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ABSTRACT

Adversarial training and adversarial purification are two effective and practical de-
fense methods to enhance a model’s robustness against adversarial attacks. How-
ever, adversarial training necessitates additional training, while adversarial pu-
rification suffers from low time efficiency. More critically, current defenses are
designed under the perturbation-based adversarial threat model, which is ineffec-
tive against the recently proposed unrestricted adversarial attacks. In this paper,
we propose an effective and efficient adversarial defense method that counters
both perturbation-based and unrestricted adversarial attacks. Our defense is in-
spired by the observation that adversarial attacks are typically located near the
decision boundary and are sensitive to pixel changes. To address this, we intro-
duce adversarial anti-aliasing to mitigate adversarial modifications. Additionally,
we propose adversarial super-resolution, which leverages prior knowledge from
clean datasets to benignly recover images. These approaches do not require ad-
ditional training and are computationally efficient. Extensive experiments against
both perturbation-based and unrestricted adversarial attacks demonstrate that our
defense method outperforms state-of-the-art adversarial purification methods.

1 INTRODUCTION

Deep learning models have demonstrated remarkable performance across various tasks (He et al.,
2016; Liu et al., 2021; Xiang et al., 2021). With the rapid advancement and widespread deployment
of these models, their security and robustness are garnering increasing attention.

It is widely recognized that deep learning models are highly vulnerable to adversarial attacks (Madry
et al., 2018; Carlini & Wagner, 2017). These attacks are performed by adding imperceptible pertur-
bations to clean images. The perturbed images, known as adversarial examples, can deceive trained
deep learning classifiers with high confidence while appearing natural and realistic to human ob-
servers. To mitigate adversarial attacks and ensure the stability of deep learning models, adversarial
training (Madry et al., 2018; Gowal et al., 2021) has been developed. This approach aims to defend
against adversarial attacks by training the classifier with adversarial examples. However, adversarial
training tends to perform poorly against unknown attacks.

Recently, with the development of diffusion models (Dhariwal & Nichol, 2021; Rombach et al.,
2022), adversarial purification (Nie et al., 2022; Song et al., 2024) has shown promising defense
performance by recovering the adversarial examples to clean images. These works adopt the diffu-
sion model’s reverse generation process to gradually remove the Gaussian noise from the forward
process and the adversarial perturbations. Nevertheless, these methods require heavy computational
resources during the purification, which may not be practical in real-time scenarios.

Diffusion models also facilitate stronger unrestricted adversarial attacks (Chen et al., 2023b; Dai
et al., 2023; Chen et al., 2023c). These unrestricted adversarial examples (UAEs) are generated
through the reverse generation process by incorporating adversarial guidance. Unlike traditional
perturbation-based adversarial attacks, UAEs exhibit superior attack performance against current
defenses due to their distinct threat models. These attacks pose a new threat to the development of
deep learning models and urgently need to be addressed. Even wrose, existing defenses have merely
covered the discussion against UAEs.
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Label: pomegranate
Confidence: 38.17%

Adversarial
Super-Resolution

Adversarial
Anti-Aliasing

Adversarial Example

Label: pomegranate
Confidence: 1.79%

Label: Cock
Confidence: 23.51%

Figure 1: The proposed adversarial defense pipeline. We give an adversarial example of “cock”
class with AutoAttack ℓinf = 8/255 on ImageNet dataset. Adversarial anti-aliasing aims to eliminate
adversarial perturbations, while adversarial super-resolution seeks to restore benign images from
blurred adversarial examples using prior knowledge from the clean dataset.

In this paper, we propose an effective adversarial defense method that detects both perturbation-
based adversarial examples and unrestricted adversarial examples. To achieve the defense objective,
we locate and utilize the common characteristic of these two types of attacks that both adversarial
examples are generated close to the decision boundary for minimal perturbations, which makes these
adversarial examples susceptible to changes in pixels.

