
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIALS FOR
EFFICIENT ADVERSARIAL DETECTION AND PURIFICA-
TION WITH DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

A DETAIL EXPERIMENT SETTINGS

Our experiment is implemented with PyTorch on an NVIDIA GeForce RTX 3090 GPU. For the
CIFAR10 dataset, we upscale the adversarial anti-aliased images with PyToch to 64× 64 resolution
for ResShift. We use ResShift default v3 parameter for our experiments.

B ADDITIONAL EXPERIMENTS

We further report additional experiments against various adversaries on CIFAR10 and ImageNet
datasets, as shown in Table 1 and 2. Noted that DiffAttack Chen et al. (2023) adopt latent inversion
from the validation set to generate adversarial examples, we only report the standard accuracy to the
clean validation set.

Table 1: The defense performance against AutoAttack (ℓ2 = 0.5) on the CIFAR10 dataset.

Method Target Model Standard Accuracy(%) Robust Accuracy(%)

Rony et al. (Rony et al., 2019) WideResNet-28-10 89.05 66.41
Ding et al. (Ding et al., 2020) WideResNet-28-10 88.02 67.77
Rebuffi et al. (Rebuffi et al., 2021) WideResNet-28-10 91.79 78.32
Wang et al. (Wang et al., 2022) WideResNet-28-10 92.00 75.28
Nie et al. (Nie et al., 2022) WideResNet-28-10 91.38 78.98
Song et al. (Song et al., 2024) WideResNet-28-10 92.84 81.52

OursDetection WideResNet-28-10 97.50 ± 2.15 92.95 ± 0.36
OursPurification WideResNet-28-10 92.54 ± 1.66 84.90 ± 2.82
Gowal et al. (Gowal et al., 2021) WideResNet-70-16 90.90 74.03
Rebuffi et al. (Rebuffi et al., 2021) WideResNet-70-16 92.41 80.86
Nie et al. (Nie et al., 2022) WideResNet-70-16 93.24 81.17
Song et al. (Song et al., 2024) WideResNet-70-16 92.51 83.60

OursDetection WideResNet-70-16 98.13 ± 1.94 94.57 ± 1.82
OursPurification WideResNet-70-16 93.42 ± 1.51 87.60 ± 2.35

Table 2: The defense performance against DiffAttack (ℓinf = 8/255) on the ImageNet dataset.

Method Target Model Standard Accuracy(%) Robust Accuracy(%)

Nie et al. Nie et al. (2022) ResNet50 68.22 59.15
Song et al. (Song et al., 2024) ResNet50 66.92 60.17

OursDetection ResNet50 88.30 ± 2.44 78.44 ± 1.95
OursPurification ResNet50 75.28 ± 1.06 65.51 ± 1.33
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Figure 1: The defense performance of various filter weights against AutoAttack (ℓinf = 8/255)
on the ImageNet dataset. We use 1 for better understanding, while we set to the mean value
according to the number of 1 blocks in the experiments.

C FILTER SELECTION

We discuss the choice of filter settings in the ablation study. However, it is also critical to design the
filter weight for the adversarial anti-aliasing. Figure 1 demonstrates that the selection of filter weight
is empirical and achieves the best performance on setting the mean value except for the center.

D LIMITATION

Despite achieving a significantly higher time efficiency and better defense performance than previ-
ous diffusion-based adversarial purification, our defense still has several limitations. One drawback
is there exists a gap between the adversarial detection rate and robust accuracy. Therefore, a stronger
defense can be proposed to increase the robust accuracy that focuses on defending against the de-
tected adversarial examples. Another drawback is that the robust accuracy against UAEs is still not
comparable to perturbation-based adversarial attacks. We aim to further improve it in future work.
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