
No Fear of Heterogeneity: Classifier Calibration for
Federated Learning with Non-IID Data

Mi Luo1, Fei Chen2, Dapeng Hu1, Yifan Zhang1, Jian Liang∗3, Jiashi Feng∗1
1National University of Singapore 2Huawei Noah’s Ark Lab

3Institute of Automation, Chinese Academy of Sciences (CAS)

{romyluo7, liangjian92, jshfeng}@gmail.com
chen.f@huawei.com, {dapeng.hu, yifan.zhang}@u.nus.edu

Abstract

A central challenge in training classification models in the real-world federated
system is learning with non-IID data. To cope with this, most of the existing
works involve enforcing regularization in local optimization or improving the
model aggregation scheme at the server. Other works also share public datasets
or synthesized samples to supplement the training of under-represented classes or
introduce a certain level of personalization. Though effective, they lack a deep
understanding of how the data heterogeneity affects each layer of a deep classi-
fication model. In this paper, we bridge this gap by performing an experimental
analysis of the representations learned by different layers. Our observations are
surprising: (1) there exists a greater bias in the classifier than other layers, and (2)
the classification performance can be significantly improved by post-calibrating
the classifier after federated training. Motivated by the above findings, we propose
a novel and simple algorithm called Classifier Calibration with Virtual Representa-
tions (CCVR), which adjusts the classifier using virtual representations sampled
from an approximated gaussian mixture model. Experimental results demonstrate
that CCVR achieves state-of-the-art performance on popular federated learning
benchmarks including CIFAR-10, CIFAR-100, and CINIC-10. We hope that our
simple yet effective method can shed some light on the future research of federated
learning with non-IID data.

1 Introduction

The rapid advances in deep learning have benefited a lot from large datasets like [1]. However,
in the real world, data may be distributed on numerous mobile devices and the Internet of Things
(IoT), requiring decentralized training of deep networks. Driven by such realistic needs, federated
learning [2, 3, 4] has become an emerging research topic where the model training is pushed to a
large number of edge clients and the raw data never leave local devices.

A notorious trap in federated learning is training with non-IID data. Due to diverse user behaviors,
large heterogeneity may be present in different clients’ local data, which has been found to result in
unstable and slow convergence [5] and cause suboptimal or even detrimental model performance [6, 7].
There have been a plethora of works exploring promising solutions to federated learning on non-IID
data. They can be roughly divided into four categories: 1) client drift mitigation [5, 8, 9, 10], which
modifies the local objectives of the clients, so that the local model is consistent with the global
model to a certain degree; 2) aggregation scheme [11, 12, 13, 14, 15], which improves the model
fusion mechanism at the server; 3) data sharing [6, 16, 17, 18], which introduces public datasets or
synthesized data to help construct a more balanced data distribution on the client or on the server;
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4) personalized federated learning [19, 20, 21, 22], which aims to train personalized models for
individual clients rather than a shared global model.

However, as suggested by [7], existing algorithms are still unable to achieve good performance on
image datasets with deep learning models, and could be no better than vanilla FedAvg [2]. To identify
the reasons behind this, we perform a thorough experimental investigation on each layer of a deep
neural network. Specifically, we measure the Centered Kernel Alignment (CKA) [23] similarity
between the representations from the same layer of different clients’ local models. The observation
is thought-provoking: comparing different layers learned on different clients, the classifier has the
lowest feature2 similarity across different local models.

Motivated by the above discovery, we dig deeper to study the variation of the weight of the classifier
in federated optimization, and confirm that the classifier tends to be biased to certain classes. After
identifying this devil, we conduct several empirical trials to debias the classifier via regularizing
the classifier during training or calibrating classifier weights after training. We surprisingly find
that post-calibration strategy is particularly useful — with only a small fraction of IID data, the
classification accuracy is significantly improved. However, this approach cannot be directly deployed
in practice since it infringes the privacy rule in federated learning.

Based on the above findings and considerations, we propose a novel and privacy-preserving approach
called Classifier Calibration with Virtual Representations (CCVR) which rectifies the decision
boundaries (the classifier) of the deep network after federated training. CCVR generates virtual
representations based on an approximated Gaussian Mixture Model (GMM) in the feature space with
the learned feature extractor. Experimental results show that CCVR achieves significant accuracy
improvements over several popular federated learning algorithms, setting the new state-of-the-art on
common federated learning benchmarks like CIFAR-10, CIFAR-100 and CINIC-10.

To summarize, our contributions are threefold: (1) We present the first systematic study on the hidden
representations of different layers of neural networks (NN) trained with FedAvg on non-IID data
and provide a new perspective of understanding federated learning with heterogeneous data. (2)
Our study reveals an intriguing fact that the primary reason for the performance degradation of NN
trained on non-IID data is the classifier. (3) We propose CCVR (Classifier Calibration with Virtual
Representations) — a simple and universal classifier calibration algorithm for federated learning.
CCVR is built on top of the off-the-shelf feature extractor and requires no transmission of the
representations of the original data, thus raising no additional privacy concern. Our empirical results
show that CCVR brings considerable accuracy gains over vanilla federated learning approaches.

2 Related Work

Federated learning [2, 3, 4] is a fast-growing research field and remains many open problems to solve.
In this work, we focus on addressing the non-IID quagmire [6, 24]. Relevant works have pursued the
following four directions.

Client Drift Mitigation. FedAvg [2] has been the de facto optimization method in the federated
setting. However, when it is applied to the heterogeneous setting, one key issue arises: when the
global model is optimized with different local objectives with local optimums far away from each
other, the average of the resultant client updates (the server update) would move away from the true
global optimum [9]. The cause of this inconsistency is called ‘client drift’. To alleviate it, FedAvg
is compelled to use a small learning rate which may damage convergence, or reduce the number of
local iterations which induces significant communication cost [25]. There have been a number of
works trying to mitigate ‘client drift’ of FedAvg from various perspectives. FedProx [5] proposes to
add a proximal term to the local objective which regularizes the euclidean distance between the local
model and the global model. MOON [8] adopts the contrastive loss to maximize the agreement of the
representation learned by the local model and that by the global model. SCAFFOLD [9] performs
‘client-variance reduction’ and corrects the drift in the local updates by introducing control variates.
FedDyn [10] dynamically changes the local objectives at each communication round to ensure that
the local optimum is asymptotically consistent with the stationary points of the global objective.
FedIR [26] applies importance weight to the local objective, which alleviates the imbalance caused
by non-identical class distributions among clients.

2We use the terms representation and feature interchangeably.
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Figure 1: CKA similarities of three different layers of different ‘client model-client model’ pairs.
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Figure 2: The means of the CKA similarities of different layers in different local models.