Our defense employs zero-shot adversarial detection by extracting the “semantic shape” information
from images without the image details, as illustrated in Figure 1. Specifically, we use adversarial
anti-aliasing with specialized filters to blur the detailed adversarial modifications in the adversarial
examples. Following this, we apply adversarial super-resolution to the anti-aliased adversarial ex-
amples, upscaling the blurred images using details from pre-trained clean super-resolution diffusion
models. These two methods are time-efficient and do not require any modifications to the original
models. To demonstrate the effectiveness of our proposed defense, we further validate its perfor-
mance by using the upscaled adversarial examples as input for adversarial purification. Experiments
on various datasets show that our defense outperforms state-of-the-art adversarial defenses in both
adversarial detection and adversarial purification.

Our contributions are summarized as follows:

• We propose a novel adversarial defense capable of countering both perturbation-based ad-
versarial examples and unrestricted adversarial examples, addressing the current gap in
effective defenses against unrestricted adversarial attacks.

• We introduce various zero-shot and gradient-free defense strategies that preserve the se-
mantic information of adversarial examples while eliminating adversarial modifications.
These strategies include adversarial anti-aliasing for “semantic” extraction and adversarial
super-resolution for incorporating benign priors and recovering benign details from adver-
sarial examples.

• We conduct extensive experiments on various datasets against adaptive adversarial attacks.
The results demonstrate the effectiveness of our proposed defense method compared to
state-of-the-art adversarial defenses. Moreover, anti-aliased and upscaled adversarial ex-
amples effectively integrate with existing diffusion-based adversarial purification, validat-
ing the usability and scalability of our approach.

2 BACKGROUND

2.1 ADVERSARIAL TRAINING

Adversarial training (AT) is one of the most practical methods for enhancing a model’s robustness
against adversarial attacks. It involves training the model with both benign and adversarial data
simultaneously during the training phase. However, robustness against unseen attacks remains a
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significant challenge that affects the defense performance of traditional adversarial training (Madry
et al., 2018). To address this, Gowal et al. (Gowal et al., 2021) and Rebuffi et al. (Rebuffi et al.,
2021) have incorporated generated and augmented data to improve generalization by increasing data
diversity. In addition to leveraging diverse data, refining the objective formulation of AT has also
proven effective. By considering model weights, a wide range of adversarial training methods (Wu
et al., 2020; Jin et al., 2023) have been proposed.

2.2 ADVERSARIAL PURIFICATION

Adversarial purification aims to eliminate adversarial perturbations in adversarial examples with-
out requiring the re-training of deep learning models. These methods leverage the generative ca-
pabilities of generative models. Previous works utilizing generative adversarial networks (GANs)
(Samangouei et al., 2018) and score-based matching models (Song et al., 2021; Yoon et al., 2021)
have demonstrated state-of-the-art performance compared to adversarial training. With the advent
of diffusion models, Nie et al. (Nie et al., 2022) discovered that diffusion-based adversarial purifi-
cation methods outperform previous approaches in recovering clean images. However, finding the
optimal generation steps for diffusion-based adversarial purification remains challenging. Addition-
ally, adversarial images can negatively impact the reverse generation process of diffusion models.
To address these issues, several works (Wang et al., 2022; Lee & Kim, 2023; Song et al., 2024) have
proposed various solutions to enhance the performance of adversarial purification.

2.3 ADVERSARIAL EXAMPLE DETECTION

Adversarial example detection involves rejecting input data if it is identified as adversarial. These
detection methods do not require re-training the classifier and do not modify clean data, making them
particularly suitable for tasks that focus on data details. The most commonly discussed solution is
to train a detector network specifically for adversarial detection. Existing approaches (Metzen et al.,
2022; Yang et al., 2020) have employed various network architectures to train detectors, achieving
satisfactory defense performance. Another detection method exploits the statistical divergence be-
tween benign and adversarial data. Grosse et al. (Grosse et al., 2017) and Song et al. (Song et al.,
2018a) used different metrics to successfully identify adversarial examples within input data. Lastly,
because adversarial examples are typically located near decision boundaries, their predictions are of-
ten inconsistent when input transformations are applied (Hu et al., 2019; Meng & Chen, 2017) or
when the weights of the target models are altered (Feinman et al., 2017).

