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A APPENDIX

In this supplementary material, we provide the details of the example derivative computations from
Section 2.2, give a justification of the NCPD expansion formula exploited in Section 2.1, and provide
further experimental results that we were not able to include in Section 3.

EXAMPLE DERIVATIONS

Here, we justify the derivations provided in the example in Section 2.2. We note that Anaissi et al.
(2020); Kolda & Hong (2019) provide similar derivations for the CP tensor decomposition, but their
decompositions do not attempt to further decompose the CP factor matrices, and thus, their results
are not sufficient for providing derivatives with respect to the A and S matrices. Consider the full
reconstruction loss function for the order-k tensor X,

C = kX � [[X1,X2, . . . ,Xk]]k2F ,

where for some fixed 1  i  k, Xi = ABC and consider the gradient
@C

@B
. Let

Hi = Xk � . . .�Xi+1 �Xi�1 � . . .�X1.

Now, we let eX = [[X1,X2, . . . ,Xk]]. Then, if fX(i) is the mode-i matricization of eX (see e.g., (Kolda
& Bader, 2009)), we have

fX(i) = Xi(Xk � . . .�Xi+1 �Xi�1 � . . .�X1)
>] = XiH

>
i .

Thus, if we let X(i) be the mode-i matricization of X, we have that

C = kX(i) � fX(i)k2F = kX(i) � (ABC)(Xk � . . .�Xi+1 �Xi�1 � . . .�X1)
>k2F .

Now, we compute the desired gradient through a series of applications of the chain rule. We then see
that
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Now, using the calculations above we can proceed in calculating
@C

@A
(`j)
i

. Gao et al. (2019) show that

if
✓
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i

◆S

denotes derivative of C with respect to A
(`j)
i , holding the S matrices constant, then

we have
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i
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i and S
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i , is defined column-wise (j), and de-

pends upon
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(`2)
i holding S
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are sufficient to calculate @C
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. We calculate the

gradient
✓
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where

C = kX � [[fX1,fX2, . . . ,fXk]]k2F
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and fXi = A
(0)
i A

(1)
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i S
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i . Since we can assume that A(`1)

i is independent of all other
A’s and S’s, we have that
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Now, we calculate
✓
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i

◆*

. Since we can assume that S(`j)
i is independent of all other A’s and

S’s, we have that
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Thus, we have the required derivatives to evaluate @C

@A
(`j)

i

.

HNCPD EXPANSION

We now provide brief justification of the expansion of the NCPD in terms of later factorizations used
in Section 2.1; that is,

[[fX1,fX2, · · · ,fXk]] =
X

1j1,j2,...jkr(0)

↵j1,j2,...jk

⇣
(A(0)

1 ):,j1 ⌦ (A(0)
2 ):,j2 ⌦ . . .⌦ (A(0)

k ):,jk

⌘

where ↵j1,j2,...jk =
Pr

p=1(S
(0)
1 )j1,p(S
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(0)
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We have that by definition,

[[fX1,fX2, · · · ,fXk]] =
rX

p=1

⇣
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.

We also have that fXi = A
(0)
i S

(0)
i for 1  i  k, so we have that for each column p, 1  p  r of

fXi,
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Thus, by the linearity of the outer product we have that
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k )jk,p. Now, by noting that

↵j1,j2,...,jk =
rX

p=1

↵p,j1,j2,...,jk

we arrive at the original statement.

SYNTHETIC EXPERIMENT

In this section, we provide the additional views of the synthetic tensor and computed approximations
from Section 3.1. In Figure 2 in the main text, for visualization we displayed the projection of each
tensor onto the third mode. In Figure 9, we display the projections of these tensors onto all three
modes. We see that due to the simple block structure used to produce the synthetic data tensor, the
three modes all tell a similar story; that is, Neural NCPD is able to recover meaningful structure along
all three modes.
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Figure 9: Here we display the projections onto all three modes for the original data tensor X and
approximations of X at ranks r = 7, r(0) = 5, and r(1) = 3 produced by Neural NCPD, Standard
HNCPD, and HNTF at two levels of noise.

14



Under review as a conference paper at ICLR 2021

TEMPORAL DOCUMENT ANALYSIS EXPERIMENT

HNTF-1

HNTF-2

HNTF-3

Figure 10: Here we display a three-layer HNTF on the Twitter dataset from Section 3.2 at ranks
r = 8, r(0) = 4, and r(1) = 2, run separately for each of the possible ordering on the data tensor. We
display the top keywords and heatmaps of topics in the candidate and temporal modes at ranks 4 (left)
and 2 (right). We note that the rank 8 factorization is identical to that of Neural NCPD, so we do not
re-display it here (see Section 3.2).

In Figure 10, we display the results from running HNTF on the Twitter dataset in Section 3.2,
excluding the topics at rank 8 because they are identical to those learned by Neural NCPD (see
Section 3.2). We see that while the factorization for the first possible ordering is similar to that
of Neural NCPD and contains significant meaningful topic modeling information, the other two
orderings lose significant information by the last layer and, and have topic presence and from only 2
or 3 of the eight candidates.
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VIDEO DATA EXPERIMENT

Figure 11: Here we display the first 36 of 37 frames of the time lapse video dataset from Section 3.3
(The 37th frames is included in Figure 6

In Figure 11, we display the first 36 of 37 frames of the time lapse video dataset from Section 3.3
(the 37th frame is included in Figure 6) in order to make it clear how seasons progress throughout
the frames. We see that the video begins in the white winter months, transitions to spring at around
frame 16, and stays green until it transitions to fall around frame 28.

In Figure 12, we display the S
(0)
3 matrix (top) and S

(1)
3 matrix (bottom) produced by Neural NCPD

on the time-lapse video tensor described in Section 3.3. By examining the S matrices from our
Neural NCPD algorithm, we are also able to see the hierarchical relationship between the topics
from different ranks. In the S

(0)
3 matrix, we see the hierarchical relationship between the rank 6 and

rank 8 topics. In the S
(1)
3 matrix, we see the hierarchical relationship between the rank 3 and rank 8

topics. We note that the S
(0)
3 matrix (top) illustrates that topic one of rank 6 NCPD is closely related

to topic eight of rank 8 NCPD, and S
(1)
3 (bottom) similarly illustrates that topic two of rank 3 NCPD

is closely related to topic eight in rank 8 NCPD; these relationships are unsurprising because, as seen
in Figure 7 in the main text, these topics are present temporally during winter and fall and spatially in
the sky behind the trees.
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Figure 12: The S
(0)
3 matrix (top) and S

(1)
3 matrix (bottom) produced by Neural NCPD on the

time-lapse video tensor described in Section 3.3.
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