Aggregation Scheme. A fruitful avenue of explorations involves improvements at the model
aggregation stage. These works are motivated by three emerging concerns. First, oscillation may
occur when updating the global model using gradients collected from clients with a limited subset of
labels. To alleviate it, [11] proposes FedAvgM which adopts momentum update on the server-side.
Second, element-wise averaging of weights may have drastic negative effects on the performance of
the averaged model. [12] shows that directly averaging local models that are learned from totally
distinct data distributions cannot produce a global model that performs well on the global distribution.
The authors further propose FedDF that leverages unlabeled data or artificial samples generated by
GANs [27] to distill knowledge from the local models. [13] considers the setting where each client
performs variable amounts of local works and proposes FedNova which normalizes the local updates
before averaging. Third, a handful of works [14, 15] believe that the permutation invariance of neural
network parameters may cause neuron mismatching when conducting coordinate-wise averaging of
model weights. So they propose to match the parameters of local models while aggregating.

Data Sharing. The key motivation behind data sharing is that a client cannot acquire samples from
other clients during local training, thus the learned local model under-represents certain patterns or
samples from the absent classes. The common practices are to share a public dataset [6], synthesized
data [16, 17] or a condensed version of the training samples [18] to supplement training on the clients
or on the server. This line of works may violate the privacy rule of federated learning since they all
consider sharing raw input data of the model, either real data or artificial data.

Personalized Federated Learning. Different from the above directions that aim to learn a single
global model, another line of research focuses on learning personalized models. Several works aim
to make the global model customized to suit the need of individual users, either by treating each
client as a task in meta-learning [19, 28, 20, 29] or multi-task learning [30], or by learning both
global parameters for all clients and local private parameters for individual clients [21, 31, 32]. There
are also heuristic approaches that divide clients into different clusters based on their learning tasks
(objectives) and perform aggregation only within the cluster [33, 34, 22, 35].

In this work, we consider training a single global classification model. To the best of our knowledge,
we are the first to decouple the representation and classifier in federated learning — calibrating
classifier after feature learning. Strictly speaking, our proposed CCVR algorithm does not fall into
any aforementioned research direction but can be readily combined with most of the existing federated
learning approaches to achieve better classification performance.

3 Heterogeneity in Federated Learning: The Devil Is in Classifier

3.1 Problem Setup

We aim to collaboratively train an image classification model in a federated learning system which
consists of K clients indexed by [K] and a central server. Client k has a local dataset Dk, and we set
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Figure 3: Label distribution of CIFAR-10 across clients (the first graph) and the classifier weight norm distribution
across clients in different rounds and data partitions (the three graphs on the right).

D =
⋃

k∈[K] Dk as the whole dataset. Suppose there are C classes in D indexed by [C]. Denote by
(x, y) ∈ X × [C] a sample in D, where x is an image in the input space X and y is its corresponding
label. Let Dk

c = {(x, y) ∈ Dk : y = c} be the set of samples with ground-truth label c on client k.
We decompose the classification model into a deep feature extractor and a linear classifier. Given
a sample (x, y), the feature extractor fθ : X → Z , parameterized by θ, maps the input image x
into a feature vector z = fθ(x) ∈ Rd in the feature space Z . Then the classifier gφ : Z → RC ,
parameterized by φ, produces a probability distribution gφ(z) as the prediction for x. Denote by
w = (θ,φ) the parameter of the classification model.

Federated learning proceeds through the communication between clients and the server in a round-
by-round manner. In round t of the process, the server sends the current model parameter w(t−1) to a
set U (t) of selected clients. Then each client k ∈ U (t) locally updates the received parameter w(t−1)

to w
(t)
k with the following objective:

min
w

(t)
k

E(x,y)∼Dk [L(w(t)
k ;w(t−1),x, y)], (1)

where L is the loss function. Note that L is algorithm-dependent and could rely on the current global
model parameter w(t−1) as well. For instance, FedAvg [2] computes w(t)

k by running SGD on Dk

for a number of epochs using the cross-entropy loss, with initialization of the parameter set to w(t−1);
FedProx [5] uses the cross entropy loss with an L2-regularization term to constrain the distance
between w

(t)
k and w(t−1); MOON [8] introduces a contrastive loss term to address the feature drift

issue. In the end of round t, the selected clients send the optimized parameter back to the server and
the server updates the parameter by aggregating heterogeneous parameters as follows,

w(t) =
∑

k∈U(t)

pkw
(t)
k , where pk =

|Dk|∑
k′∈U(t) |Dk′ |

.

3.2 A Closer Look at Classification Model: Classifier Bias

To vividly understand how non-IID data affect the classification model in federated learning, we
perform an experimental study on heterogeneous local models. For the sake of simplicity, we choose
CIFAR-10 with 10 clients which is a standard federated learning benchmark, and a convolutional
neural network with 7 layers used in [8]. As for the non-IID experiments, we partition the data
according to the Dirichlet distribution with the concentration parameter α set as 0.1. More details are
covered in the Appendix. To be specific, for each layer in the model, we leverage the recently proposed
Centered Kernel Alignment (CKA) [23] to measure the similarity of the output features between two
local models, given the same input testing samples. CKA outputs a similarity score between 0 (not
similar at all) and 1 (identical). We train the model with FedAvg for 100 communication rounds and
each client optimizes for 10 local epochs at each round.

We first selectively show the pairwise CKA features similarity of three different layers across local
models in Figure 1. Three compared layers here are the first layer, the middle layer (Layer 4), and the
last layer (the classifier), respectively. Interestingly, we find that features outputted by the deeper
layer show lower CKA similarity. It indicates that, for federated models trained on non-IID data, the
deeper layers have heavier heterogeneity across different clients. By averaging the pairwise CKA
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Table 1: Accuracy@1 (%) on CIFAR-10 with different degrees of heterogeneity.

Method α = 0.5 α = 0.1 α = 0.05

FedAvg 68.62±0.77 58.55±0.98 52.33±0.43
FedAvg + clsnorm 69.65±0.35 (↑ 1.03) 58.94±0.08 (↑ 0.39) 51.74±4.02 (↓ 0.59)
FedAvg + clsprox 68.82±0.75 (↑ 0.20) 59.04±0.70 (↑ 0.49) 52.38±0.78 (↑ 0.05)
FedAvg + clsnorm + clsprox 68.75±0.75 (↑ 0.13) 58.80±0.30 (↑ 0.25) 52.39±0.24 (↑ 0.06)

FedAvg + calibration (whole data) 72.51±0.53 (↑ 3.89) 64.70±0.94 (↑ 6.15) 57.53±1.00 (↑ 5.20)
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Figure 4: The effect of classifier calibration using different amounts of data.

features similarity in Figure 1, we can obtain a single value to approximately represent the similarity
of the feature outputs by each layer across different clients. We illustrate the approximated layer-wise
features similarity in Figure 2. The results show that the models trained with non-IID data have
consistently lower feature similarity across clients for all layers, compared with those trained on
IID data. The primary finding is that, for non-IID training, the classifier shows the lowest features
similarities, among all the layers. The low CKA similarities of the classifiers imply that the local
classifiers change greatly to fit the local data distribution.

