qin et al., 2023), which
uses a distribution adjustment regularizer that enhances tail-class generation based on the model’s
predictions for the head class. It improves the quality of long-tailed generation by assuming one-hot
conditional labels (i.e., classification-based settings). However, this assumption does not generalize
to the modern setting where image generation is usually conditioned on free-form text prompts. As a
result, when adapted to the free-form setting, they often fail to model the similarity among different
text prompts, leading to suboptimal generation performance in minority data (as verified by empirical
results in Sec. 4).
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3 METHODS

3.1 PRELIMINARIES

Diffusion models (DMs) (Ho et al., 2020) are probabilistic models that generate an output image
x0 from a random noise vector xT conditioned on text input c. DMs operate through two main
processes: the forward diffusion process and the reverse denoising process. During the diffusion
process, Gaussian noise is progressively added to a data sample x0 over T steps. The forward process
is defined as a Markov chain, where:

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
.

Here, βt is the predefined diffusion rate at step t. By denoting αt = 1− βt and ᾱt =
∏t

i=1 αi, we
can describe the entire diffusion process as:

q (x1:T |x0) =
∏T

t=1
q (xt|xt−1)

q (xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
The denoising process removes noise from the sample xT , eventually recovering x0. A denoising
model ϵθ(xt, t,y) is trained to estimate the noise ϵ from xt and a text-guided embedding y = ϕ(c),
where ϕ(·) is a pretrained text encoder. Formally:

pθ (xt−1|xt, t,y) = N
(
xt−1; ϵθ(xt, t,y), σ

2
t I
)
.

The denoising process is trained by maximizing the likelihood of the data under the model or,
equivalently, by minimizing the variational lower bound on the negative log-likelihood of the data.
Ho et al. (2020) shows that this is equivalent to minimizing the KL divergence between the predicted
distribution pθ(xt−1|xt,y) and the ground-truth distribution q(xt−1|xt,x0,y) at each time step t
during the backward process. The training objective then becomes:

minDKL

(
q (xt−1|xt,x0,y)

∥∥pθ (xt−1|xt,y)
)
.

This can be simplified to:

LDM = Ex0=x,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(xt, t,y)∥22

]
.

Latent diffusion models (LDMs) (Rombach et al., 2022) are diffusion models that perform the entire
diffusion and denoising process in a lower-dimensional latent space. LDMs first learn an encoder
E and a decoder D, which are then frozen during subsequent training of the diffusion models. The
corresponding objective is then simplified to:

LLDM = Ez0=E(x),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t,y)∥22

]
In this paper, we use Stable Diffusion (LDM) (Rombach et al., 2022) as our backbone model. Since
our method works for both the vanilla DMs and LDMs, for clarity, we use the notation x instead of z,
as the encoder E and decoder D are fixed during fine-tuning.

3.2 PRODUCT-OF-GAUSSIANS DIFFUSION MODELS (POGDIFF)

3.2.1 MAIN IDEA
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Figure 2: Overview of our PoGDiff. During fine-
tuning, PoGDiff collects k neighbors of the current
text embedding y and samples one y′ from them
based on Eqn. (8). Both y and y′ will then be em-
ployed to denoise the current image xt to xt−1.

Method Overview. Given an image dataset
D = {x(i), c(i)}Ni=1, where c(i) is the text de-
scription for image x(i), we use a fixed CLIP
encoder to produce c(i)’s corresponding text em-
bedding y = ϕ(c).

Typical diffusion models minimize the KL
divergence between the predicted distribution
pθ(xt−1|xt,y) = N (ϵθ(xt, t,y), λ

−1
y I)

and the ground-truth distribution
q(xt−1|xt,x0,y) = N (ϵ, λ−1

t I) at each
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time step t during the backward denoising process. Here, λy and λt represent the precision. In
contrast, our PoGDiff replaces the ground-truth target with a Product of Gaussians (PoG), and instead
minimize the following KL divergence (for each t)

LPoGDiff
t−1 = DKL

(
q (xt−1|xt,x0,y) ◦ pθ (xt−1|xt,y

′)
∥∥pθ (xt−1|xt,y)

)
, (1)

where ◦ represents the product of two Gaussian distributions, y′ is a selected neigh-
boring embedding from other samples in the training dataset (more details below), and
pθ(xt−1|xt,y

′) denotes the predicted distribution when using y′ as the input text embedding.
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Figure 3: Comparing denoising networks of typ-
ical diffusion models (Ho et al., 2020; Rombach
et al., 2022) and our PoGDiff. Left: In condi-
tional text-to-image diffusion models, a data point
(i.e., x) is mainly affected by its text embedding
(also affected by the random latent codes). Right:
In PoGDiff, neighbors participate to modulate the
final effective density. Here, y denotes the text
prompts, which are the embeddings of the text
descriptions of the images; x denotes the associ-
ated images. The tightly packed circles at the top
indicate higher density, while the sparse circles
indicate lower density.

As shown in Fig. 2, intuitively, PoGDiff’s de-
noising model ϵθ(xt, t,y) (or pθ(xt−1|xt,y))
is optimized towards two target distributions,
equivalently increasing the weights for minority
instances (more details below). This approach
enhances the text-to-image mapping by leverag-
ing the statistical strength of neighboring data
points, thereby improving and quality of the gen-
erated images, especially for minority images.

Intuition behind the Product of Gaussians
(PoG). During fine-tuning, typical diffusion
models “lock” the text conditional embedding
y = ψ(c) to the corresponding image x. Conse-
quently, if the dataset follows a long-tailed dis-
tribution, the fine-tuned or post-trained diffusion
model becomes heavily biased toward the ma-
jority data, performing poorly on minority data.
Fig. 3 demonstrates our intuition. When training
using a text-image pair (y,x), our PoGDiff “bor-
rows” information from neighboring text condi-
tional embedding y′, thereby effectively increas-
ing the data density in the minority region and
leading to smoother (less imbalanced) effective
density, as shown in Fig. 3 (right). However,
since the text embedding is fixed during fine-
tuning (i.e., ϕ is frozen), directly smoothing the
text embedding space is not feasible. Instead, we
rely on the properties of the product of Gaussian
distributions.

By definition, given two Gaussian distributions, N (µ1, λ
−1
1 I) and N (µ2, λ

−1
2 I), their product is still

a Gaussian distribution:

N (µ1, λ
−1
1 ) ◦ N (µ2, λ

−1
2 ) = N

(
λ1µ1 + λ2µ2

λ1 + λ2
, (λ1 + λ2)

−1

)
≜ N

(
µPoG, λ

−1
PoG

)
, (2)

which can be treated as a “composition” of two individual Gaussians, incorporating information from
both. This intuition is key to developing our PoGDiff objective function.

