
FedAvg Speedup DGA(Ours) Speedup

LEAF-CelebA 81.3 1x 86.8 1.6x

LEAF-Reddit 10.4 1x 12.2 1.7x

LEAF-FEMNIST 70.3 1x 79.9 1.8x

LEAF-Shakespeare 29.3 1x 34.1 1.6x
Table 3: Comparison of FedAvg and DGA on LEAF [4] datasets.

A Supplementary material

A.1 Comparison of Delayed Average and Federated Average

Conventionally, FedAvg may increase the number of local updates to alleviate the effect brought by
high latency communication. Though effective as it is, it would lead to obvious performance drop on
non-i.i.d partitions because of the reduced communication frequency. On the contrary, DGA only
delays the averaging timing and does not decrease the communication frequency (Figure. 2).
Specifically, we sweep both K in FedAvg and D in DGA from 5 to 20. While two algorithms show
similar performance on i.i.d scenario (Figure. 6a), DGA’s outperforms FedAvg’s on non-i.i.d partition
(Figure. 6b): The solid lines (DGA) consistently yield better accuracy than the dashed line (FedAvg).

(a) The validation accuracy on the i.i.d partitions. (b) The validation accuracy on the non-i.i.d parti-
tions.

Figure 6: The training curve of CIFAR-10 datasets with different hyper-parameters.
Furthermore, unlike FedAvg amortizes the latency to multiple iterations, DGA pipelines the commu-
nication and computation and the latency can be fully covered by local calculations (Figure. 2b). By
scanning different values of D and K, we find that setting a larger delay steps is more effective than
increasing the number of local steps against high latency network (Figure. 4a). Similar trend can be
also observed on the LEAF [4] datasets.

A.2 Convergence analysis of DGA

We introduce the following notation, for any round t and iteration k,
Lemma A.1. Let us denote wt,k = 1

N

PN
i=1 w

i
t,k, as the average parameters across all clients at

t-th round k-th iteration. Then we always have

wt,k+1 = wt,k � ⌘

N

NX

i=1

g
i
t,k.

Proof. This is clearly true when k 6= D (mod K). When the delayed averaging is performed, the
statement holds by noticing as mt�1�s =

1
N

PN
i=1 m

i
t�1�s

Lemma A.2 (Bounded Variation). The difference between the i-th client and the average parameter

is uniformly bounded:

E
⇥
kwi

t,k � wt,kk2
⇤
 4⌘2(K +D)2G2 8t, k, i.
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Proof. If k � r, then the gradients up to t� 1� s round are aligned

w
i
t,k = wt�1�s � ⌘m

i
t�s| {z }

t�s round

� · · ·� ⌘m
i
t�1| {z }

t�1 round

� ⌘

kX

j=1

g
i
t,j

| {z }
t round

As each round consists of K local updates, the number of local gradients not aligned is sK + k =
sK + r + (k � r) = D + (k � r)  D +K. A similar reasoning provides the same bound when
k < r. This means the parameter wi

t,k and w
j
t,k differs by at maximum 2(K +D) local gradients

throughout the entire process. Hence

E
h
kwi

t,k � w
j
t,kk

2
i
 4⌘2(K +D)2G2

,

and finally the desired bound follows by Jensen’s inequality.

Theorem A.3. Under Assumption 1 and 2. The sequence generated by DGA in Algorithm 1 with

stepsize ⌘  1
L satisfies

1

TK

TX

t=1

KX

k=1

E[krf(wt,k)k2] 
2

⌘TK
(E[f(w1)]� f

⇤) + 4⌘2L2
G

2(K +D)2 +
L

N
⌘�

2

Proof of Theorem 2.3. By the L-smoothness of f , we have

E[f(wt,k+1)]  E[f(wt,k) + hrf(wt,k+1), wt,k+1 � wt,ki+
L

2
kwt,k+1 � wt,kk2].

From Lemma A.1, we have

E[kwt,k+1 � wt,kk2] = ⌘
2E[k 1

N

NX

i=1

g
i
t,kk2]

= ⌘
2E[k 1

N

NX

i=1

�
g
i
t,k �rfi(w

i
t,k)
�
k2] + ⌘

2E[k 1

N

NX

i=1

rfi(w
i
t,k)k2]

=
⌘
2

N2

NX

i=1

E[kgit,k �rfi(w
i
t,k)k2] + ⌘

2E[k 1

N

NX

i=1

rfi(w
i
t,k)k2]

 ⌘
2
�
2

N
+ ⌘

2E[k 1

N

NX

i=1

rfi(w
i
t,k)k2].

Moreover,

E[hrf(wt,k), wt,k+1 � wt,k]

= � ⌘E[hrf(wt,k),
1

N

NX

i=1

g
i
t,k]

= � ⌘E[hrf(wt,k),
1

N

NX

i=1

rfi(w
i
t,k)]

=
⌘

2
E[krf(wt,k)�

1

N

NX

i=1

rfi(w
i
t,k)k2]�

⌘

2
E[krf(wt,k)k2]�

⌘

2
E[k 1

N

NX

i=1

rfi(w
i
t,k)k2]
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The first term can be upper bounded using Lemma A.2 with the L-smoothness condition:

E[krf(wt,k)�
1

N

NX

i=1

rfi(w
i
t,k)k2] =E[k 1

N

NX

i=1

(rfi(wt,k)�rfi(w
i
t,k)k2]

(Jensen’s inequality)  1

N

NX

i=1

E[k(rfi(wt,k)�rfi(w
i
t,k)k2]

(L-smoothness)  L
2

N

NX

i=1

kwt,k � w
i
t,kk2

(Lemma A.2)  4⌘2L2
G

2(K +D)2.

Now, combining the above inequalities together with ⌘  1
L yields

E[f(wt,k+1)]� E[f(wt,k)]

 L⌘
2 � ⌘

2
E[k 1

N

NX

i=1

rfi(w
i
t,k)k2]�

⌘

2
E[krf(wt,k)k2] + 2⌘3L2

G
2(K +D)2 +

L

2N
⌘
2
�
2

 � ⌘

2
E[krf(wt,k)k2] + 2⌘3L2

G
2(K +D)2 +

L

2N
⌘
2
�
2
.

Rearrange the terms yields

E[krf(wt,k)k2] 
2

⌘
(E[f(wt,k)]� E[f(wt,k+1)]) + 4⌘2L2

G
2(K +D)2 +

L

N
⌘�

2

Telescoping from t = 1, ..., T and k = 1, ..,K yields

1

TK

TX

t=1

KX

k=1

E[krf(wt,k)k2] 
2

⌘TK
(E[f(w1)]� f

⇤) + 4⌘2L2
G

2(K +D)2 +
L

N
⌘�

2

Corollary A.3.1. When the function f is lower bounded with f(w1) � f
⇤  � and the number

rounds T is large enough such that T � N/(K +D), then set the stepsize ⌘ =
p
N

L
p

T (K+D)
yields

1

TK

TX

t=1

KX

k=1

E[krf(wt,k)k2 = O

 
2L�+ �

2

p
NTK

·
r
1 +

D

K
+

N(K +D)

T

!
.
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