
Physically Embodied Gaussian Splatting: A Realtime
Correctable World Model for Robotics

Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A Experimental Setup1

Evaluation Training

Supplementary Figure 1: The tabletop setup used
in the real experiments showing the robot, some of
the objects used in the scenarios, and the position
of the 5 cameras used.

The real-world experiments are conducted us-2

ing the tabletop setup shown in Suppl. Fig-3

ure 1. The setup employs a Franka Emika robot4

equipped with two end-effectors: a standard5

gripper for pick-up scenarios and a pusher for6

other scenarios. The tabletop and robot are ob-7

served by five cameras: three Intel RealSense8

D455 cameras and two D435 cameras. These9

cameras are jointly calibrated using a hand-10

eye calibration technique. During operation, all11

five cameras are utilized for system initializa-12

tion. However, only the three D455 cameras are13

employed during the prediction and correction14

stages. In all scenarios, the robot is teleoper-15

ated to manipulate objects on the tabletop. The16

datasets are captured by recording the image17

stream from the cameras and encoding them as18

HEVC videos. These videos are scaled to a19

resolution of 640x360 and decoded in real-time20

during evaluation to mimic live operation. Ad-21

ditionally, the robot’s joint positions are times-22

tamped and saved during the recording process23

and replayed during the evaluation.24

B Implementation25

The system follows a two-step process: initialization and prediction/correction. During initializa-26

tion, particles and Gaussians are generated for each detected object in the scene. Subsequently, the27

system enters the prediction and correction stage, where the particles are simulated using a Position-28

Based Dynamics (PBD) physics system, while corrective forces are calculated based on the Gaus-29

sians attached to the particles. This section elaborates on the implementation and parameterization30

details of each phase.31

Static Scene Initialization The tabletop is modeled using the five RGBD cameras in the scene,32

employing the standard Gaussian Splatting technique. However, to avoid interference with object33

placed on the table, the Gaussians are initialized as thin disks. Additionally, the table’s pointcloud34

is utilized to calculate the ground plane. The Gaussians are trained using the Adam optimizer for35

500 steps, with a position learning rate of 1e−4, color learning rate of 2.5e−3, scaling learning rate36

of 1e−3, opacity learning rate of 1e−2, and rotation learning rate of 1e−3. The scale is clamped37

between 1 mm and 1 cm.38

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

Algorithm 1 Dual Gaussian-Particle Initialization
1: Fill BBox with Spherical Gaussians
2: Prune Gaussians Not In Instance Masks
3: for n iterations do
4: for all images and masks I do . Adam step
5: L← Lrgb + Lseg
6: L.backward()
7: g, a, c = optimizer.step()
8: for k iterations do . Jacobi step
9: g = solveCollisionConstraints(g)

10: g = solveGroundConstraints(g)
11: p = g . Create particles at Gaussian locations
12: Initialize particle mass and velocities
13: Create particle shape constraints
14: for m iterations do
15: for all images and masks I do
16: Lrgb.backward()
17: g, a, c, s = optimizer.step()
18: g, a, c, s = densify(g, a, c, a)
19: for each Gaussian i do
20: gi.parent = findClosestParticle(p)

Algorithm 2 PBD Physics Step
1: for all particles i do . Integrate particles
2: p0, q0 ← pi, qi

3: pi ← pi + ∆tvi + ∆t2

mi
(f i + gravity)

4: θ ← |wi|∆t
2

5: qi ← [ωi

|ωi| sin θ, cos θ]qi

6: for k solver iterations do . Resolve constraints
7: for all particles i do
8: pi ← groundConstraints(i)
9: for all collision pairs i, j do

10: pi ← collisionConstraints(i, j)
11: for all shapes s do
12: for particles i in s do
13: pi, qi ← shapeMatching(i, s)

14: for all particles i do . Update velocities
15: vi ← (pi − p0)/∆t
16: ωi ← axis(qiq