To perform a deeper analysis on the classifier trained on non-IID data, inspired by [36], we illustrate
the L2 norm of the local classifier weight vectors in Figure 3. We observe that the classifier weight
norms would be biased to the class with more training samples at the initial training stage. At the end
of the training, models trained on non-IID data suffer from a much heavier biased classifier than the
models trained on IID data.

Based on the above observations about the classifier, we hypothesize that: because the classifier is
the closest layer to the local label distribution, it can be easily biased to the heterogeneous local
data, reflected by the low features similarity among different local classifiers and the biased weight
norms. Furthermore, we believe that debiasing the classifier is promising to directly improve the
classification performance.

3.3 Classifier Regularization and Calibration

To effectively debias the classifier, we consider the following regularization and calibration methods.

Classifier Weight L2-normalization. To eliminate the bias in classifier weight norms, we normalize
the classifier weight vectors during the training and the inference stage. We abbreviate it to ‘clsnorm’.
In particular, the classifier is a linear transformation with weight φ = [φ1, . . . ,φC ], followed by
normalization and softmax. Given a feature z, the output of the classifier is

gφ(z)i =
eφ

T
i z/||φi||∑C

i′=1 e
φT

i′z/||φi′ ||
, ∀i ∈ [C].

Classifier Quadratic Regularization. Beyond restricting the weight norms of classifier, we also
consider adding a proximal term similar to [5] only to restrict the classifier weights to be close to the
received global classifier weight vectors from the server. We write it as ‘clsprox’ for short. The loss
function in Eq. (1) can be specified as

L(w(t)
k ;w(t−1),x, y) = ℓ(g

φ
(t)
k

(f
θ
(t)
k

(x)), y) +
µ

2
||φ(t)

k −φ(t−1)||2,

where ℓ is the cross-entropy loss and µ is the regularization factor.
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Classifier Post-calibration with IID Samples. In addition to regularizing the classifier during federated
training, we also consider a post-processing technique to adjust the learned classifier. After the
federated training, we fix the feature extractor and calibrate the classifier by SGD optimization with
a cross-entropy loss on IID samples. Note that this calibration strategy requires IID raw features
collected from heterogeneous clients. Therefore, it can only serve as an experimental study use but
cannot be applied to the real federated learning system.

We conduct experiments to compare the above three methods on CIFAR-10 with three different
degrees of data heterogeneity and present the results in Table 1. We observe that regularizing the
L2-norm of classifier weight (clsnorm) is effective for light data heterogeneity but would have less
help or even lead to damages along with the increase of the heterogeneity. Regularizing the classifier
parameters (clsprox) is consistently effective but with especially minor improvements. Surprisingly,
we find that calibrating the classifier of the FedAvg model with all training samples brings significant
performance improvement for all degrees of data heterogeneity.

To further understand the classifier calibration technique, we additionally perform calibrations
with different numbers of data samples and different off-the-shelf federated models trained by
FedAvg and FedProx. The results are shown in Figure 4 and we observe that data-based classifier
calibration performs consistently well, even with 1/50 training data samples for calibration use. These
significant performance improvements after adjusting the classifier strongly verify our aforementioned
hypothesis, i.e., the devil is in the classifier.

4 Classifier Calibration with Virtual Representations

Algorithm 1: Virtual Representation Generation
Input: Feature extractor fθ̂ of the global model,

number Mc of virtual features for class c
1 # Server executes:
2 Send fθ̂ to clients.

3 # Clients execute:
4 foreach client k ∈ [K] do
5 foreach class c ∈ [C] do
6 Produce zc,k,j = fθ̂(xc,k,j) for j-th

sample in Dk
c for j ∈ [Nc,k].

7 Compute µc,k and Σc,k using Eq. (2).
8 end
9 Send {(µc,k,Σc,k) : c ∈ [C]} to server.

10 end
11 # Server executes:
12 foreach class c ∈ [C] do
13 Compute µc and Σc using Eq. (3) and (4).
14 Draw a set Gc of Mc features from

N (µc,Σc) with ground truth label c.
15 end

Output: Set of virtual representations
⋃

c∈[C] Gc

Motivated by the above observations, we pro-
pose Classifier Calibration with Virtual Repre-
sentations (CCVR) that runs on the server after
federated training the global model. CCVR
uses virtual features drawn from an estimated
Gaussian Mixture Model (GMM), without ac-
cessing any real images. Suppose fθ̂ and gφ̂
are the feature extractor and classifier of the
global model, respectively, where ŵ = (θ̂, φ̂)
is the parameter trained by a certain federated
learning algorithm, e.g. FedAvg. We shall use
fθ̂ to extract features and estimate the corre-
sponding feature distribution, and re-train g
using generated virtual representations.

Feature Distribution Estimation. For se-
mantics related tasks such as classification, the
features learned by deep neural networks can
be approximated with a mixture of Gaussian
distribution. Theoretically, any continuous dis-
tribution can be approximated by using a fi-
nite number of mixture of gaussian distribu-
tions [37]. In our CCVR, we assume that fea-
tures of each class in D follow a Gaussian
distribution. The server estimates this distribu-
tion by computing the mean µc and the covariance Σc for each class c of D using gathered local
statistics from clients, without accessing true data samples or their features. In particular, the server
first sends the feature extractor fθ̂ of the trained global model to clients. Let Nc,k = |Dk

c | be the
number of samples of class c on client k, and set Nc =

∑K
k=1 Nc,k. Client k produces features

{zc,k,1, . . . ,zc,k,Nc,k
} for class c, where zc,k,j = fθ̂(xc,k,j) is the feature of the j-th sample in Dk

c ,
and computes local mean µc,k and covariance Σc,k of Dk

c as:

µc,k =
1

Nc,k

Nc,k∑
j=1

zc,k,j , Σc,k =
1

Nc,k − 1

Nc,k∑
j=1

(zc,k,j − µc,k) (zc,k,j − µc,k)
T
, (2)
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Then client k uploads {(µc,k,Σc,k) : c ∈ [C]} to server. For the server to compute the global
statistics of D, it is sufficient to represent the global mean µc and covariance Σc using µc,k’s and
Σc,k’s for each class c. The global mean can be straightforwardly written as

µc =
1

Nc

K∑
k=1

Nc,k∑
j=1

zc,k,j =

K∑
k=1

Nc,k

Nc
µc,k. (3)

For the covariance, note that by definition we have

(Nc,k − 1)Σc,k =

Nc,k∑
j=1

zc,k,jz
T
c,k,j −Nc,k · µc,kµ

T
c,k

whenever Nc,k ≥ 1. Then the global covariance can be written as

Σc =
1

Nc − 1

K∑
k=1

Nc,k∑
j=1

zc,k,jz
T
c,k,j −

Nc

Nc − 1
µcµ

T
c

=

K∑
k=1

Nc,k − 1

Nc − 1
Σc,k +

K∑
k=1

Nc,k

Nc − 1
µc,kµ

T
c,k − Nc

Nc − 1
µcµ

T
c . (4)

Virtual Representations Generation. After obtaining µc’s and Σc’s, the server generates a set Gc

of virtual features with ground truth label c from the Gaussian distribution N (µc,Σc). The number
Mc := |Gc| of virtual features for each class c could be determined by the fraction Nc

|D| to reflect the
inter-class distribution. See Algorithm 1.