3 PRELIMINARY

3.1 THREAT MODEL

Adversarial examples conduct attacks by fooling the target model’s classification result. Considering
the untargeted attack scenario, the perturbation-based adversarial examples are defined as:

AAE ≜ {xadv = x+ δ|y ̸= f(x), x ∈ D, |δ| ≤ ϵ} (1)

where δ is the adversarial perturbation, f(·) is the target model, D is the clean dataset, and ϵ is the
perturbation norm constraint.

These adversarial examples are generated by adding the perturbations to the clean images. However,
such perturbations can degenerate the image quality. By utilizing the generation models, Song et al.
(Song et al., 2018b) presented unrestricted adversarial examples by directly generating adversarial
examples with the generation tasks, which can be formulated as:

AUAE ≜ {xadv ∈ G(zadv, y)|y ̸= f(x)} (2)
where G is the generation model, zadv is the latent code for generation.

These two adversarial examples are generated with different threat models. However, they both can
successfully conduct attacks against the given target model. A robust defense method should be able
to defend against these attacks simultaneously.
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AutoAttack Example
Robust Acc: 0%

RGB conversion
Robust Acc: 38.25%

Adv. Anti-Aliasing
Robust Acc: 55.85%

Figure 2: The vulnerability of adversarial examples to the changes in pixels. AutoAttack can
achieve nearly 100% attack success rate on the ImageNet dataset. However, with RGB conver-
sions and image normalization, we can easily achieve around 38% robust accuracy. The proposed
adversarial anti-aliasing is more effective while preserving the image quality.

3.2 DIFFUSION-BASED ADVERSARIAL PURIFICATION

The diffusion model (Ho et al., 2020) learns to recover the image from the denoising-like process,
i.e., reverse generation process. The reverse generation process takes T time steps to obtain a
sequence of noisy data {xT−1, . . . , x1} and get the data x0 at the last step. Specifically, it can be
formulated as:

pθ(xt−1|xt) = N (xt−1 : µθ(xt, t),Σθ(xt, t)) (3)

The forward diffusion process is where we iteratively add Gaussian noise to the data for training the
diffusion model to learn pθ(xt−1|xt). It is defined as:

q(xt|xt−1) = N (xt :
√
σtxt−1, (1− σt)I) (4)

where σ is the noise schedule.

Nie et al. (Nie et al., 2022) attempted to find the optimal t∗ where it satisfy that:

xt∗ =
√
σt∗xadv +

√
1− σt∗ε (5)

=
√
σt∗(x+ δ) +

√
1− σt∗ε

where ε is the Gaussian noise ε ∼ N (0, I). After we obtain the optimal t∗, we can utilize the reverse
generation process over xadv to recover the clean x.

Wang et al. (Wang et al., 2022) utilized the whole reverse generation process with T time step;
they used adversarial sample xadv as guidance rather than an intermediate time step state. At each
time step t, the guidance is added to the xt after the original reverse generation process and can be
formulated as:

∇x log p(xadv|xt; t) = −Rt∇xt
d(x̂t, xadv) (6)

where Rt is the scale factor at t time step, d(·) is the ℓ2 norm distance, and x̂t is the estimation for
x0 at t time step. The x̂t is defined as:

x̂t =
xt −

√
1− σtsθ(xt)√

σt
(7)

where the sθ known score function is defined as (Song et al., 2021).

