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Appendix / Supplemental material

A Detailed structure of SwinIR

SwinlR comprises three core modules: shallow feature extraction, deep feature extraction, and
high-quality (HQ) image reconstruction.

Shallow and deep feature extraction. Given a low-quality (LQ) input I; € R¥*WxCin (where
H, W, and C;, represent the image height, width, and input channel number, respectively), a 3 x 3
convolutional layer Hgx(-) is employed to extract shallow features Fy € R¥ XWX a5 follows:

Fy = Hge(I1p), )

where C' denotes the number of feature channels. Subsequently, deep features Fpp € REXWXC are
extracted from Fj as:

Fpr = Hpr(Fo), 2
where Hpp(+) represents the deep feature extraction module, comprising K residual Swin Transformer
blocks (RSTB) and a 3 x 3 convolutional layer. Specifically, intermediate features I, Iy, ..., Fx

and the output deep feature Fjp are sequentially extracted as follows:

Fi:HRSTB,i(Fi—l)a i:1727...7K,

3)

Fpr = Heonv(Fk),
where Hpggrp, () denotes the i-th RSTB, and Hcopy is the concluding convolutional layer. Incor-
porating a convolutional layer at the end of feature extraction introduces the inductive bias of the
convolution operation into the Transformer-based network, laying a robust foundation for subsequent
aggregation of shallow and deep features.

Image reconstruction. In the context of image super-resolution (SR), the high-quality image Irqo
is reconstructed by combining shallow and deep features as follows:

Irno = Hrec(Fo + Fpr), 4

where Hggc(+) is the reconstruction module’s function. The reconstruction module is implemented
using a sub-pixel convolution layer to upsample the feature.Additionally, residual learning is utilized
to reconstruct the residual between the LQ and HQ images instead of the HQ image itself, formulated
as:

Irro = Hswinir(Iro) + 10, )

where Hg,inr(+) represents the SwinIR function.
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A.1 Residual Swin Transformer block

The residual Swin Transformer block (RSTB) is a residual block incorporating Swin Transformer
layers (STL) and convolutional layers. Given the input feature F; ( of the i-th RSTB, intermediate
features F; 1, F; 2, . .., F; 1, are first extracted by L Swin Transformer layers as follows:

Fij=Hsr, ,(Fij—1), j=12,...,L, (6)

where Hgry, ;(+) is the j-th Swin Transformer layer in the i-th RSTB. A convolutional layer is added
before the residual connection, and the output of RSTB is formulated as:

F; out = Heownv, (Fi 1) + Fi 0, @)

where Hcopny, (+) is the convolutional layer in the i-th RSTB.

Swin Transformer layer. Given an input of size H x W x C, the Swin Transformer first reshapes

the input into a 5\1/}}5 x M? x C feature by partitioning the input into non-overlapping M x M local

windows, where f;’}! is the total number of windows. It then computes the standard self-attention

RMQ xC

for each window (i.e., local attention). For a local window feature X €
value matrices @), K, and V' are computed as follows:

Q=XPy, K=XPg, V=XPy, ®)

, the query, key, and

where Pg, Pk, and Py are projection matrices shared across different windows. Typically, Q, K,V €

RM**d_ The attention matrix is then computed via the self-attention mechanism within a local
window as follows:

Attention(Q, K, V) = SoftMax(QK ™ /vd + B)V, )

where B is the learnable relative positional encoding. In practice, the attention function is performed
h times in parallel, and the results are concatenated for multi-head self-attention (MSA).

Next, a multi-layer perceptron (MLP) with two fully-connected layers and GELU non-linearity
between them is used for further feature transformations. The LayerNorm (LN) layer is added before
both MSA and MLP, with residual connections employed for both modules. The entire process is

formulated as:
X = MSA(LN(X)) + X, 10
X = MLP(LN(X)) + X. (10)

However, when the partition is fixed across different layers, there are no connections between local
windows. Thus, regular and shifted window partitioning are used alternately to enable cross-window

. . . . o . . . . . M Aj .
connections ?, with shifted window partitioning involving shifting the feature by (|5 |, | 5-]) pixels
before partitioning.

A.2  Our settings

We use the SwinIR light version provided by the original authors. The light version has only 4 RSTBs
in the body part while for each RSTB, there are only 6 STLs. For each STL’s MSA, the number of
heads is 6, the embedding dimension is 60, the window size is 8, and the MLP ratio is 2.

B Detailed distribution of weights and activations

In code implementation, the RSTB is called layers while the STL is called blocks. We visualize all
layers’ distribution of the pre-trained SwinlR light model’s weights in Figure 1. Bias is ignored as it
is not quantized. Also, we visualize the distribution of activations from 32 image patches with a size
of 3x64x64 in Figure 2, Figure 3, Figure 4, and Figure 5.

We can safely ignore the detailed value of each axis but just care about the shape of distributions.
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C The derivation of the backward gradient propagation formula

In this section, we provide the derivation of our backpropagation formula.We follow the STE ? style
to process the round term, which is

ORound (x) 1

o an

As for the clip function, we take a similar approach, which is

6C1ip(:z:,l,u)_ 1 ifi<z<u
or 0 ifr<lorz>u

OClip(x,l,u) (1 ifz<l
a {0 ifz>1 12)

OClip(z,l,u) (1 ifz>u
ou 0 ifz<u

With Egs. (??), (11), and (12), we first derive %
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u—1

% can be derived roughly the same, which can be written as
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D More visual examples

We provide more visual illustrations to demonstrate the superiority of our method, as shown in
Figure 6. In img_016, our method does not distort straight lines. In img_040, our method does
not introduce noise to the camera and does not alter the shape at the camera lens. In img_072, we
once again outperform the full-precision model by not adding vertical stripes to the curtains. In
img_096, we ensure the shape of each window to the greatest extent. These images prove that we can
surpass the current SOTA methods in visual effects and avoid misleading results in some tricky cases,
generating correct results.
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Figure 6: Visual comparison for image SR (x4) in some challenging cases.