Classifier Re-Training. The last step of our CCVR method is classifier re-training using virtual
representations. We take out the classifier g from the global model, initialize its parameter as φ̂, and
re-train the parameter to φ̃ for the objective

min
φ̃

E(z,y)∼
⋃

c∈[C] Gc
[ℓ(gφ̃(z), y)],

where ℓ is the cross-entropy loss. We then obtain the final classification model gφ̃ ◦ fθ̂ consisting of
the pre-trained feature extractor and the calibrated classifier.

Privacy Protection. CCVR protects privacy at the basic level because each client only uploads
their local Gaussian statistics rather than the raw representations. Note that CCVR is just a post-hoc
method, so it can be easily combined with some privacy protection techniques [38] to further secure
privacy. In the Appendix, we provide an empirical analysis on the privacy-preserving aspect.

5 Experiment

5.1 Experiment Setup

Federated Simulation. We consider image classification task and adopt three datasets from the
popular FedML benchmark [39], i.e., CIFAR-10 [40], CIFAR-100 [40] and CINIC-10 [41]. Note
that CINIC-10 is constructed from ImageNet [42] and CIFAR-10, whose samples are very similar but
not drawn from identical distributions. Therefore, it naturally introduces distribution shifts which is
suited to the heterogeneous nature of federated learning. To simulate federated learning scenario, we
randomly split the training set of each dataset into K batches, and assign one training batch to each
client. Namely, each client owns its local training set. We hold out the testing set at the server for
evaluation of the classification performance of the global model. For hyperparameter tuning, we first
take out a 15% subset of training set for validation. After selecting the best hyperparameter, we return
the validation set to the training set and retrain the model. We are interested in the NIID partitions of
the three datasets, where class proportions and number of data points of each client are unbalanced.
Following [14, 15], we sample pi ∼ DirK(α) and assign a pi,k proportion of the samples from class
i to client k. We set α as 0.5 unless otherwise specified. For fair comparison, we apply the same data
augmentation techniques for all methods.
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Table 2: Accuracy@1 (%) on CIFAR-10 with different degrees of heterogeneity (α ∈
{0.5, 0.1, 0.05}), CIFAR-100 and CINIC-10.

Method α = 0.5 α = 0.1 α = 0.05 CIFAR-100 CINIC-10

No Calibration

FedAvg 68.62±0.77 58.55±0.98 52.33±0.43 66.25±0.54 60.20±2.04
FedProx 69.07±1.07 58.93±0.64 53.00±0.32 66.31±0.39 60.52±2.07
FedAvgM 69.00±1.68 59.22±1.14 51.98±0.91 66.43±0.23 60.46±0.73
MOON 70.48±0.36 57.36±0.85 49.91±0.38 67.02±0.31 65.67±2.10

CCVR (Ours.)

FedAvg 71.03±0.40 (↑ 2.41) 62.68±0.54 (↑ 4.13) 54.95±0.61 (↑ 2.62) 66.60±0.63 (↑ 0.35) 69.99±0.54 (↑ 9.79)
FedProx 70.99±1.21 (↑ 1.92) 62.60±0.43 (↑ 3.67) 55.79±1.07 (↑ 2.79) 66.61±0.48 (↑ 0.30) 70.05±0.66 (↑ 9.53)
FedAvgM 71.49±0.88 (↑ 2.49) 62.64±1.07 (↑ 3.42) 54.57±0.58 (↑ 2.59) 66.71±0.16 (↑ 0.28) 70.87±0.61 (↑ 10.41)
MOON 71.29±0.11 (↑ 0.81) 62.22±0.70 (↑ 4.86) 55.60±0.63 (↑ 5.69) 67.17±0.37 (↑ 0.15) 69.42±0.65 (↑ 3.75)

Oracle

FedAvg 72.51±0.53 (↑ 3.89) 64.70±0.94 (↑ 6.15) 57.53±1.00 (↑ 5.20) 66.84±0.50 (↑ 0.59) 73.47±0.30 (↑ 13.27)
FedProx 72.26±1.22 (↑ 3.19) 64.63±0.93 (↑ 5.70) 57.33±0.72 (↑ 4.33) 66.68±0.43 (↑ 0.37) 73.10±0.57 (↑ 12.58)
FedAvgM 73.30±0.19 (↑ 4.30) 64.24±1.32 (↑ 5.02) 57.11±1.08 (↑ 5.13) 66.94±0.32 (↑ 0.51) 72.88±0.37 (↑ 12.42)
MOON 72.05±0.16 (↑ 1.57) 64.94±0.58 (↑ 7.58) 58.14±0.47 (↑ 8.23) 67.56±0.44 (↑ 0.54) 73.38±0.23 (↑ 7.71)

Baselines and Implementation. We consider comparing the test accuracies of the representative
federated learning algorithms FedAvg [2], FedProx [5], FedAvgM [11, 26] and the state-of-the-art
method MOON [8] before and after applying our CCVR. For FedProx and MOON, we carefully tune
the coefficient of local regularization term µ and report their best results. For FedAvgM, the server
momentum is set to be 0.1. We use a simple 4-layer CNN network with a 2-layer MLP projection
head described in [8] for CIFAR-10. For CIFAR-100 and CINIC-10, we adopt MobileNetV2 [43].
For CCVR, to make the virtual representations more Gaussian-like, we apply ReLU and Tukey’s
transformation before classifier re-training. For Tukey’s transformation, the parameter is set to be
0.5. For each dataset, all methods are evaluated with the same model for fair comparison. The
proposed CCVR algorithm only has one important hyperparameter, the number of feature samples
Mc to generate. Unless otherwise stated, Mc is set to 100, 500 and 1000 for CIFAR-10, CIFAR-
100 and CINIC-10 respectively. All experiments run with PyTorch 1.7.1. More details about the
implementation and datasets are summarized in the Appendix.

5.2 Can classifier calibration improve performance of federated learning?

In Table 2, we present the test accuracy on all datasets before and after applying our CCVR. We also
report the results under an ideal setting where the whole data are available for classifier calibration
(Oracle). These results indicate the upper bound of classifier calibration.

CCVR consistently improves all baseline methods. First, it can be observed that applying classifier
calibration increases accuracies for all baseline methods, even with the accuracy gain up to 10.41%
on CINIC-10. This is particularly inspiring because CCVR requires no modification to the original
federated training process. One can easily get considerable accuracy profits by simply post-processing
the trained global model. Comparing the accuracy gains of different methods after applying CCVR
and whole data calibration, we find that the accuracies of FedAvg and MOON get the greatest increase.
On CINIC-10, the oracle results of FedAvg even outstrip those of all other baselines, implying that
FedAvg focuses more on learning high-quality features but ignores learning a fair classifier. It further
confirms the necessity of classifier calibration.