4 METHODOLOGY

4.1 MOTIVATION

Despite the effectiveness of current adversarial defenses, such as adversarial training and adversar-
ial purification, these methods require additional training and result in noticeable changes to the
original images. These issues lead to low efficiency and can impact the original functionality of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

AutoAttack Example MimicDiffusion Adv.
Super-Resolution

Figure 3: The example of proposed adversarial super-resolution. Our method achieves similar
adversarial purification without any gradient calculation of diffusion models.

deep learning models. To address these challenges, an effective defense that requires no additional
training and makes no changes to clean images is needed to maintain the performance of the orig-
inal models. Adversarial example detection is one of the most practical methods to meet these
requirements. However, adversarial detection is often overlooked and has not been widely discussed
in recent years. In this work, we propose an effective adversarial example detection method that
achieves state-of-the-art defense performance without additional training or modifying the original
images. Furthermore, we aim to defend against the recently proposed unrestricted adversarial at-
tacks, which current defenses often ignore. To enhance the effectiveness of our defense, we also
provide an adversarial purification method based on our adversarial example detection, offering a
comprehensive discussion of adversarial defenses.

To achieve effective defenses against both unrestricted and perturbation-based adversarial attacks,
it is essential to address their common characteristics. One critical factor is the value range of im-
ages: a valid RGB value is an integer between 0 and 255. However, the modifications introduced
by various adversarial attacks are often performed using non-integer data types for gradient cal-
culations. These modifications can become ineffective when transformed back to the RGB image
format. Figure 2 supports our findings, showing that approximately 38% of adversarial examples
from AutoAttack fail with simple RGB conversions. Furthermore, using these converted adversar-
ial examples can enhance the performance of existing defenses. The reasons for this phenomenon
could be that adversarial examples are typically located near the decision boundary and are sensi-
tive to pixel changes. Therefore, our defense strategy focuses on finding effective conversions for
adversarial examples to improve defense mechanisms.

4.2 ADVERSARIAL EXAMPLE DETECTION

Perturbation-based adversarial examples are precisely calculated based on the gradient of the loss
function, whereas unrestricted adversarial examples are sampled near the decision boundary. De-
spite employing different threat models, both types of attacks produce adversarial examples that
are sensitive to pixel changes. Since adversarial examples are designed to be imperceptible com-
pared to clean images, the semantic shapes of objects within the images should correspond to their
original labels. Therefore, our defense strategy focuses on extracting the semantic shapes from the
adversarial examples and eliminating the adversarial pixel-level details.

4.2.1 ADVERSARIAL ANTI-ALIASING

Anti-aliasing is a straightforward, zero-shot method for smoothing image details. Its effectiveness in
adversarial defense has been demonstrated in recent research (Liang et al., 2018; Vasconcelos et al.,
2021). Unlike previous works, we have found that anti-aliasing with non-square filters is particu-
larly effective against adversarial attacks while preserving clean accuracy. Additionally, using the
average value from neighboring pixels, excluding the original pixel, has also proven effective. This
is because adversarial perturbations are calculated on a pixel-wise basis and are sensitive to pixel
changes. Even with simple anti-aliasing, we achieve moderate defense performance, underscoring
the effectiveness of our approach. To maintain the resolution of the output image, we use padding,
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Table 1: The defense performance against AutoAttack (ℓinf = 8/255) on the CIFAR10 dataset.

Method Target Model Standard Accuracy(%) Robust Accuracy(%)

Wu et al. Wu et al. (2020) WideResNet-28-10 85.36 59.18
Gowal et al. Gowal et al. (2021) WideResNet-28-10 87.33 61.72
Rebuffi et al. Rebuffi et al. (2021) WideResNet-28-10 87.50 65.24
Wang et al. Wang et al. (2022) WideResNet-28-10 84.85 71.18
Nie et al. Nie et al. (2022) WideResNet-28-10 89.23 71.03
Song et al. (Song et al., 2024) WideResNet-28-10 92.10 75.45