3.2.2 THEORETICAL ANALYSIS AND ALGORITHMIC DESIGN

Based on Eqn. (1), we then derive a concrete objective function following Proposition 3.1 below.
Proposition 3.1. Assume λy = λPoG ≜ λt + λy′ , we have our loss function

LPoGDiff
t−1 = Eq

[
λy
2

∥µθ(xt,y)− µPoG∥2
]
+ C. (3)

Here, C is a constant, and µPoG denotes the mean of the PoG, with the expression defined in Eqn. (2).
Then, through derivations based on Gaussian properties, we obtain

LPoGDiff
t−1 ≤ Eq

[
A(λt) ∥ϵθ(xt,y)− ϵ∥2 +A(λy′) ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
+ C (4)

where the function A(λ) ≜
λ(1− αt)

2

2αt(1− ᾱt)
.
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The proof is available in the Appendix. Eqn. (4) in Proposition 3.1 provides a upper bound for the
KL divergence (Eqn. (1)) we aim to minimize.

In diffusion model literature (Ho et al., 2020; Rombach et al., 2022), one typically sets A(λt) = 1 to
eliminate the dependency on the time step t, and thus Eqn. (4) can be written as1:

LPoGDiff
simple = Ex0∼q(x0),ϵ∼N (0,I),t∼U(1,T )

[
∥ϵθ(xt,y)− ϵ∥2 + λy′

λt
∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
. (5)

For convenience, we rewrite
λy′

λt
=

σ2
t

σ2
y′

. Note that this weight still depends on the time step t.

Therefore, to be consistent with the DDPM-related literature (Ho et al., 2020; Rombach et al., 2022),

we hypothetically define σ2
y′ =

σ2
t

ψ [(x,y) , (x′,y′)]
to cancel out the term σ2

t , thereby effectively

removing the time step dependency; here ψ [(x,y) , (x′,y′)] denotes the similarity between the two
image-text pairs. By shortening the notation ψ [(x,y) , (x′,y′)] to ψ, we can further rewrite the
objective function for PoGDiff as:

LPoGDiff
simple = Ex0∼q(x0),ϵ∼N (0,I),t∼U(1,T )

[
∥ϵθ(xt,y)− ϵ∥2 + ψ ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
. (6)

3.2.3 COMPUTING THE SIMILARITY ψ

Next, we discuss the choice of ψ in Eqn. (6). Given a image-text dataset D, the similarities between
each image-text pair need to be considered in two parts:

ψ ≜ ψimg-sim (x,x′) · ψinv-txt-den (y) , (7)

where ψimg-sim(x,x
′) is the similarity between images x and x′, and ψinv-txt-den(y) is the probability

density of the text embedding y (more details below).

Image Similarity ψimg-sim. For all x ∼ D, we apply a pre-trained image encoder to obtain the
latent representations z. We then calculate the cosine similarities between each z and select the
k nearest neighbors with the highest similarity values for all samples in the dataset D, denoted as
[sj ]

k
j=1, where sj represents the cosine similarity scores between x and other images in D, sorted in

descending order. These values are then normalized to produce the weights for each neighbor:

wj =
sj∑
j sj

, (8)

For each data pair (x,y), we then randomly sample a neighboring pair (x′,y′) through from a
categorical distribution Cat([wj ]

k
j=1)

2, i.e., with wj serving as the probability weight, and compute
their image similarity as:

ψimg-sim (x,x′) ≜ max
(
0, sa1+a2·1[I(x) ̸=I(x′)]

)
, (9)

where s denotes the cosine similarity sampled by the weights {wj} defined in Eqn. (8), 1 [·] denotes
the indicator function, and I(·) retrieves the class/identity of the current input image; for example,
1 [I(x) ̸= I(x′)] = 0 if x and x′ are two photos of the same person (e.g., Albert Einstein), and
1 [I(x) ̸= I(x′)] = 1 if x and x′ are photos of two different persons (e.g., x is Einstein and x′

Reagan). a1, a2 are hyperparameters that control the scale of the similarities.3 The intuition is to
compute the image similarity according to both the image content similarity, i.e., s, and identity
similarity, i.e., I(x) and I(x′).

1For clarification, our A(λt) is equivalent to λt in (Ho et al., 2020), with the difference that in our paper, λ
refers to the precision of the Gaussian distribution.

2The term “Cat” refers to a “Categorical” distribution. For example, Cat([0.2, 0.5, 0.3]) represents a three-
dimensional categorical distribution, where there is a 0.2 probability of selecting the first category, 0.5 probability
of selecting the second, and 0.3 probability of selecting the third.

3For example, if the cosine similarity (s) between x and x′ is 0.4, and a1 = a2 = 1: if x and x′ are of
the same person, the image similarity will be 0.41, whereas if x and x′ are not of the same person, the image
similarity will be 0.42, which is smaller.
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Algorithm 1 Training Algorithm for PoGDiff

1: Inputs: A dataset D = {x(i), c(i)}Ni=1.
2: repeat
3: (x0, c) ∼ D
4: y = ϕ(c)
5: t ∼ Uniform(1, · · · , T )
6: ϵ ∼ N (0, I)
7: Generate y′ and ψ from Eqn. (12)
8: Calculate xt =

√
ᾱtx0 +

√
1− ᾱtϵ

9: Take gradient descent step on
10: ∇θ

[
∥ϵ− ϵθ(xt,y)∥22 + ψ∥ϵθ(xt,y

′)− ϵθ(xt,y)∥22
]

11: until converged
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Figure 4: Overview of label distribution for four IT2I datasets. The x-axis corresponds to the identities
(i.e., people or individuals).