5.3 In what situation does CCVR work best?

We observe that though there is improvement on CIFAR-100 by applying CCVR, it seems subtle
compared with that of other two datasets. This is not surprising, since the final accuracy achieved
by classifier calibration is not only dependent on the degree to which the classifier is debaised, but
also closely correlated with the quality of pre-trained representations. In CIFAR-100, each class
only has 500 training images, so the classification task itself is very difficult and the model may
learn representations with low separability. It is shown that the accuracy obtained with CCVR on
CIFAR-100 is very close to the upper bound, indicating that CCVR does a good job of correcting the
classifier, even if it is provided with a poor feature extractor.

We also note that CCVR achieves huge improvements on CINIC-10. To further analyze the reason
of this success and the characteristics of CCVR, we now show the t-SNE visualization [44] of the
features learned by FedAvg on CINIC-10 dataset in Figure 5. From the first and second sub-graphs,
we can observe that some classes dominate the classification results, while certain classes are rarely
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Figure 5: t-SNE visualization of the features learned by FedAvg on CINIC-10. The features are colored by the
ground truth and the predictions of the classifier before and after applying CCVR. Best viewed in color.

predicted correctly. For instance, the classifier makes wrong prediction for most of the samples
belonging to the grey class. Another evidence showing there exists a great bias in the classifier is that,
from the upper right corner of the ground truth sub-graph, we can see that the features colored green
and those colored purple can be easily separated. However, due to biases in the classifier, nearly all
purple features are wrongly classified as the green class. Observing the third sub-graph, we find that
by applying CCVR, these misclassifications are alleviated. We also find that, with CCVR, mistakes
are basically made when identifying easily-confused features that are close to the decision boundary
rather than a majority of features that belong to certain classes. This suggests that the classifier weight
has been adjusted to be more fair to each class. In summary, CCVR may be more effective when
applied to the models with good representations but serious classifier biases.

5.4 How to forecast the performance of classifier calibration?
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Figure 6: GMM’s separability.

We resort to Sliced Wasserstein Distance [45], which is a
popular metric to measure the distances between distribu-
tions, to quantify the separability of GMM. The experiments
are conducted on CIFAR-10 with α = 0.1. We first com-
pute the Wasserstein distances between any two mixtures,
then we average all the distances to get a mean distance.
The farther the distance, the better the separability of GMM.
We visualize the relationship between the accuracy gains
and the separability of GMM in Figure 6. It is observed
that the mean Wasserstein distance of GMM is positively
correlated with the accuracy upper bound of classifier cal-
ibration. It verifies our claim in Section 5.3: CCVR may be
more effective when applied to the models with good (sep-
arable) representations. In practice, one can use the mean
Wasserstein distance of GMM to evaluate the quality of the
simulated representations, as well as to forecast the potential
performance of classifier calibration.

5.5 How many virtual features to generate?

One important hyperparameter in our CCVR is the number of virtual features Mc for each class c
to generate. We study the effect of Mc by tuning it from {0, 50, 100, 500, 1000, 2000} on three
different partitions of CIFAR-10 (α ∈ {0.05, 0.1, 0.5}) when applying CCVR to FedAvg. The results
are provided in Figure 7. In general, even sampling only a few features can significantly increase the
classification accuracy. Additionally, it is observed that on the two more heterogeneous distributions
(the left two sub-graphs), more samples produces higher accuracy. Although results on NIID-0.5 give
a similar hint in general, an accuracy decline when using a medium number of virtual samples is
observed. This suggests that Mc is more sensitive when faced with a more balanced dataset. This
can be explained by the nature of CCVR: utilizing virtual feature distribution to mimic the original
feature distribution. As a result, if the number of virtual samples is limited, the simulated distribution
may deviates from the true feature distribution. The results on NIID-0.5 implies that this trap could
be easier to trigger when CCVR dealing with a more balanced original distribution. To conclude,
though CCVR can provide free lunch for federated classification, one should still be very careful
when tuning Mc to achieve higher accuracy. Generally speaking, a larger value of Mc is better.
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Figure 7: Accuracy@1 (%) of CCVR on CIFAR-10 with different numbers of virtual samples.

5.6 Does different levels of heterogeneity affect CCVR’s performance?

We study the effect of heterogeneity on CIFAR-10 by generating various non-IID partitions from
Dirichlet distribution with different concentration parameters α. Note that partition with smaller
α is more imbalanced. It can be seen from Table 2 that CCVR steadily improves accuracy for
all the methods on all partitions. Typically, the improvements is greater when dealing with more
heterogeneous data, implying that the amount of bias existing in the classifier is positively linked with
the imbalanceness of training data. Another interesting discovery is that vanilla MOON performs
worse than FedAvg and FedProx when α equals to 0.1 or 0.05, but the oracle results after classifier
calibration is higher than those of FedAvg and FedProx. It indicates that MOON’s regularization
on the representation brings severe negative effects on the classifier. As a consequence, MOON
learns good representations but poor classifier. In that case, applying CCVR observably improves the
original results, making the performance of MOON on par with FedAvg and FedProx.

6 Limitations

In this work, we mainly focus on the characteristic of the classifier in federated learning, because it
is found to change the most during local training. However, our experimental results show that in a
highly heterogeneous setting, only calibrating the classifier still cannot achieve comparable accuracies
to that obtained on IID data. This is because the performance of classifier calibration highly relies on
the quality of learned representations. Thus, it’s more important to learn a good feature space. Our
experiments reveal that there may exist a trade-off in the quality of representation and classifier in
federated learning on non-IID data. Namely, the methods that gain the greatest benefits from classifier
calibration typically learn high-quality representations but poor classifier. We believe this finding is
intriguing for future research and there is still a long way to tackling the non-IID quagmire.

Moreover, we mainly focus on the image classification task in this work. Our experiments validate
that the Gaussian assumption works well for visual model like CNN. However, this conclusion may
not hold for language tasks or for other architectures like LSTM [46] and Transformer [47]. We
believe the extensions of this work to other tasks and architectures are worth exploring.

7 Conclusion

In this work, we provide a new perspective to understand why the performance of a deep learning-
based classification model degrades when trained with non-IID data in federated learning. We first
anatomize the neural networks and study the similarity of different layers of the models on different
clients through recent representation analysis techniques. We observe that the classifiers of different
local models are less similar than any other layer, and there is a significant bias among the classifier.
We then propose a novel method called Classifier Calibration with Virtual Representations (CCVR),
which samples virtual features from an approximated Gaussian Mixture Model (GMM) for classifier
calibration to avoid uploading raw features to the server. Experimental results on three image datasets
show that CCVR steadily improves over several popular federated learning algorithms.
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A Derivation of Global Mean and Covariance

Details for deriving Eq. 3 and 4. Without loss of generality, we assume Nc,k ≥ 1 and Nc ≥ 2 for each
c ∈ [C] and k ∈ [K]. The global mean can be straightforwardly written as

µc =
1

Nc

K∑
k=1

Nc,k∑
j=1

zc,k,j =

K∑
k=1

Nc,k

Nc
· 1
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For the covariance, note that for Nc,k ≥ 2 we have
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Rearranging yields

(Nc,k − 1)Σc,k =

Nc,k∑
j=1

zc,k,jz
T
c,k,j −Nc,k · µc,kµ

T
c,k.