OursDetection WideResNet-28-10 97.50 ± 2.15 93.66 ± 0.42
OursPurification WideResNet-28-10 92.54 ± 1.66 82.02 ± 1.17
Rebuffi et al. Rebuffi et al. (2021) WideResNet-70-16 88.54 64.46
Gowal et al. Gowal et al. (2021) WideResNet-70-16 88.74 66.60
Nie et al. Nie et al. (2022) WideResNet-70-16 91.04 71.84
Song et al. (Song et al., 2024) WideResNet-70-16 93.25 76.60

OursDetection WideResNet-70-16 98.13 ± 1.94 93.66 ± 2.42
OursPurification WideResNet-70-16 93.42 ± 1.51 83.65 ± 2.90

which is calculated as follows:

Rout = ⌊Rin + 2× Padding − filter size⌋ (8)

where R is the shape of the data. We use stride = 1.

4.2.2 ADVERSARIAL SUPER-RESOLUTION

During the adversarial anti-aliasing phase, we significantly reduce adversarial perturbations by di-
rectly decreasing the pixel-wise modifications of the adversarial examples. However, this approach
may not be effective against unrestricted adversarial examples, as they are not generated by adding
explicit perturbations. Additionally, blurring the images can negatively impact the clean accuracy
of the target model. Super-resolution offers an effective way to recover high-quality images from
our adversarial anti-aliased images. Previous super-resolution methods (Ledig et al., 2017; Gao &
Zhuang, 2019) typically modify the original pixels of the low-resolution image and use the residual
features of the original low-resolution image. These methods can inadvertently transfer negative ef-
fects from the adversarial examples to the final high-resolution images, making them ineffective for
adversarial super-resolution. Diffusion-model-based super-resolution (Yue et al., 2024; Rombach
et al., 2022) provides a more isolated approach to achieving super-resolution. These models gener-
ate high-resolution images through a denoising-like process over randomly sampled noise, using the
low-resolution image as a condition.

In this work, we adopt the ResShift method by Yue et al. (Yue et al., 2024) for our super-resolution
process. This super-resolution model can also incorporate benign priors for defense, as it is trained
with the clean dataset of the target model. Figure 3 demonstrates that the proposed super-resolution
method achieves results comparable to diffusion-based adversarial purification Song et al. (2024),
which do not require calculation of gradient.

4.2.3 ADVERSARIAL DETECTION

The proposed adversarial detection method relies on the consistency of classification results between
the input image and the image after adversarial super-resolution. Compared to existing adversarial
training and adversarial purification methods, our adversarial detection achieves stronger defenses
with higher robust accuracy. Additionally, our approach does not require any training of the target
model or the defense model. Moreover, diffusion-model-based super-resolution requires signifi-
cantly fewer diffusion time steps than diffusion-based adversarial purification.

y = {f(SR(AA(x)))|f(x) = f(SR(AA(x)))} (9)
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Table 2: The defense performance against BPDA+EOT (ℓinf = 8/255) on the CIFAR10 dataset
with WideResNet-28-10 as the target model.

Method Purification Standard Accuracy(%) Robust Accuracy(%)

Nie et al. Nie et al. (2022)(t∗ = 0.0075) Diffusion 91.38 77.62
Nie et al. Nie et al. (2022)(t∗ = 0.1) Diffusion 89.23 81.56
Wang et al. Wang et al. (2022) Diffusion 90.36 77.31
Song et al. (Song et al., 2024) Diffusion 91.41 76.45

OursDetection Diffusion 97.55 ± 2.84 93.45 ± 0.84
OursPurification Diffusion 91.52 ± 1.28 81.24 ± 2.51

Table 3: The defense performance against AdvDiff on the CIFAR10 dataset.