Inverse Text Densities ψinv-txt-den. Inspired by LDS in DIR (Yang et al., 2021) and the theoretical
analysis in VIR (Wang & Wang, 2024), re-weighting the label distribution of an imbalanced dataset
can increase the optimization scale for minority classes and reduce the emphasis on majority classes,
resulting in better performance under imbalanced conditions. However, both DIR and VIR partition
the label space into bins, treating it as a classification problem. This is not applicable to our setting
because in text-to-image generation, the “label” is actually text embeddings. Instead, we train a
variational autoencoder (VAE) on this dataset and then approximate its likelihood p(y) through its
evidence lower bound, or ELBO:

p(y) = elog p(y) ≈ eELBOVAE(y). (10)

The evidence for minority data will be lower than for majority classes. This then motivates our
inverse text densities defined as follows:

ψinv-txt-den (y) ≜
1

a3 · eELBOVAE(y)
, (11)

where a3 is a hyperparameter that controls the scale of the inverse text densities. By combin-
ing Eqn. (9) and Eqn. (11) to Eqn. (7), we can then compute ψ as follows:

ψ = max
(
0, sa1+a2·1[I(x)̸=I(x′)]

)
· 1

a3 · eELBOVAE(y)
(12)

3.2.4 FINAL OBJECTIVE FUNCTION

By collecting all the components discussed above, we arrive at our final training objective:

LPoGDiff
final = Ex0∼q(x0),ϵ∼N (0,I),t∼U(1,T )

[
∥ϵθ(xt,y)− ϵ∥2 + ψ ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
, (13)

where ψ is defined in Eqn. (12). Alg. 1 summarizes our algorithm.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To demonstrate the effectiveness of PoGDiff in terms of both accuracy and quality, we
evaluate our method on two widely used imbalanced datasets, i.e., AgeDB-IT2I (Moschoglou et al.,

6
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Table 1: Performance based on FID score.
Datasets AgeDB-IT2I DigiFace-IT2I

Size Small Medium Large Large

Metric FID ↓
Shot All Few All Few All Few All Few

VANILLA 14.88 13.72 12.87 12.56 7.67 11.67 7.18 12.23
CBDM 14.72 14.13 11.63 11.59 7.18 11.12 6.96 12.72
T2H 14.85 13.66 12.79 12.52 7.61 11.64 7.14 12.22
POGDIFF (OURS) 14.15 12.88 10.89 10.64 6.03 10.16 6.84 11.21

Table 2: Performance based on DINO score.
Datasets AgeDB-IT2I DigiFace-IT2I

Size Small Medium Large Large

Metric DINO (cosine similarity) scores ↑
Shot All Few All Few All Few All Few

VANILLA 0.42 0.37 0.39 0.28 0.34 0.25 0.42 0.36
CBDM 0.54 0.09 0.38 0.11 0.41 0.26 0.34 0.16
T2H 0.43 0.39 0.42 0.29 0.37 0.26 0.44 0.36
POGDIFF (OURS) 0.77 0.73 0.69 0.56 0.66 0.52 0.64 0.49

Table 3: Performance on AgeDB-IT2I based on
human evaluation. The evaluation is a binary de-
cision: the image is either judged as representing
the same individual (score 1.0) or not (score 0.0).
Size Small Medium Large

Metric Human Score ↑
Shot All Few All Few All Few

VANILLA 0.50 0.00 0.66 0.32 0.60 0.20
CBDM 0.50 0.00 0.44 0.08 0.56 0.12
T2H 0.50 0.00 0.66 0.32 0.60 0.20
POGDIFF (OURS) 1.00 1.00 0.96 0.92 0.84 0.68

Table 4: Performance on AgeDB-IT2I based
on GPT-4o evaluation. The scores are from 0 to
10, with higher scores indicating the individual
resembles the well-known person.
Size Small Medium Large

Metric GPT-4o Evaluation ↑
Shot All Few All Few All Few

VANILLA 5.20 3.20 4.30 2.90 4.90 3.60
CBDM 4.50 1.10 1.30 1.00 3.10 1.70
T2H 5.50 3.10 4.60 3.00 4.70 3.90
POGDIFF (OURS) 9.10 8.40 8.80 8.20 8.50 8.00

2017) and DigiFace-IT2I (Bae et al., 2023). Note that our method is designed for fine-tuning.
Therefore our setup does not require large-scale, long-tailed human datasets. Instead, we sample
from these datasets, as long as they meet the following criteria: (1) the dataset must be long-tailed, (2)
traditional methods must fail to recognize the minority classes, and (3) there must be a distinguishable
difference between the majority and minority classes (e.g., we prefer visual distinctions between the
two groups to better highlight the impact of our method). Fig. 4 shows the label density distribution
of these datasets, and their level of imbalance4.

AgeDB-IT2I: AgeDB-IT2I is constructed from the AgeDB dataset (Moschoglou et al., 2017). For
each image x in AgeDB, we passed it through the pretrained LLaVA-1.6-7b model (Liu et al., 2024)
to generate textual captions ỹ. Since the identities in AgeDB are well-known individuals that the
pretrained SDv1.5 (Rombach et al., 2022) might have encountered during pre-training, we masked
the true names and replaced them with generic, random names, leading to a new caption y. For
example, we replace “Albert Einstein” in the caption with a random name “Lukas”. Finally, we
collect all (y,x) pairs to form our AgeDB-IT2I dataset.

Additionally, given that the identities (i.e., people or individuals) in AgeDB are well-known figures,
we sampled from AgeDB to create three datasets for comprehensive analysis: AgeDB-IT2I-L (large),
AgeDB-IT2I-M (medium), and AgeDB-IT2I-S (small). Specifically:

• AgeDB-IT2I-L (large). This dataset consists of 976 images across 223 identities, with each
majority class containing 30 images and each minority class containing 2 images.

• AgeDB-IT2I-M (medium). This dataset consists of 100 images across 10 identities, with
each majority class containing 30 images and each minority class containing 2 images.

• AgeDB-IT2I-S (small). This dataset contains 32 images across 2 identities, where each
majority class consists of 30 images and each minority class consists of 2 images.

DigiFace-IT2I-L: DigiFace-IT2I-L is derived from the DigiFace dataset (Bae et al., 2023). It contains
985 images across 179 identities, where each majority class consists of 30 images and each minority
class consists of 2 images. We use a process similar to AgeDB-IT2I to collect text-image pairs,
forming this DigiFace-IT2I dataset.

Baselines. We employ Stable Diffusion v1.5 (Rombach et al., 2022) as the backbone diffusion model.
As this is the first work to explore imbalanced text-to-image (IT2I) diffusion models with natural

4Our datasets actually contain sparse datasets; more details can be found in Appendix C.4.
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SDv1.5 CBDM PoGDiff (Ours)

Figure 5: Example generated images from different methods. Our PoGDiff outperforms the baselines
in terms of both generation accuracy and generation quality.
text prompts, we adapt the current state-of-the-art methods designed for long-tailed T2I diffusion
models with one-hot text prompts to serve as baselines. The baselines are described below:

• Vanilla: We use term Vanilla to denote a model that does not incorporate any techniques
for handling imbalanced data, equivalent to fine-tuning a Stable Diffusion model without
additional modifications.

