
Supplementary: Non-Local Latent Relation
Distillation for Self-Adaptive 3D Human Pose

Estimation

The supplementary material is organized as follows:

• Section 1: Data preparation

• Section 2: Notations

• Section 4: Overall training algorithm

• Section 5: Network architecture

• Section 6: Qualitative analysis

• Section 7: Reference to code and assets

Table 1: Notation table. The numbers in parentheses denote the dimensions of the corresponding
input. All video and motion samples are of sequence length 30. We use 17 joint 3D poses.

Symbol Description

In
pu

ts

(xs, ys)∈Ds Labeled source dataset
yt ∈ Y Unpaired 3D pose dataset (17×3)
Y ∈ Ỹ Unpaired 3D motion dataset (30×17×3)
xt ∈ X Unpaired target domain images (224×224×3)
X ∈ X̃ Unpaired target domain videos (30×224×224×3)

N
et

w
or

k
co

m
po

ne
nt

s {Ep, Dp} AAE for pose embedding, Y→Z → Y
{Em, Dm} AAE for motion embedding, Z̃ → V → Z̃

Gs : X s→Z Source-specific image-to-latent mapping
G : X→Z Target-specific image-to-latent mapping
Tz1 : Z→Z “pose-flip” relation network on pose
Tv1 : V→V “flip-backward” relation network on motion
Tv2 : V→V “slow-backward” relation network on motion

O
th

er
s

z ∈ Z Constrained pose space, z ∈ [−1, 1]32
v ∈ V Constrained motion space, v ∈ [−1, 1]128

1 Data preparation
We use the CMU-MoCap [1] dataset to prepare sample set for unpaired 3D poses y and unpaired pose
sequences Y . The sample set for the unpaired videos X̃ constitutes of single-person action videos
collected from Sports-1M [8]. As compared to the available in-studio datasets (such as Human3.6M
and MPI-INF-3DHP) the web-dataset covers a wide diversity in apparel style, background variation,
action style, etc. The raw video frames are forwarded through a person-detector [15] to obtain the
person-focused image sequences. Note that, the detector pruned video sequences may not have a
smooth pixel transition. However, it retains the smooth pose transition at the view-variant root-relative
system. In our work, the shared latent pose can be seen as a parametric form to represent plausible
3D poses. And, the image-to-latent model is trained to regress the latent pose parameters with latent
being an intermediate 3D pose representation.

2 Notations
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Algorithm 1 Overall training algorithm.

1: require: Unpaired motion samples Y , Paired source
dataset Ds, Unpaired target videos X .

A. Pre-learning steps. (Training on source data)

2: Train {Ep, Dp}: AAE training on unpaired 3D poses
y∈Y (adv. and pose reconstruction loss)

3: Train{Em, Dm}: AE training on unpaired motions
Y ∈Ỹ (motion reconstruction loss)

4: Train Gs: Training the base image-to-latent by
minimizing ‖Dp ◦ Gs(xs)− ys‖.

5: Train Tz3: Training the flip+inplane-θ network
on (y, y+) by minθTz3

‖Tz3(Ep(y))− Ep(y
+)‖.

6: Train Tv2: Training the flip+inplane-θ-backward
network by
minθTv2

‖Tv2(Em(Ep(Y )))− Em(Ep(Y
+))‖.

7: Train Tv3: Training the slow-backward network
by minθTv3

‖Tv3(Em(Ep(Y )))− Em(Ep(Y
+))‖.

B. Unsupervised alignment (Unsup. target adaptation)
8: while the training has not converged do
9: X ← minibatch from unpaired target videos X̃

10: update trainable params of G by minimizing LCR,
Lz3, Lv2 , and Lv3 in separate Adam
optimizers (others kept frozen).

11: end while

Most of the notations used in this pa-
per are summarized in Table 1. In the
first part, we list the notations related
to the datasets. The second part lists
the network components as mapping
functions from one space to another.