Method Target Model Standard Accuracy(%) Robust Accuracy(%)

Nie et al. (Nie et al., 2022) WideResNet-28-10 95.42 21.56
Song et al. (Song et al., 2024) WideResNet-28-10 96.21 23.23

OursDetection WideResNet-28-10 96.80 ± 1.14 72.32 ± 3.45
OursPurification WideResNet-28-10 96.80 ± 0.37 33.97 ± 0.77

4.2.4 ADVERSARIAL PURIFICATION

To demonstrate the effectiveness of the proposed defense and provide a fair comparison with previ-
ous works, we further evaluate the adversarial purification performance on the adversarial examples
after detection. Our adversarial purification leverages the generative capabilities of diffusion models.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset and target models. We consider CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng
et al., 2009) for major evaluation. For target models, we adopt WideResNet-28-10 and WideResNet-
70-16 (Zagoruyko & Komodakis, 2016) for CIFAR-10 dataset and ResNet50 (He et al., 2016) for
ImageNet dataset. These are commonly adopted backbones for adversarial robustness evaluation.

Comparisons. We compared our defense methods with various state-of-the-art defenses by the
standardized benchmark: RobustBench (Croce et al., 2021). We mainly compare two diffusion-
based adversarial purification methods: Nie et al.’s DiffPure (Nie et al., 2022) and Song et al.’s
MimicDiffusion (Song et al., 2024). We use the Score SDE Song et al. (2021) implementation of
MimicDiffusion on CIFAR-10 for fair comparisons. The defense methods that use extra data are not
compared for fairness. We only evaluate the adversarial purification methods against unrestricted
adversarial attacks as the adversarial training’s different threat model.

Attack settings. We evaluate our method with both perturbation-based attacks and diffusion-based
unrestricted adversarial attacks. For perturbation-based attacks, we select AutoAttack (Croce &
Hein, 2020), PGD (Madry et al., 2018). For diffusion-based unrestricted adversarial attacks, we
use DiffAttack (Chen et al., 2023a) and AdvDiff (Dai et al., 2023) for comparisons. DiffAttack is
only evaluated on the ImageNet dataset according to the original paper. To ensure a fair comparison
with previous diffusion-based adversarial purification, we include the evaluation against the adap-
tive attack, i.e., Backward pass differentiable approximation (BPDA+EOT) (Hill et al., 2021). On
CIFAR-10, the attack settings follow DiffPure (Nie et al., 2022). On ImageNet, we randomly sample
5 images from each class and average over 10 runs.

Implementation details. We use OursDetection to represent adversarial detection. We
adopt the mean filter with [[1, 1], [1, 1]] for adversarial anti-aliasing on CIFAR-10, and
[[1, 1, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 1, 1]] in ImageNet. ResShift (Yue et al., 2024) is utilized for ad-
versarial super-resolution. We implement the adversarial purification, noted as OursPurification, by

7
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Table 4: The defense performance against AutoAttack (ℓinf = 8/255) on the ImageNet dataset.

Method Target Model Standard Accuracy(%) Robust Accuracy(%)

Engstrom et al. Croce et al. (2021) ResNet50 62.56 31.06
Wong et al. Wong et al. (2020) ResNet50 55.62 26.95
Salman et al. Salman et al. (2020) ResNet50 64.02 37.89
Bai et al. Bai et al. (2021) ResNet50 67.38 35.51
Nie et al. Nie et al. (2022) ResNet50 68.22 43.89
Song et al. (Song et al., 2024) ResNet50 66.92 61.53

OursDetection ResNet50 88.30 ± 2.44 83.14 ± 1.82
OursPurification ResNet50 75.28 ± 1.06 67.61 ± 1.95

Table 5: The defense performance against PGD (ℓinf = 4/255) on the ImageNet dataset.