• CBDM: We use term CBDM to denote a model that incorporates the Class Balancing
Diffusion Model (CBDM) (Qin et al., 2023) approach. During fine-tuning, we sample
an additional text embedding y′ from the entire fine-tuning dataset and apply the CBDM
objective function. All hyperparameters are kept the same as in the original paper, with
further details available in Qin et al. (2023).

• T2H: We use term T2H to denote a model that uses Long-Tailed Diffusion Models with
Oriented Calibration (T2H) (Zhang et al., 2024). T2H is a reweighting method similar
to CBDM (Qin et al., 2023), but is not directly applicable to our setting. Specifically,
T2H (Zhang et al., 2024) relies on the class frequency, which is not available in our setting.
In this paper, we adapted this method to our settings by using the density for each text
prompt embedding to serve as the class frequency in T2H (Zhang et al., 2024).

Evaluation Protocols and Metrics. We use two types of evaluation metrics: generation quality
and generation accuracy. For general text-to-image generation performance, we report the widely
used Fréchet Inception Distance (FID) score (Heusel et al., 2017). Unlike the traditional FID score,
which uses Inception-v3 (Szegedy et al., 2016) as the feature extractor, we used a pre-trained face
recognition model instead; since our goal is to evaluate the ability to recognize humans, we need
to capture facial features rather than general features. For each identity, we collect all images from
the original AgeDB or DigiFace datasets as the true image set. Then, In all-shot evaluation, for
AgeDB-IT2I-S and AgeDB-IT2I-M, we generate 100 images per identity as the fake image set, and
for AgeDB-IT2I-L and DigiFace-IT2I-L, we generate 20 images per identity as the fake image set. In
few-shot evaluation, we generate 500 images per identity as the fake image set. For all generations,
we employ the DDIM sampling technique (Song et al., 2020a) with 50 steps. The prompt used during
generation is “An image of {p}.” where “p” is the name of the identity (e.g., Albert Einstein).

To assess generation accuracy, we use 10 different seeds to sample 10 images for each minority class.
We then gather feedback from both the GPT-4o model (Achiam et al., 2023) and human evaluators to
score the accuracy of identity recognition. Additionally, we employ a pre-trained DINO model (Caron
et al., 2021) for calculating DINO score for image similarities. More details about the evaluation
process including prompts we used are in the Appendix.

8
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Implementation Details. For both baselines and our model, we used the same hyper-parameter
settings, specifically

• AgeDB-IT2I-L & DigiFace-IT2I-L. The learning rate was set to 1 × 10−5, with a maxi-
mum of 12, 000 training steps. The effective batch size per GPU was 32, calculated as
8 (Batch Size) × 4 (Gradient Accumulation Steps).

• AgeDB-IT2I-M & AgeDB-IT2I-S. The learning rate was set to 1× 10−5, with a maximum of
6, 000 training steps. The effective batch size per GPU was 8, calculated as 8 (Batch Size)×
1 (Gradient Accumulation Step).

4.2 RESULTS

We report the performance of different methods in terms of FID score, human evaluation score,
GPT-4o score, and DINO score in Table 1, Table 2, Table 3 and Table 4, respectively5. Across
all tables, we observe that our PoGDiff consistently outperforms all baselines. Notably, PoGDiff
demonstrates significant improvements, especially in few-shot scenarios (i.e., for minority classes).
It is also worth noting that CBDM (Qin et al., 2023) performs extremely poorly on AgeDB-IT2I-S
and AgeDB-IT2I-M datasets. This is because their method samples text conditions from the entire
space, which may work in one-hot class settings, but in our context (natural text conditions), this
sampling technique misguides the model during training. In addition, for each method, we report the
performance on low-density classes in AgeDB-IT2I-L in Fig. 5. Across each column, the individual
names are Albert Einstein, JW Marriott, J.P. Morgan, Edward G. Robinson, Larry Ellison, and Luise
Rainer, respectively. The results show that our PoGDiff achieves significantly better accuracy and
quality for tail classes.

Note that one of our primary objectives is to generate accurate images of the same individual while
ensuring facial consistency. Therefore diversity can sometimes be harmful. For example, given a
text input of “Einstein”, generated images with high diversity would generate both male and females
images; this is obviously incorrect. Therefore it is important to strike a balance between diversity
and accuracy, a goal that our PoGDiff achieves.

Specifically, as shown in Fig. 5:

• First Three Columns of SDv1.5, CBDM, and PoGDiff: In these cases, the training dataset
contains only two images per person6. With such limited data, it is impossible to introduce
meaningful diversity.
– SDv1.5 fails to generate accurate images altogether in this scenario.
– While CBDM might appear to produce the “diversity” you mentioned, it does so incorrectly,

as it generates an image of a woman when the target is Einstein.
– In contrast, our PoGDiff can successfully generate accurate images (e.g., Einstein images in

Column 1) while still enjoying sufficient diversity.
• Fourth and Fifth Columns: Here, the training dataset contains a medium number of images per

person (5–7 images). Under these conditions:
– SDv1.5 can generate accurate representations of individuals, but its outputs lack diversity.
– CBDM, on the other hand, introduces “diversity” but consistently generates incorrect results.
– In contrast, our method produces accurate images of the target individual while demonstrating

greater diversity than SDv1.5.
• Sixth Column: In this case, the training dataset includes 30 images per person.

– SDv1.5 generates accurate images but with nearly identical expressions, i.e., poor diversity.
– CBDM still fails to generate accurate depictions of the individual.
– In contrast, PoGDiff successfully generates accurate images while maintaining diversity.

In summary, typical diversity evaluation in diffusion model evaluations, such as generating multiple
types of trees for a “tree” prompt, is not the focus of our setting and may even be misleading. In
our setting, the key is to balance accuracy and diversity.

5Note that the CLIP score is not applicable in our setting. Specifically, our text prompts are predominantly
human names. However, CLIP is primarily trained on common objects, not human names; therefore the CLIP
score can not be use to compute matching scores between images and human names.

6More details are included in the Appendix.
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5 ABLATION STUDY

To verify the effectiveness of each component in the second term in our PoGDiff final objective
function from Eqn. (12), we report the accuracy of our proposed PoGDiff after removing the y′

(i.e., same as Vanilla model), the Image Similarity term ψimg-sim, and/or the Inverse Text Densities
term ψinv-txt-den in Table 5 for AgeDB-IT2I-L. The results show that removing either term leads to a
performance drop, confirming the importance of both terms in our PoGDiff.