−1
0).angle(qiq

−1
0)/∆t

Algorithm 3 Visual Forces
1: gprev ← g . Save positions
2: o = AdamOptimizer()
3: for n iterations do
4: Choose random image I
5: Lrgb(I).backward()
6: g[not objects].grad = 0
7: g, c, o,R← o.step()
8: for every Gaussian i do
9: k = gi.parent

10: if k is not None then
11: fk ← fk +Kp(gi − gprev

i)

12: g ← gprev . Reset positions

Robot Initialization The robot’s particles39

are manually fitted to the links using Blender.40

The link each particle belongs to is stored so41

that forward kinematics can be used to ap-42

propriately change its position. Furthermore,43

the robot is rendered in Blender from multi-44

ple viewpoints, and Gaussians are trained to45

reconstruct these renders. These Gaussians46

are then bonded to the closest particle on the47

robot. The combination of particles, Gaus-48

sians, and bonds is inserted at the start of ev-49

ery scenario. The same parameters used for50

training the static scene are also applied to the51

robot.52

Object Initialization For each object, the53

3D bounding box is calculated from its point-54

cloud, which is extracted from the depth and55

instance masks. The initialization process is56

described in Algorithm 1. We use n = 8057

and m = 250. All particles are initialized58

to a mass of 0.1 kg with the exception of59

the real and simulated rope which are set to60

0.2 kg and 0.3 kg. The higher the mass of61

the particle, the less the influence of the vi-62

sual force. The mass acts as both a physical63

and a visual inertia. These concepts can be64

separated in future work if fine-grained tun-65

ing is needed. For scenarios involving rope,66

the corrective forces are less reliable than that67

of larger bodies because they occupy less pix-68

els in the image and the physical priors are69

less constraining because of the deformabil-70

ity. We compensate for the increased noise in71

the corrective forces by increasing the visual72

inertia. Note that Algorithm 1 is repeated for73

each object. Future work may choose to build74

all the objects simultaneously rather than se-75

quentially to reduce the overall duration of76

the initialization. In the current implemen-77

tation, object modeling takes approximately78

20 to 40 seconds, which we found acceptable79

given that it is only done once per scenario.80

Prediction Step The Position-Based Dy-81

namics (PBD) physics system is used to pre-82

dict the locations of the particles and the83

Gaussians at each timestep. It runs at a fixed84

frequency of 30 Hz (33.33 ms per step). The85

physics step is described in Algorithm 2. We86

use 20 substeps. At each substep, the veloc-87

ities and forces are integrated, and then the88

constraints are solved using a Jacobi solver.89

Four Jacobi iterations are employed to suf-90

ficiently solve the physical constraints. Af-91

ter every physics step, the particle velocities92

are multiplied by 0.9 (an empirically chosen93

value). This damping contributes to system94

stability.95

2

33.33ms

Physics
(5ms)

Visual Forces (22ms)Other
(IO, GUI, ...) Adam 1 Adam 2 Adam 3 Adam 4 Adam 5

Physics
(5ms)

VisuOther
(IO, GUI, ...) Adam 1 Adam

ms)
dam 4 Adam 5

Supplementary Figure 2: The various functions called during the prediction and the correction step
profiled. In the ‘Other’ phase, the GUI is drawn and new sensor observations are read. The physics
step takes 5 ms and is followed by approximately 22 ms of Adam optimizations that are used to
compute the visual forces.

0 1 2 3 4 5 6 7 8

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
ra

ck
in

g
E

rr
or

 (
cm

)

Effect of Physical Priors on 3D Tracking Error

Physical Priors
All
No Collisions
No Ground
No Gravity
No Robot

Collision 1 Collision 2 Collision 3

Supplementary Figure 3: An ablation showing the effect of different physical priors on the 3D
tracking error of 12 points located on two objects on a tabletop. The scene used for this ablation is
“Multiple1” from the simulated dataset. Using all physical priors produces on average the lowest
tracking error over time.