Method Target Model Standard Accuracy(%) Robust Accuracy(%)

Wong et al. Wong et al. (2020) ResNet50 55.62 26.24
Salman et al. Salman et al. (2020) ResNet50 64.02 34.96
Bai et al. Bai et al. (2021) ResNet50 67.38 40.27
Nie et al. Nie et al. (2022) ResNet50 68.22 42.88
Wang et al. Wang et al. (2022) ResNet50 70.17 68.78
Song et al. (Song et al., 2024) ResNet50 66.92 62.16

OursDetection ResNet50 88.30 ± 2.44 80.21 ± 2.50
OursPurification ResNet50 75.28 ± 1.06 69.75 ± 2.61

the adversarial examples after the proposed upscale method. We use the official Score SDE Song
et al. (2021) checkpoint for CIFAR-10 and LDM Rombach et al. (2022) checkpoint for ImageNet to
generate UAEs. More details and experiment results are given in the appendix.

Evaluation metrics. Following Nie et al. (Nie et al., 2022), we use standard accuracy and robust
accuracy as the evaluation metrics. Both are calculated according to the top-1 classification accu-
racy. To evaluate the proposed detection method, i.e., OursDetection, we report the detection accuracy
of our detection methods over the data that passes the detection. For standard accuracy, we evalu-
ate the number of clean images that NOT detected by our method, while we report the number of
adversarial images that DO detected by our method for robust accuracy.

5.2 ATTACK PERFORMANCE

5.2.1 CIFAR10

Perturbation-based adversarial attack. Table 1 presents the defense performance against Au-
toAttack (ℓinf = 8/255) on the CIFAR10 dataset. The results demonstrate that our proposed method
achieves better standard accuracy and robust accuracy than previous attack methods. Our detection
method achieves over a 90% detection rate against adversarial examples, indicating further improve-
ments in our purification method. Because images in the CIFAR10 dataset are only with 32 × 32
resolution, we set our anti-aliasing filter to a relatively small size. Table 2 indicates that the ro-
bustness performance of the proposed method is on par with the state-of-the-art method (Nie et al.,
2022). However, we can further enhance our performance by incorporating adversarial purification
techniques from previous work. This finding suggests that our method is more suitable for high-
resolution images, as 32× 32 may not be large enough to effectively extract the semantic shape for
our approach.

Unrestricted adversarial attack. Unrestricted adversarial examples on the CIFAR10 dataset are
challenging to detect and defend against, as shown in Table 3. Our purification method outperforms
the previous adversarial purification approach Song et al. (2024) by an average of 10%, validating
the effectiveness of our proposed defense.
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Table 6: The defense performance against AdvDiff (ℓinf = 8/255) on the ImageNet dataset.

Method Target Model Standard Accuracy(%) Robust Accuracy(%)

Nie et al. Nie et al. (2022) ResNet50 91.48 24.82
Wang et al. Wang et al. (2022) ResNet50 92.31 26.74
Song et al. (Song et al., 2024) ResNet50 92.54 25.35

OursDetection ResNet50 92.10 ± 2.32 82.45 ± 4.65
OursPurification ResNet50 97.83 ± 1.36 42.21 ± 3.41

5.2.2 IMAGENET

Perturbation-based adversarial attack. Tables 4 and 5 demonstrate that the proposed defense
method achieves significantly higher performance in both standard accuracy and robust accuracy.
Our defense’s standard accuracy notably surpasses previous work, further validating that adversarial
super-resolution effectively leverages prior knowledge from the training dataset to achieve better
classification accuracy. Adversarial anti-aliasing proves to be particularly effective on the ImageNet
dataset, where the filter successfully blurs adversarial perturbations in the detailed pixels of adversar-
ial examples. Additionally, our adversarial detection method achieves approximately 85% detection
performance on adversarial examples and only a 10% detection error on clean images, making it
suitable for real-world applications and providing a foundation for further improvements in future
defenses.

Unrestricted adversarial attack. We present the defense performance of various methods against
the unrestricted adversarial attack AdvDiff in Table 6. The results indicate that current defenses are
ineffective against the recently proposed unrestricted adversarial attacks. The high standard accu-
racy can be attributed to the strong generative performance of benign diffusion models. Our defense
method is capable of detecting the majority of unrestricted adversarial examples and achieves sig-
nificantly higher robust accuracy compared to previous defenses.