Note that the above equation holds when Nc,k = 1 as well, where the mean µc,k is equivalent to the single
feature zc,k,1. Then the global covariance can be written as
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Nc − 1

K∑
k=1

Nc,k∑
j=1

(zc,k,j − µc) (zc,k,j − µc)
T

=
1

Nc − 1

K∑
k=1

Nc,k∑
j=1

zc,k,jz
T
c,k,j −

Nc

Nc − 1
µcµ

T
c

=

K∑
k=1

1

Nc − 1

(
(Nc,k − 1)Σc,k +Nc,k · µc,kµ

T
c,k

)
− Nc

Nc − 1
µcµ

T
c

=

K∑
k=1

Nc,k − 1

Nc − 1
Σc,k +

K∑
k=1

Nc,k

Nc − 1
µc,kµ

T
c,k − Nc

Nc − 1
µcµ

T
c .

B Details of Centered Kernel Alignment (CKA)

Given the same input data, Centered Kernel Alignment (CKA) [23] compute the similarity of the output features
between two different neural networks. Let N denote the size of the selected data set Dcka, and d1 and d2 denote
the dimension of the output feature of the two networks respectively. Dcka is used for extracting features matrix
Z1 ∈ RN×d1 from one representation network and feature matrix Z2 ∈ RN×d2 from another representation
network. Then the two representation matrices are pre-processed by centering the columns. The linear CKA
similarity between two representations X and Y can be computed as below:

CKA(X,Y ) =
∥XTY ∥2F

∥XTX∥2F ∥Y TY ∥2F
.

In our experiments, we adopt linear CKA to measure the similarity between different local models during
federated training. We call the global model optimized on the client’s local data for 10 epochs as ‘local model’.
d1 and d2 are both 256. Since we conduct experiments on CIFAR-10, N is 50,000.

C Privacy Protection

Each raw representation corresponds to a single input sample, so it may easily leak information about the client’s
single examples. However, if the mean or covariance is computed from only a few samples, would they expose
information about the client’s single examples?
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To answer this question, we have resorted image reconstruction by feature inversion method in [48] to check
whether the raw image can be reconstructed by inverting the representation through the pre-trained model
parameters. Experiments are conducted on ImageNet [1] with a pre-trained ResNet-50. As shown in Figure 8 and
Figure 9, the image recovered from the raw representation is similar to the corresponding raw image. One can
generally identify the category of object. By contrast, the image recovered from the Gaussian mean computed by
only 3 samples looks largely different from the user’s raw images. It’s hard to tell the objects in the recovered
images. In conclusion, transmitting per-client Gaussian statistics is basically privacy-preserving when facing
feature inversion attack.

Raw image Reconstructed image 

Figure 8: Image reconstructed from raw feature.

Raw images Reconstructed image 

Figure 9: Image reconstructed from mean of raw features.

D Extra Experimental Results

D.1 How does CCVR improve the classifier?

To check whether CCVR can eliminate the classifier’s bias, we visualization the L2-norms of the classifier
weight vectors before and after applying CCVR on CIFAR-10 with the concentration parameter α set as 0.1.
As shown in Figure 10, the distributions of the classifier weight L2-norms of FedAvg, FedProx, and MOON
are imbalanced without CCVR. However, the imbalanceness is observably alleviated after applying CCVR. It
means that the classifiers become fairer when making decisions, considering a larger L2-norm often yields a
larger logit, and thus a higher possibility of being predicted.

D.2 Why not choose regularization during training instead of post-calibration?

In Section 3.3, we observe that regularizing the classifier (either the parameter or the L2-norm) during training
can only improve little in most cases. To understand the reason behind these minor improvements, we visualize
the means of the CKA similarities of different layers of different federated training algorithms on CIFAR-10
with the concentration parameter α set as 0.1. From Figure 11, we can see that the two methods (FedProx and
MOON) which surpass FedAvg enhance the CKA similarity across all layers over FedAvg. This indicates that
the local models trained with FedProx and MOON suffer less from client drift, both on their classifiers and
representations. However, we can also observe that if we restrict the weights of the classifier by either clsnorm or
clsprox mentioned in Section 3.3, the feature similarities of certain layers of different local models are reduced.
Moreover, these restrictions seem too strict for the classifier, making the features outputted by different local
classifiers less similar. To conclude, regularization during training not only affects the classifier, but also the
feature extractor. In other words, it may deteriorate the quality of learned representation since the classifier
learning and representation learning are not fully decoupled. In that case, adopting a classifier post-calibration
technique would be a wiser choice.

D.3 Comparison of the effectiveness of CCVR on FedAvg, FedProx and MOON.

From Table 2, we can observe that the improvement brought by CCVR is less prominent on MOON compared
with FedAvg and FedProx for CINIC-10 (3.75% v.s. 9.79% and 9.53%). To understand why it happens, we now
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Figure 11: The means of the CKA similarities of different layers for different methods on CIFAR-10.

provide additional visualization results. We first take a closer look at the L2-norm of the classifier weight trained
with FedAvg, FedProx, and MOON. As shown in Figure 12, different from that of FedAvg and FedProx, the
L2-norm distribution of the classifier trained with MOON is not related to the label distribution at the beginning
of the federated training (Round 1). Moreover, the classifier trained with MOON tends to be biased to different
classes from FedAvg and FedProx at the end of federated training (Round 100). This implies that MOON’s
regularization of the representation affects the classifier in an underlying manner.

We now further analyze the representations learned by FedAvg, FedProx, and MOON. Figure 13 demonstrates
the t-SNE visualization of the features learned by FedAvg, FedProx, and MOON. We can observe that MOON
encourages the model to learn low-entropy feature clusters (high intra-class compactness). Meanwhile, the
decision margin becomes larger, bringing more tolerance to the classifier. In other words, the feature space is
more discriminative. Though the classifier may have certain biases, the number of misclassifications would also
be reduced. As a result, CCVR is left with much less room for improvement.

D.4 How many virtual features to generate?

In Section 5.4, we study the effect of the number of virtual features Mc when applying CCVR to FedAvg. We
now provide additional results of applying CCVR with a different number of virtual features Mc to FedProx and
MOON. From Figure 14 and Table 3, we can get similar conclusions to that in Section 5.4: larger Mc yields
higher accuracy when faced with highly heterogeneous distributions (α = 0.05 and α = 0.1), but Mc is more
sensitive when faced with a more balanced distribution. Moreover, we observe that the optimal Mcs for FedAvg,
FedProx and MOON on CIFAR-10 with α = 0.5 are 2000, 1000 and 100 respectively. It indicates that MOON
seems to require fewer virtual features for calibration compared with FedAvg and FedProx when faced with a
more uniform distribution.
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Figure 12: The L2-norm distribution of the classifier across clients of FedAvg, FedProx and MOON in different
rounds on CIFAR-10 with α = 0.1.