Correction Step Visual forces are computed in the correction step using Algorithm 1. Gaussian96

displacements are calculated using 5 iterations of the Adam optimizer. The scales of the Gaussians97

are fixed, while the positions, rotations, opacities, and colors are allowed to change. Adam’s internal98

parameters are reset at every new physics step. Gaussian displacements below 2 mm are ignored99

to increase stability. The position learning rate is set to 1e−3, while the rotation, color, and opacity100

learning rates are set to 1e−4, 5e−4, and 5e−4, respectively. Allowing colors, opacities, and rotations101

to change gives the system more ways to explain lighting variations that should not be explained by102

the motion of the Gaussians. A Kp of 60 is used in all scenarios.103

The prediction and correction steps are profiled in Suppl. Figure 2.104

C Ablations105

Physical Priors We evaluate the effectiveness of our system’s embedded physical priors by sim-106

ulating a scene with two objects, as illustrated in Suppl. Figure 3. The scenarios highlight how our107

system’s performance is enhanced by incorporating various physical constraints: (i) With all phys-108

ical priors enabled, our system accurately captures the objects’ dynamics, including collisions and109

interactions with the environment. (ii) When collisions between particles are ignored, the objects’110

states deviate from the ground truth, particularly during intense collision events (Collisions 2 and 3).111

(iii) Disabling the ground plane and gravity causes the objects’ motions to oscillate continuously,112

as their movements are no longer properly regulated. (iv) Even with the ground plane intact, dis-113

abling gravity leads to similar oscillatory behavior, as the objects are not subjected to the expected114

downward force.115

By adding physical priors, our system achieves better predictions that more closely match the116

groundtruth.117

3

Suppl. Figure 4 ablates (i) the number of cameras used to compute visual forces, (ii) the resolution of118

the images used for the reconstruction loss, (iii) the effect of visual gain, (iv) the Gaussian position119

learning rate, and (v) the number of Adam iterations.120

Cameras The ablations reveal that increasing the number of cameras yields diminishing returns121

within our framework. We observe that higher resolutions lead to lower tracking error. There is,122

however, only a slight difference between 1280x720, 640x360, 320x180. 1280x720 comes at a123

significant computational cost with visual force computation taking approximately 40 ms compared124

to the 20 ms for the lower resolutions. Below 640x360, the factor limiting performance is no longer125

resolution and thus there is no performance gain. For these reasons, we choose the 640x360 as the126

image size with which we calculate the visual forces.

0

1

2

Effect of Number of Cameras on 3D Tracking Error

Number of Cameras
1 2 3 4 5

0

2

4
Effect of Image Resolution on 3D Tracking Error

Camera RGB Resolution
1280x720 640x360 320x180 160x90

0

1

2

3

T
ra

ck
in

g
E

rr
or

 (
cm

)

Effect of Visual Gain (Kp) on 3D Tracking Error

Visual Gain (Kp)
30 60 90 120

0

2

4

6
Effect of Increasing Gaussian Position Learning Rate on 3D Tracking Error

0 5 10 15 20 25 30

Time (s)

0.5

1.0

1.5

Effect of Increasing Number of Gaussian Optimization Steps on 3D Tracking Error

Adam Iterations Per Physics Step
3 5 7 8 11

Gaussian Position Learning Rate
0.5e-3 1.0e-3 2.0e-3 3.0e-3 4.0e-3

Supplementary Figure 4: The effect of varying the parameters of our system on 3D tracking perfor-
mance.

127

4

Visual Forces Our framework uses visual forces to create the corrective actions needed to keep the128