6 LIMITATIONS

Table 5: Ablation Studies.
Datasets AgeDB-IT2I-Large

Size FID ↓ Human ↑ GPT-4o ↑ DINO ↑
Shot All Few All Few All Few All Few

W/O y′ (VANILLA) 7.67 11.67 0.60 0.20 4.90 3.60 0.34 0.25
W/O ψIMG-SIM 6.41 10.49 0.84 0.68 8.40 7.60 0.57 0.46
W/O ψINV-TXT-DEN 6.35 10.43 0.84 0.68 8.20 7.80 0.64 0.51
POGDIFF (OURS) 6.03 10.16 0.84 0.68 8.50 8.00 0.66 0.52

Datasets. Our method relies heavily
on “borrowing” the statistical strength
of neighboring samples from minor-
ity classes, making the results sensi-
tive to the size of the minority class.
(i.e., in our assumption we require at
least 2 for each minority class). In ad-
dition, while our AgeDB-IT2I-small
and AgeDB-IT2I-medium are actu-
ally the sparse dataset, the cardinality
remains limited in our experiments.
Therefore, how to address IT2I prob-
lem under this settings are interesting directions.

Models. Our method is a general fine-tuning approach designed for datasets that the Stable Diffusion
(SD) model has not encountered during pre-training. As shown in Fig. 1, color deviation is very
common and is a known issue when one fine-tunes diffusion models (as also mentioned in (Song
et al., 2020b)); for example, we can observe similar color deviation in both baselines (e.g., CBDM
and Stable Diffusion v1.5) and our PoGDiff. This can be mitigated using the exponential moving
average (EMA) technique (Song et al., 2020b); however, this is orthogonal to our method and is
outside the scope of our paper. Moreover, as shown in Fig. 5, the baseline Stable Diffusion also
suffers from this issue. Besides, exploring PoGDiff’s performance when training from scratch is also
an interesting direction for future work.

Methodology. The distance between the current text embedding y and the sampled y′ impacts
the final generated results, therefore in our paper, we introduced a more sophisticated approach for
computing the weight ψ, which depends on the quality of the image pre-trained model and our trained
VAE. These mechanisms ensure that data points with smaller distances are assigned higher effective
weights. Effectively producing ψ for any new, arbitrary dataset remains an open question and is an
interesting avenue for future work, as it could further enhance the method’s performance.

Evaluation. Our goal is to adapt the pretrained diffusion model to a specific dataset; therefore the
evaluation should focus on the target dataset rather than the original dataset used during pre-training.
For example, when a user fine-tunes a model on a dataset of employee faces, s/he is not interested in
how well the fine-tuned model can generate images of “tables” and “chairs”. Evaluating the model’s
performance on the original dataset used during pre-training would be an intriguing direction for
future work, but it is orthogonal to our proposed PoGDiff and out of the scope of our paper.

7 CONCLUSIONS

In this paper, we propose a general fine-tuning approach called PoGDiff to address the performance
drop that occurs when fine-tuning on imbalanced datasets. Instead of directly minimizing the KL
divergence between the predicted and ground-truth distributions, PoGDiff replaces the ground-truth
distribution with a Product of Gaussians (PoG), constructed by combining the original ground-
truth targets with the predicted distribution conditioned on a neighboring text embedding. Looking
ahead, an interesting avenue for future research would be to explore more innovative techniques
for re-weighting minority classes (as discussed in Sec. 6), particularly within the constraints of: (1)
long-tailed generation settings, as opposed to recognition tasks, and (2) natural text prompts rather
than one-hot class labels.
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A PROOFS FOR PROPOSITION 3.1

Proposition A.1. Assume λy = λPoG ≜ λt + λy′ , we have our loss function

LPoGDiff
t−1 = Eq

[
λy
2

∥µθ(xt,y)− µPoG∥2
]
+ C. (14)

Here, C is a constant, and µPoG denotes the mean of the PoG, with the expression defined in Eqn. (2).
Then, through derivations based on Gaussian properties, we obtain

LPoGDiff
t−1 ≤ Eq

[
A(λt) ∥ϵθ(xt,y)− ϵ∥2 +A(λy′) ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
+ C (15)

where the function A(λ) ≜
λ(1− αt)

2

2αt(1− ᾱt)
.

Proof. To prove the above inequality, we need to prove the following lemma.

Lemma A.1. Assume λy = λPoG ≜ λt + λy′ , and for simplicity we shorten the notation from
ϵθ(xt,y) and µθ(xt,y) to ϵθ(y) and µθ(y), respectively. Then we have

1

2
λt (µθ (y)− µt)

2
+

1

2
λy′ (µθ (y)− µθ (y

′))
2 ≥ 1

2
λy (µθ (y)− µPoG)

2 (16)

Proof. By the definition of Gaussian property, we have

1

2
λt (µθ(y)− µt)

2
+

1

2
λy′ (µθ(y)− µθ(y

′))
2

=
[µθ(y)]

2 − 2µtµθ(y) + µ2
t

2λ−1
t

+
[µθ(y)]

2 − 2µθ(y
′)µθ(y) + [µθ(y

′)]2

2λ−1
y′

=

(
λ−1
t + λ−1

y′

)
[µθ(y)]

2 − 2

(
µt

λy′
+
µθ(y

′)
λt

)
µθ(y) +

µ2
t

λy′
+

[µθ(y
′)]2

λt
2[λtλy′ ]−1

=

[µθ(y)]
2 − 2

(
µtλt + [µθ(y

′)]λy′

λt + λy′

)
µθ(y) +

µ2
tλt + [µθ(y

′)]2λy′

λt + λy′

2

λt + λy′

+

[
µtλt + [µθ(y

′)]λy′

λt + λy′

]2
2

λt + λy′

−

[
µtλt + [µθ(y

′)]λy′

λt + λy′

]2
2

λt + λy′

=

(
µθ(y)−

µtλt + [µθ(y
′)]λy′

λt + λy′

)2

2

λt + λy′

+
(µ2

tλt + [µθ(y
′)]2λy′)(λt + λy′)− (µtλt + [µθ(y

′)]λy′)2

2(λt + λy′)

=
1

2
λy (µθ(y)− µPoG)

2
+
λtλy′(µt − µθ(y

′))2

2(λt + λy′)

≥ 1

2
λy (µθ(y)− µPoG)

2
.