Table 3: Accuracy@1 (%) of CCVR on CIFAR-10 with different numbers of virtual features per
class.

# virtual features α = 0.5 α = 0.1 α = 0.05

FedAvg(Before Calibration) - 68.62±0.77 58.55±0.98 52.33±0.43

CCVR (Ours.)

50 70.99±0.98 (↑ 2.37) 61.07±0.42 (↑ 2.52) 54.24±0.83 (↑ 1.91)
100 71.03±0.40 (↑ 2.41) 61.43±0.96 (↑ 2.88) 54.48±0.77 (↑ 2.15)
500 70.85±0.83 (↑ 2.23) 62.29±0.73 (↑ 3.74) 54.63±1.07 (↑ 2.30)

1000 70.71±0.71 (↑ 2.09) 62.59±0.69 (↑ 4.04) 55.03±0.86 (↑ 2.70)
2000 71.33±0.73 (↑ 2.71) 62.68±0.54 (↑ 4.13) 54.95±0.61 (↑ 2.62)

FedProx(Before Calibration) - 69.07±1.07 58.93±0.64 53.00±0.32

CCVR (Ours.)

50 70.72±1.02 (↑ 1.65) 61.34±0.30 (↑ 2.41) 54.78±0.99 (↑ 1.78)
100 70.99±1.21 (↑ 1.92) 61.89±0.40 (↑ 2.96) 55.01±1.07 (↑ 2.01)
500 70.94±0.94 (↑ 1.87) 62.29±0.44 (↑ 3.36) 55.54±0.97 (↑ 2.54)

1000 71.16±1.14 (↑ 2.09) 62.59±0.49 (↑ 3.66) 55.55±0.82 (↑ 2.55)
2000 70.81±0.84 (↑ 1.74) 62.60±0.43 (↑ 3.67) 55.79±1.07 (↑ 2.79)

MOON(Before Calibration) - 70.48±0.36 57.36±0.85 49.91±0.38

CCVR (Ours.)

50 71.16±0.18 (↑ 0.68) 61.36±0.44 (↑ 4.00) 53.36±0.52 (↑ 3.45)
100 71.29±0.11 (↑ 0.81) 62.17±0.74 (↑ 4.81) 54.09±0.96 (↑ 4.18)
500 71.22±0.19 (↑ 0.74) 62.10±0.45 (↑ 4.74) 55.02±0.75 (↑ 5.11)

1000 71.11±0.11 (↑ 0.63) 62.79±0.85 (↑ 5.43) 55.61±0.44 (↑ 5.70)
2000 71.10±0.19 (↑ 0.62) 62.22±0.70 (↑ 4.86) 55.60±0.63 (↑ 5.69)

D.5 Does different number of clients affect CCVR’s performance?

We conduct additional experiments on CIFAR-10 (α = 0.1) with different numbers of clients N ∈ {10, 50, 100}.
From Table 4, we can observe that CCVR steadily improves accuracy for all the methods in all settings. To
conclude, varing number of clients does not affect CCVR’s effectiveness.

D.6 Full results of classifier calibration with whole data and partial data.

In Table 5, we provide full results of classifier calibration for FedAvg and FedProx with whole data and partial
data. Note that these results are corresponding to Figure 4.
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ground truth before calibration after calibration

(a) FedAvg

ground truth before calibration after calibration

(b) FedProx

ground truth before calibration after calibration

(c) MOON

Figure 13: t-SNE visualization of the features learned by FedAvg, FedProx and MOON on CINIC-10.
The features are colored by the ground truth and the predictions of the classifier before and after
applying CCVR. Best viewed in color.

E Experimental Details

E.1 Datasets

In Figure 15, we visualize the label distributions among the training sets of a population of non-identical clients.
As we can see, the label distributions are quite heterogeneous. Specifically, for non-IID partition strategy, the
number of samples varies for each client, and each client may have only a few categories of samples. There are
10 clients for all the datasets. The concentration parameter α is set to be 0.5 for CIFAR-100 and CINIC-10. To
make fair comparisons between different methods, the data distributions are fixed in our experiments.

E.2 Model Architectures

Table 6 shows the details of the simple convolutional neural network used for CIFAR-10. Note that it’s the
same with the model architecture used in [8]. Table 7 provides the details of the MobileNetV2 [43] used for
CIFAR-100 and CINIC-10. For CIFAR-100, we change the output dimension of the classifier to 100.

E.3 Hyperparameters

We summarize all the hyperparameters used in our experiments in Table 8. All the experiments are repeated with
three different random seeds.
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Figure 14: Accuracy@1 (%) of CCVR on CIFAR-10 with different numbers of virtual features.

Table 4: Accuracy@1 (%) on CIFAR-10 (α = 0.1) with a varying number of clients N .

Method N = 10 N = 50 N = 100

No Calibration
FedAvg 58.55 57.94 55.42
FedProx 58.93 58.49 55.85
MOON 57.36 58.51 56.26

CCVR
FedAvg 62.68 (↑ 4.13) 61.89 (↑ 3.95) 59.19 (↑ 3.77)
FedProx 62.60 (↑ 3.67) 61.69 (↑ 3.20) 59.04 (↑ 3.19)
MOON 62.22 (↑ 4.86) 61.63 (↑ 3.12) 59.49 (↑ 3.23)

Table 5: Accuracy@1 (%) on CIFAR-10 of classifier calibration with whole data and partial data.

Method α = 0.5 α = 0.1 α = 0.05

FedAvg(Before Calibration) 68.62±0.77 58.55±0.98 52.33±0.43
Whole Data 72.51±0.53 (↑ 3.89) 64.70±0.94 (↑ 6.15) 57.53±1.00 (↑ 5.20)
Partial Data (1000 samples per class) 72.30±0.50 (↑ 3.68) 64.55±1.05 (↑ 6.00) 56.86±1.01 (↑ 4.53)
Partial Data (100 samples per class) 72.06±0.47 (↑ 3.44) 63.58±1.22 (↑ 5.03) 55.65±0.83 (↑ 3.32)

FedProx(Before Calibration) 69.07±1.07 58.93±0.64 53.00±0.32
Whole Data 72.26±1.22 (↑ 3.19) 64.63±0.93 (↑ 5.70) 57.33±0.72 (↑ 4.33)
Partial Data (1000 samples per class) 72.09±1.15 (↑ 3.02) 64.14±1.00 (↑ 5.21) 56.85±0.88 (↑ 3.85)
Partial Data (100 samples per class) 71.90±1.07 (↑ 2.83) 63.21±0.92 (↑ 4.28) 55.63±0.72 (↑ 2.63)
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Figure 15: Label distributions of CIFAR-10, CIFAR-100, and CINIC-10 across the clients.