Gaussian-Particle representation synchronized. This results in smooth corrections but it also creates129

dynamic effects that, without careful tuning, creates oscillations. These oscillations are similar to130

the behaviour of an undamped spring system. Future work may look into removing the oscillatory131

effect by possibly adding a derivative term to the visual force calculation. For this work, we tune our132

system and find a balance between an acceptable amount of oscillations and tracking ability. The133

ablations in Suppl. Figure 4 show that a high gain (and/or a high Gaussian position learning rate)134

produces high oscillation and that a low gain (and/or a low learning rate) has a detrimental effect on135

tracking. The number of Adam iterations is chosen so that realtime constraints are met. The ablation136

shows that reducing the number of Adam iterations is a trade off that can be made when the physics137

timestep takes longer than expected without a significant impact on the overall synchronization of138

the world model.139

D Failure Modes140

The Gaussian-Particle representation can deviate from the groundtruth in several ways. If the ren-141

dered state of the scene significantly differs from the groundtruth image, the visual forces will not142

create meaningful corrections.143

Additionally, if the physical modelling is significantly different to its real world counterpart, the144

physical priors will have a detrimental effect on the tracking performance of the system. This can be145

seen in the real scenario title “Pushover 5” in Suppl. Figure 5 where a T-Block could not be pushed146

over and thus escaped the radius of convergence of the visual forces.147

In some instances, both the texture and the geometry of the object are simultaneously ambiguous.148

In the simulated “Rope 1” scenario, the rope can rotate around its spine without impacting either the149

geometry or the texture thus allowing for a slight steady state error to occur.

GT Trajectory Tracked Trajectory

Pushover 5 Rope 1

1. Physical Prediction Failure 2. Visual Symmetries

Supplementary Figure 5: The first image shows a highly dynamic scenario where the physics failed
to push the TBlock into a location where visual forces could correct it. The second image shows a
scenario where both visual and geometrical symmetries allowed the rope to rotate around its central
axis and created a steady state error in tracking.

150

E Experimental Results151

The 3D tracking performance of our system on all scenarios are shown in Suppl. Figure 6.152

5

0 5
0

10

Single 1

0 5
0

20

Single 2

0 5
0

10

Ours Physics Only D3DGS

Single 3

0 5
0

20

Single 4

0 5
0

20

Single 5

0 5
0

20

Multiple 1

0 5
0

10

Multiple 2

0 5
0

10

Multiple 3

0 5
0

10
Multiple 4

0 5
0

10

Multiple 5

0 5
0

20

Pushover 1

0 5
0

10

Pushover 2

0 5
0

10

Pushover 3

0 5
0

20

Pushover 4

0 5
0

10

Pushover 5

0 5
0

5

Pickup 1

0 5
0

5

Pickup 2

0 5
0

5

Pickup 3

0 5
0

5

Pickup 4

0 5
0

5

Pickup 5

0 5
0

2

Rope 1

0 5
0.0

2.5

Rope 2

0 5
0

25

Rope 3

0 5
0

10

Rope 4

0 5
0

10

Rope 5

20 40
0

25

Single 1

10 20 30
0

50

Single 2

20 40
0

50

Single 3

10 20 30
0

50

Single 4

10 20 30
0

50

Single 5

10 20 30
0

20

Multiple 1

20 40
0

25

Multiple 2

10 20 30
0

25

Multiple 3

20 40
0

50

Multiple 4

20 40
0

50
Multiple 5

10 20
0

20

Pushover 1

5 10 15
0

10

Pushover 2

5 10
0

10

Pushover 3

10 20
0

20

Pushover 4

5 10 15
0

20

Pushover 5

2.5 5.0 7.5
0

10

Pickup 1

2.5 5.0 7.5
0

5

Pickup 2

2.5 5.0 7.5
0

5

Pickup 3

2.5 5.0 7.5
0

10

Pickup 4

2.5 5.0 7.5
0

10

Pickup 5

5 10 15
0

10

Rope 1

10 20 30
0

20

Rope 2

10 20 30
0

50

Rope 3

10 20
0

50
Rope 4

10 20 30
0

50

Rope 5

Time (s)

T
ra

ck
in

g
E

rr
or

 (
cm

)

3D Tracking Error on All Simulated and Real-World Scenarios

S
im
u
la
te
d

R
ea
l-
W
or
ld

Supplementary Figure 6: The 3D tracking performance of our system and its baselines on all sce-
narios (simulated and real)

6

	Experimental Setup
	Implementation
	Ablations
	Failure Modes
	Experimental Results