Thus we complete the proof.
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From Lemma A.1, we can derive
1

2
λy ∥µθ(y)− µPoG∥2 ≡ 1

2
λy (µθ(y)− µPoG)

2

≤ 1

2
λt (µθ(y)− µt)

2
+

1

2
λy′ (µθ(y)− µθ(y

′))
2

≡ 1

2
λt ∥µθ(y)− µt∥2 +

1

2
λy′ ∥µθ(y)− µθ(y

′)∥2

≡ A(λt) ∥ϵθ(y)− ϵ∥2 +A(λy′) ∥ϵθ(y)− ϵθ(y
′)∥2 ,

where the function A(λ) ≜
λ(1− αt)

2

2αt(1− ᾱt)
, and the last equivalence is because the transform from

µθ(·) to ϵθ(·).

B DETAILS FOR EVALUATION

In this section, we provide details on our evaluation procedures.

FID Score. For each identity, we collect all images from the original AgeDB or DigiFace datasets
as the true image set. Then, In all-shot evaluation, for AgeDB-IT2I-S and AgeDB-IT2I-M, we
generate 100 images per identity as the fake image set, and for AgeDB-IT2I-L and DigiFace-IT2I-L,
we generate 20 images per identity as the fake image set. In few-shot evaluation, we we generate
500 images per identity as the fake image set. For all generations, we employ the DDIM sampling
technique (Song et al., 2020a) with 50 steps. The prompt used during generation is “An image of
{ p }.” where “p” is the name of the identity (e.g., Albert Einstein).

Human & GPT-4o Feedback. For each minority identity, we generate 5 images using DDIM
sampling (Song et al., 2020a) with 50 steps. We then ask 10 people to evaluate whether the images
depict the same person (scored as 1.0) or not (scored as 0.0). Additionally, for each image, we ask
the GPT-4o model to rate the similarity on a scale from 1 to 10. The prompt used during generation
is “An image of { p }.” where “p” is the name of the identity. The text prompt using for GPT-4o
model is “It is mandatory to give a score that how close the person in the image to a well-known
individual. A score of 10.0 means they are exactly the same person, while a score of 0.0 means they
are definitely not the same person. How close you think the person in the image is to ‘p-true’.” where
“p-true” denotes the real name (well-known name) in AgeDB. Note that the GPT-4o model might
occasionally refuse to provide a score, and you may need to repeat and compel it to give a rating. For
each image, we collect 10 scores from the GPT-4o model and report the average rating.

Evaluating Image Similarities. We collect samples that are outside our training dataset (e.g.,
AgeDB-T2I-L) but belong to the original dataset (e.g., AgeDB). Using the same prompt, we generate
the corresponding images. A pre-trained DINOv2 model (Caron et al., 2021) is then applied to extract
latent features, and cosine similarities are calculated.

C DISCUSSION

C.1 PROBLEM SETTINGS

We would like to clarify that our paper focuses on a setting different from works like Dream-
Booth (Ruiz et al., 2023), and our focus is not on diversity, but on finetuning a diffusion model on an
imbalanced dataset. Specifically:

• Different Setting from Custom Techniques like DreamBooth (Ruiz et al., 2023), Cus-
tomDiffusion (Kumari et al., 2023) and PhotoMaker (Li et al., 2024). Previous works
like CustomDiffusion and PhotoMaker focus on adjusting the model to generate images
with a single object, e.g., a specific dog. In contrast, our PoGDiff focuses finetuning the
diffusion model on an entire data with many different objects/persons simultaneously.
They are very different settings and are complementary to each other.

• Diversity. Note that while our PoG can naturally generate images with diversity, diversity is
actually not our focus. Our goal is to fine-tune a diffusion model on an imbalanced dataset.
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SDv1.5
CBDM

PoGDiff (Ours)
GT

Inaccurate
Generation

Few-Shot
(2 Samples)

Many-Shot
(>10 Samples)

Figure 6: Example generated images from different methods. Our PoGDiff outperforms the baselines
in both generation accuracy and quality. Regarding the ground truth (GT), the training set for the
minority class (left two columns) contains only 2 images per individual, whereas the majority class
has more than 10 samples per individual.

For example, PoGDiff can fine-tune a diffusion model on an imbalanced dataset of employee
faces so that the diffusion model can generate new images that match each employee’s
identity. In this case, we are more interested in “faithfulness” rather than “diversity”.

C.2 UNDERSTANDING FIG. 5

To further emphasize our results, note that one of our primary objectives is to generate accurate
images of the same individual while ensuring facial consistency. Therefore diversity can be harmful.
For example, given a text input of “Einstein”, generated images with high diversity would generate
both male and females images; this is obviously incorrect. Therefore it is important to strike a
balance between diversity and accuracy, a goal that our PoGDiff achieves.

Fig. 6 (which contains images from Column 1, 2, and 6 for each method in Fig. 5) provides a clearer
comparison with the training images. Specifically:

• Ground-Truth (GT) Images: We show the ground-truth images on the right-most 3
columns.

• Column 1 and 2 of SDv1.5, CBDM, PoGDiff, and GT: In these cases, the training dataset
contains only two images per person. With such limited data, it is impossible to introduce
meaningful diversity.

– SDv1.5 fails to generate accurate images altogether in this scenario.
– While CBDM might appear to produce the “diversity” you mentioned, it does so

incorrectly, as it generates an image of a woman when the target is Einstein (we circled
those wrong samples in first column in Fig. 6).
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SDv1.5 CBDM PoGDiff (Ours)T2H

Figure 7: Example generated images from different methods. Our PoGDiff outperforms the baselines
in terms of both generation accuracy and generation quality.
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Figure 8: Overview of label distribution for four IT2I datasets in bar plots. The x-axis corresponds to
the identities (i.e., people or individuals).

– In contrast, our PoGDiff can successfully generate accurate images (e.g., Einstein
images in Column 1) while still enjoying sufficient diversity.

• Column 3 of of SDv1.5, CBDM, PoGDiff, and GT: In this case, the training dataset
includes around 30 images per person.

– SDv1.5 generates accurate images but with nearly identical expressions, offering
minimal diversity.

– CBDM still fails to generate accurate depictions of the individual.
– In contrast, our PoGDiff successfully generates accurate images while introducing

notable diversity.

In summary, typical diversity evaluation in diffusion model evaluations, such as generating multiple
types of trees for a “tree” prompt, is not the focus of our setting and may even be misleading. In
our setting, the key is to balance accuracy and diversity.