Table 6: Detailed information of the simple convolutional neural network used for CIFAR-10. For
convolution layer (Conv2d), the parameters are listed with a sequence of input channel, output
channel, kernel size and stride. For max pooling layer (MaxPool2d), we list the kernel size. For fully
connected layer (Linear), we list the input dimension and the output dimension.

Layer Details Repetition

layer 1
Conv2d(3, 6, k=(5, 5), s=(1, 1))

×1ReLU()
MaxPool2d(k=(2, 2))

layer 2
Conv2d(6, 16, k=(5, 5), s=(1, 1))

×1ReLU()
MaxPool2d(k=(2, 2))

layer 3 Linear(400, 120) ×1ReLU()

layer 4 Linear(120, 84) ×1ReLU()

layer 5 Linear(84, 84) ×1ReLU()

layer 6 Linear(84, 256) ×1

layer 7 (Classifier) Linear(256, 10) ×1

20



Table 7: Detailed information of the MobileNetV2 used for CIFAR-100 and CINIC-10. For convo-
lution layer (Conv2d), the parameters are listed with a sequence of input channel, output channel,
kernel size, stride and padding. Note that the parameter "g" represents that the corresponding layer
is a depthwise convolution. For average pooling layer (AvgPool2d), we list the kernel size. For
fully connected layer (Linear), we list the input dimension and the output dimension. There are skip
connections in the bottlenecks where the input channels equals to the output channels and the stride
of the first convolution layer equals 1. Note that the output dimension of the classifier is replaced
with 100 for CIFAR-100.

Block Details Repetition

Conv2d(3, 32, k=(3, 3), s=(1, 1), pad=(1, 1)) ×1

block 1 Conv2d(32, 32, k=(3, 3), s=(1, 1), pad=(1, 1), g=48) ×1Conv2d(32, 16, k=(1, 1), s=(1, 1))

block 2

Conv2d(16, 96, k=(1, 1), s=(1, 1))
×1Conv2d(96, 96, k=(3, 3), s=(1, 1), pad=(1, 1), g=144)

Conv2d(96, 24, k=(1, 1), s=(1, 1))

Conv2d(24, 144, k=(1, 1), s=(1, 1))
×1Conv2d(144, 144, k=(3, 3), s=(1, 1), pad=(1, 1), g=240)

Conv2d(144, 24, k=(1, 1), s=(1, 1))

block 3

Conv2d(24, 144, k=(1, 1), s=(1, 1))
×1Conv2d(144, 144, k=(3, 3), s=(2, 2), pad=(1, 1), g=240)

Conv2d(144, 32, k=(1, 1), s=(1, 1))

Conv2d(32, 192, k=(1, 1), s=(1, 1))
×2Conv2d(192, 192, k=(3, 3), s=(1, 1), pad=(1, 1), g=288)

Conv2d(192, 32, k=(1, 1), s=(1, 1))

block 4

Conv2d(32, 192, k=(1, 1), s=(1, 1))
×1Conv2d(192, 192, k=(3, 3), s=(2, 2), pad=(1, 1), g=288)

Conv2d(192, 64, k=(1, 1), s=(1, 1))

Conv2d(64, 384, k=(1, 1), s=(1, 1))
×3Conv2d(384, 384, k=(3, 3), s=(1, 1), pad=(1, 1), g=576)

Conv2d(384, 64, k=(1, 1), s=(1, 1))

block 5

Conv2d(64, 384, k=(1, 1), s=(1, 1))
×1Conv2d(384, 384, k=(3, 3), s=(1, 1), pad=(1, 1), g=576)

Conv2d(384, 96, k=(1, 1), s=(1, 1))

Conv2d(96, 576, k=(1, 1), s=(1, 1))
×2Conv2d(576, 576, k=(3, 3), s=(1, 1), pad=(1, 1), g=864)

Conv2d(576, 96, k=(1, 1), s=(1, 1))

block 6

Conv2d(96, 576, k=(1, 1), s=(1, 1))
×1Conv2d(576, 576, k=(3, 3), s=(2, 2), pad=(1, 1), g=864)

Conv2d(576, 160, k=(1, 1), s=(1, 1))

Conv2d(160, 960, k=(1, 1), s=(1, 1))
×2Conv2d(960, 960, k=(3, 3), s=(1, 1), pad=(1, 1), g=1440)

Conv2d(960, 160, k=(1, 1), s=(1, 1))

block 7
Conv2d(160, 960, k=(1, 1), s=(1, 1))

×1Conv2d(960, 960, k=(3, 3), s=(1, 1), pad=(1, 1), g=1440)
Conv2d(960, 320, k=(1, 1), s=(1, 1))

Conv2d(320, 1280, k=(1, 1), s=(1, 1)) ×1
AvgPool2d(k=(4, 4)) ×1

Classifier Linear(1280, 10) ×1
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Table 8: Hyperparameters used in our experiments.

Methods Hyperparameters CIFAR-10-0.05 CIFAR-10-0.1 CIFAR-10-0.5 CIFAR-100 CINIC-10

FedAvg/FedAvgM

communication rounds 100
optimizer SGD
learning rate 0.01
weight decay 1e-5
momentum 0.9
local epoch 10
clients per round 10
batch size 64 64 64 64 512

clsprox µ 0.01 0.001 0.001 - -

FedProx

communication rounds 100
optimizer SGD
learning rate 0.01
weight decay 1e-5
momentum 0.9
local epoch 10
clients per round 10
batch size 64 64 64 64 512
µ 0.01 0.001 0.001 0.001 0.01

MOON

contrastive temperature 0.5
optimizer SGD
learning rate 0.01
weight decay 1e-5
momentum 0.9
epoch 10
clients per round 10
batch size 64 64 64 64 512
µ 5 1 1 1 1

FedAvg + CCVR

optimizer SGD
weight decay 1e-5
momentum 0.9
batch size 64
epoch 10 10 30 30 50
number of virtual features per class 2000 2000 100 500 1000
learning rate 0.001 0.001 0.001 1e-5 0.001

FedProx + CCVR

optimizer SGD
weight decay 1e-5
momentum 0.9
batch size 64
epoch 10 10 30 30 50
number of virtual features per class 2000 2000 100 500 1000
learning rate 0.001 0.001 0.001 1e-5 0.001

FedAvgM + CCVR

optimizer SGD
weight decay 1e-5
momentum 0.9
batch size 64
epoch 10 10 50 10 50
number of virtual features per class 2000 2000 100 500 1000
learning rate 0.001 0.001 0.001 1e-5 0.001

MOON + CCVR

optimizer SGD
weight decay 1e-5
momentum 0.9
batch size 64
epoch 10 10 30 10 10
number of virtual features per class 2000 2000 100 500 1000
learning rate 0.001 0.001 0.001 1e-5 0.001

Whole Data

optimizer SGD
learning rate 0.001
weight decay 1e-5
momentum 0.9
batch size 64
epoch 50
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