Table 7: The average time cost of defending one image against PGD (ℓinf = 4/255) on the
ImageNet dataset.

Method Defend Method Time Cost(s) Robust Accuracy(%)

Nie et al. Nie et al. (2022) Diffusion 13.3 42.88
Wang et al. Wang et al. (2022) Diffusion 224 68.78
Song et al. (Song et al., 2024) Diffusion 146 62.16

Ours Adversarial Anti-Aliasing 3e−3 57.61
+ Adversarial Super-Resolution 1.1 69.62

5.3 TIME EFFICIENCY

We evaluate the average time for defending against one adversarial example as shown in Table 7.
The results indicate that our proposed method achieves better robust accuracy with significantly
lower time costs, as it does not require any gradient calculations over the diffusion model. Notably,
our adversarial anti-aliasing can defend against approximately 57% of adversarial examples in just
3e−3 seconds. Furthermore, we can enhance the defense performance of our method by combining
it with previous purification methods, with only a minimal tradeoff in time cost.

5.4 ABLATION STUDY

We perform ablation studies to validate the performance of the proposed detection methods. We
evaluate the defense method against AutoAttack (ℓinf = 8/255) on the ImageNet dataset by default.

Adversarial Anti-Aliasing. Despite the satisfactory robustness performance of the proposed ad-
versarial anti-aliasing, the choice of filter settings is critical for optimal defense performance. We

9
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Figure 4: The ablation study of filter size.

Method Robust Accuracy(%)

Nie et al. Nie et al. (2022) 43.89
Song et al. (Song et al., 2024) 61.53

Adversarial AA 55.85
Adversarial SR 41.23
Adversarial AA+SR 67.01

(a) The ablation study of proposed adversarial
super-resolution.

Method Robust Accuracy(%)

Nie et al. Nie et al. (2022) 43.89
+ Ours 69.44

Song et al. (Song et al., 2024) 61.53
+ Ours 72.18

(b) The performance of integrating our method
with previous adversarial purification.

present the defense performance with different filters in Figure [reference]. The results indicate a
tradeoff between robust accuracy and standard accuracy. Robust accuracy tends to stabilize when
using a filter larger than 3× 3 in size. Therefore, it is relatively straightforward to identify a suitable
filter with a few attempts. Furthermore, the filter settings are generalized across different adversarial
attacks within the same dataset, as demonstrated in Tables 4, 5, and 6.

Adversarial Super-Resolution. The proposed adversarial super-resolution achieves a similar pu-
rification function to previous diffusion-based adversarial purification methods, but without the need
for computationally expensive gradient calculations. Table 8a demonstrates that our method slightly
outperforms traditional adversarial purification when using anti-aliased adversarial examples as in-
put. However, it is crucial to use anti-aliased adversarial examples for optimal performance in adver-
sarial super-resolution, as we do not account for the adversarial gradient during the super-resolution
process.

Adversarial Purification. We can enhance diffusion-based adversarial purification methods from
previous works by replacing the adversarial input with the adversarial examples after detection. The
processed adversarial examples are more benign and closer to the clean images, thereby enabling
better purification performance, as demonstrated in Table 8b.

6 CONCLUSION

In this paper, we present an effective and efficient adversarial defense method against both
perturbation-based and unrestricted adversarial attacks. The proposed techniques, adversarial anti-
aliasing and adversarial super-resolution, effectively eliminate adversarial modifications and recover
benign images with minimal computational overhead. Comprehensive experiments on the CIFAR-
10 and ImageNet datasets validate that our proposed defense outperforms state-of-the-art defense
methods. Our work demonstrates that simple adversarial anti-aliasing can achieve moderate model
robustness with almost no additional cost. Furthermore, the proposed super-resolution method can
perform adversarial purification without requiring the calculation of the diffusion model’s gradient.
We hope our work will serve as a baseline for the further development of adversarial defenses.

10
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