C.3 WHY NOT DIRECTLY SMOOTH TEXT EMBEDDING?

Preliminary results indicate that directly smoothing the text embeddings does not yield meaningful
improvements. Below we provide some insights into why this approach might fail. Suppose we have
a text embedding y and its corresponding neighboring embedding y′. Depending on their relationship,
we are likely to encounter three cases:

• Case 1: y′ = y. In this case, applying a reweighting method such as a linear combination
results in no meaningful change, as the smoothing outcome is still y.

• Case 2: y′ is far from y. If y′ is significantly distant from y, combining them becomes
irrelevant and nonsensical, as y′ no longer represents useful neighboring information.

• Case 3: y′ is very close to y. When y′ is close to y, the reweighting can be approximated
as: αy + (1 − α)y′ ≈ y + (1 − α)(y′ − y). Since y′ is nearly identical to y, this
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Figure 9: TSNE visualization for all the methods for an example individual in the Age-DB-IT2M-
large dataset.

effectively introduces a small weighted noise term (1−α)(y′−y) into y. In our preliminary
experiments, this additional noise degraded the performance compared to the original
baseline results.

Based on these observations, direct smoothing of text embeddings appears ineffective and may even
harm performance in some cases.

C.4 OUR DATASET COVERS DIFFERENT LEVELS OF SPARSITY

Our AgeDB-IT2M-small and AgeDB-IT2M-medium datasets are actually very sparse and are meant
for evaluate the sparse data. For example, the AgeDB-IT2M-small only contains images from 2
persons, it is therefore a very sparse data setting, compared to AgeDB-IT2M-large with images across
223 persons. Fig. 8 shows the bar plot version for our datasets, while sparse settings are not our
primary focus, we agree that addressing imbalanced image generation in such setting is an interesting
and valuable direction, and we have included a discussion about this in the limitations section of the
paper.

C.5 DISCUSSION ON FID

It is important to note that the FID score measures only the distance between Gaussian distributions
of ground-truth and generated images, relying solely on mean and variance. As a result, it does not
fully capture the nuances of our task. This is why we include additional evaluation metrics such as
DINO Score, Human Score, and GPT-4o Score, to comprehensively verify our method’s superiority
(as shown in Table 2, Table 3 and Table 4).

Additional Experiments: Limitation of FID. In addition, we have added a figure showcasing a
t-SNE visualization for a minority class as an example, as shown in Fig. 9, to further illustrate the
limitation of FID we mentioned above. As shown in the figure:

• There are two ground-truth IDs (i.e., two ground-truth individuals) in the training set.

• Our PoGDiff can successfully generate images similar to these two ground-truth ID while
maintaining diversity.

• All baselines, including CBDM, fail to generate accurate images according to the ground-
truth IDs. In fact most generated images from the baselines are similar to other IDs, i.e.,
generating the facial images of wrong individuals.

These results show that:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Our PoGDiff significantly outperforms the baselines.
• FID fails to capture such improvements because it depends only on the mean and variance

of the distribution, losing a lot of information during evaluation.

D MORE BASELINES

In this section, we also include one more work related to our baseline CBDM (Qin et al., 2023); they
are both equivalent to direct reweighting/resampling. We did not include (Zhang et al., 2024) as a
baseline because it is not directly applicable to our setting. Specifically, (Zhang et al., 2024) relies
on the class frequency, which is not available in our setting. Therefore, we adapted this method to
our settings by using the density for each text prompt embedding to serve as the class frequency
in (Zhang et al., 2024). Results shown in Fig. 7 show that it performs even worse than CBDM, and it
performs similar to directly fine-tuning a SD model.

E MORE EVALUATION METRIC: RECALL SCORE.

Table 6: Recall for the AgeDB-IT2I Dataset. See the de-
tailed definition of recall in Appendix E.

Size Small Medium Large

Metric Recall Score ↑
Shot All Few All Few All Few

VANILLA 0.017 0.000 0.104 0.167 0.196 0.200
CBDM 0.267 0.000 0.159 0.083 0.138 0.100
T2H 0.017 0.000 0.104 0.167 0.196 0.200
POGDIFF (OURS) 0.800 1.000 0.517 0.642 0.435 0.540

FID Measures Both ID Consistency
and Diversity. We could like to clar-
ify that our Fréchet Inception Distance
(FID) is computed for each ID sepa-
rately, and the final FID score in the ta-
bles (e.g., Table 1) is the average FID
over all IDs. Therefore FID measures
both ID consistency and diversity.

To see why, note that the FID score
measures the distance between two
Gaussian distributions, where the
mean of the Gaussian represents the
identity (ID) and the variance repre-
sents the diversity. For example, the
mean of the ground-truth distribution represents the embedding position of the ground-truth ID,
while the variance of the ground-truth distribution represents the diversity of ground-truth images.
Similarly, the mean of the generated-image distribution represents the embedding position of the
generated-image ID, while the variance of the generated-image distribution represents the diversity
of generated images. A lower FID score indicates that the generated-image distribution more closely
matches the ground truth distribution in terms of both ID and diversity.

Results Related to Diversity. Currently,

• PoGDiff’s Superior FID Performance. as shown in Table 1, we demonstrate that PoGDiff
achieves a lower FID score, particularly in few-shot regions (i.e., minorities). This suggests
that the images generated by our method capture a broader range of variations present in the
training dataset, such as backgrounds or facial angles.

• PoGDiff’s Visualization. As shown in Fig. 6:
– For Einstein (Column 1 for each method), the training dataset includes two face angles

and two hairstyles. Our generated results successfully cover these attributes.
– For JW Marriott (Column 2 for each method), the training dataset has only one face

angle. Correspondingly our results focus on generating subtle variations in facial
expressions with only one angle, as expected.

– For the majority group (Column 3 for each method), our results clearly show that the
generated images cover a wider range of diversity while maintaining ID consistency.

Additional Experiments on Recall (a New Metric). To better evaluate the superiority of our
PoGDiff, we propose a new metric, “recall”.

• Recall in the Context of Image Generation: “Correct Image” and “Covered Image”.
For each generated image, we classify it as a “correct image” if its distance to at least one
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ground-truth (GT) image is below a predefined threshold. For instance, suppose we have two
training-set images for Einstein, denoted as x1 and x2. A generated image xg is a “correct
image” if the cosine similarity between xg and either x1 or x2 is above some threshold (e.g.,
we set to 0.9 here). For example, if the cosine similarity xg and x1 is larger than 0.9, we
say that xg is a “correct image”, and that x1 is a “covered image”. Intuitively, a training-set
image (e.g., x1) is covered if a diffusion model is capable of generating a similar image.

• Formal Definition for Recall. Formally, for each model, we compute the Recall per ID as
follows:

Recall =
1

c

c∑
i=1

number of unique covered images for ID i
number of images for ID i in the training set

(17)

where c is the number of IDs in a training set.
• Cosine Similarity between Images. Note that in practice, we compute the cosine similarity

between DINO embeddings of images rather than raw pixels.
• Analysis. This metric evaluates the generational diversity of a model. For example, if the

training dataset contains two distinct images of Einstein, x1 and x2, and a model generates
only images resembling x1, the recall in this case would be 0.5. While the model may
achieve high accuracy in terms of facial identity ( Table 3 and Table 4), it falls short in
diversity because it fails to generate images resembling x2. In contrast, if a model generates
images that cover both x1 and x2 the recall for this ID will be 1; for instance, if the model
generates 10 images for Einstein, where 6 of them resemble x1 and 4 of them resemble x2,
the recall would be 1, indicating high diversity and coverage.

Additional Results in Terms of Recall. Table 6 shows the recall for different methods on three
datasets, AgeDB-IT2I-small, AgeDB-IT2I-medium, and AgeDB-IT2I-large. These results show that
our PoGDiff achieves much higher recall compared to all baselines, demonstrating its impressive
diversity.

Additional Details for AgeDB-IT2I-small in Table 6. For AgeDB-IT2I-small, there are two IDs,
one “majority” ID with 30 images and one minority ID with 2 images.

• For VANILLA and T2H, the recall for the majority ID and the minority ID is 1/30 and 0/2,
respectively. Therefore, the average recall score is 0.5 ∗ 1/30 + 0.5 ∗ 0/2 ≈ 0.0167.

• For CBDM, the recall for the majority ID and the minority ID is 16/30 and 0/2, respectively.
Therefore, the average recall score is 0.5 ∗ 16/30 + 0.5 ∗ 0/2 ≈ 0.2667.

• For PoGDiff (Ours), the recall for the majority ID and the minority ID is 18/30 and 2/2,
respectively. Therefore, the average recall score is 0.5 ∗ 18/30 + 0.5 ∗ 2/2 = 0.8.

F MORE DATASETS

We have included an additional dataset, VGGFace, for evaluation. Specifically, we constructed a
subset from VGGFace2 (Cao et al., 2018), named VGGFace-IT2I-small. This is a sparse dataset
consisting of two individuals: the majority group contains 30 images, while the minority group
contains only 2 images.

The results shown in Table 7, Table 8, Table 9, Table 10 and Table 11, below demonstrate that our
PoGDiff consistently outperform all baselines, highlighting its robustness and superior performance
even on imbalanced and sparse datasets.
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Table 7: Performance based on FID score.
Datasets AgeDB-IT2I DigiFace-IT2I VGGFace-IT2I

Size Small Medium Large Large Small

Metric FID ↓
Shot All Few All Few All Few All Few All Few

VANILLA 14.88 13.72 12.87 12.56 7.67 11.67 7.18 12.23 14.18 12.73
CBDM 14.72 14.13 11.63 11.59 7.18 11.12 6.96 12.72 13.85 13.21
T2H 14.85 13.66 12.79 12.52 7.61 11.64 7.14 12.22 14.16 12.74
POGDIFF (OURS) 14.15 12.88 10.89 10.64 6.03 10.16 6.84 11.21 13.68 11.11

Table 8: Performance based on DINO score.
Datasets AgeDB-IT2I DigiFace-IT2I VGGFace-IT2I

Size Small Medium Large Large Small

Metric DINO (cosine similarity) scores ↑
Shot All Few All Few All Few All Few All Few

VANILLA 0.42 0.37 0.39 0.28 0.34 0.25 0.42 0.36 0.49 0.36
CBDM 0.54 0.09 0.38 0.11 0.41 0.26 0.34 0.16 0.52 0.06
T2H 0.43 0.39 0.42 0.29 0.37 0.26 0.44 0.36 0.48 0.37
POGDIFF (OURS) 0.77 0.73 0.69 0.56 0.66 0.52 0.64 0.49 0.84 0.79

Table 9: Performance on AgeDB-IT2I based on
human evaluation. The evaluation is a binary de-
cision: the image is either judged as representing
the same individual (score 1.0) or not (score 0.0).
Datasets AgeDB-IT2I VGGFace-IT2I

Size Small Medium Large Small

Metric Human Score ↑
Shot All Few All Few All Few All Few

VANILLA 0.50 0.00 0.66 0.32 0.60 0.20 0.50 0.00
CBDM 0.50 0.00 0.44 0.08 0.56 0.12 0.50 0.00
T2H 0.50 0.00 0.66 0.32 0.60 0.20 0.50 0.00
POGDIFF (OURS) 1.00 1.00 0.96 0.92 0.84 0.68 1.00 1.00

Table 10: Performance on AgeDB-IT2I based
on GPT-4o evaluation. The scores are from 0 to
10, with higher scores indicating the individual
resembles the well-known person.
Datasets AgeDB-IT2I VGGFace-IT2I

Size Small Medium Large Small

Metric GPT-4o Evaluation ↑
Shot All Few All Few All Few All Few

VANILLA 5.20 3.20 4.30 2.90 4.90 3.60 6.00 3.60
CBDM 4.50 1.10 1.30 1.00 3.10 1.70 4.67 1.33
T2H 5.50 3.10 4.60 3.00 4.70 3.90 6.05 3.80
POGDIFF (OURS) 9.10 8.40 8.80 8.20 8.50 8.00 7.90 9.60

Table 11: Recall for the AgeDB-IT2I Dataset. See the detailed definition of recall in Appendix E.

Datasets AgeDB-IT2I VGGFace-IT2I

Size Small Medium Large Small

Metric Recall Score ↑
Shot All Few All Few All Few All Few

VANILLA 0.017 0.000 0.104 0.167 0.196 0.200 0.033 0.000
CBDM 0.267 0.000 0.159 0.083 0.138 0.100 0.233 0.000
T2H 0.017 0.000 0.104 0.167 0.196 0.200 0.033 0.000
POGDIFF (OURS) 0.800 1.000 0.517 0.642 0.435 0.540 0.767 1.000
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