3 Overall
training algorithm
Algorithm 1 shows the overall training
algorithm under two subheadings i.e.,
a) Pre-learning steps and b) Unsuper-
vised alignment. Notice the chronol-
ogy, as each step uses frozen models
obtained from previous steps. In L10
of Algorithm 1, only the Res-3 block
parameters of G are updated for the fi-
nal target adaptation. This greatly reg-
ularizes the unsupervised alignment,
thereby avoiding convergence to de-
generate solutions.

4 Ablation Experiment for
rotation angle θ for inplane-θ
An ablation with increasing in-plane
rotation angles strongly supports our
key hypothesis. Table 2 reports
MPJPE (lower is better) with inplane-θ (2nd row) and flip+inplane-θ-backwards (3rd row)
as the lower-order (pose space) and higher-order (motion space) relations respectively (in the settings
of Table 5). In both cases, θ is varied as 10, 25, 50, 75, 100, 125. In the last column, we compare the
results with “flip” and “flip-backwards” in the 2nd and 3rd rows respectively.

Observation - We see an increase in adaptation performance with an increase in in-plane rotation
for θ = 10, 25, 50. However, with a further increase in θ (i.e., 75, 100, 125) the performance seems
to be saturating at a degraded level. The prime reason behind this behavior is attributed to the fact
that pose samples with θ > 50 are quite rare (fall in the low probability region of the latent pose
space). For example, images depicting poses with the spine parallel to the ground or headstand are
very rare. However, the probability of encountering images with a flipped pose is quite high, and
both the original and flipped poses fall in the high probability region of the latent pose space.

With flip+inplane - A non-local relation with a combination of flip and a suitable In-Plane rotation,
i.e., flip+inplane-50◦ yields the best performance (in both lower and higher-order cases) beyond
using just flip or In-Plane rotation.

In summary, the hypothesis is valid (and more effective) as long as both the relational association
candidates fall in the high-probability regions of the latent pose space.

5 Network architecture
The image-to-latent model Gs constitutes of an ImageNet initialized ResNet-50 [6] (till Res-4F)
followed by a series of convolution and fully-connected (FC) layers to obtain the latent pose represen-

Table 2: MPJPE when varying InPlane Rotation in settings of Table 5
In-Plane-θ 10◦ 25◦ 50◦ 75◦ 100◦ 125◦ Flip Flip+In-Plane-50◦

Lower-order 179.1 170.3 154.4 163.9 159.2 158.4 141.2 139.7
Higher-order (+backwards) 130.5 123.2 110.1 115.6 114.1 115.4 95.6 91.8
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Figure 1: Detailed architecture of the network components. A. The image-to-latent model consists of
the ResNet50 backbone followed by three conv layers and four blocks of fully connected (FC) layers.
x2 depicts 2 FCs contained in the block. B. The motion autoencoder is composed of two stacked
BiLSTMs for the encoder and the same for the decoder. C. Relation networks consist of four FCs.Orig ref1
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Figure 2: Framework overview. A. Learning pose embedding on unpaired 3D poses. B. Learning
motion embedding on unpaired motions. C. Source pretraining of the image-to-latent. D. Adaptation
to unpaired in-the-wild videos via cross-modal alignment using a) contrastive learning, b) lower-order
non-local relation distillation on Z , and c) higher-order non-local relation distillation on V .

tation, z ∈ R32 (see Fig. 1A). The pose auto-encoder, {Ep, Dp} are FC networks operating on the 3D
pose y (17 joint 3D coordinates). We employ the pose auto-encoder architecture as used in Kundu et
al. [9].

The motion auto-encoder, {Em, Dm} is composed of bidirectional LSTMs [5] with 128 hidden units
operating on a fixed sequence length of 30 (see Fig. 1B). The encoder operates on the sequence of
pose embedding which is obtained by passing the pose sequence through the frozen pose encoder.
Similarly, the decoder outputs a sequence of pose embedding which is forwarded through the frozen
pose decoder to realize the reconstructed motion. At the encoder side, the concatenated final hidden
state of both forward and backward LSTMs are forwarded through a FC layer with tanh non-linearity
to obtain the motion embedding v ∈ R128. Similarly, at the decoder side, the output sequence of pose
embedding is obtained via a FC layer.

The relation networks constitute of simple fully-connected layers as shown in Fig. 1C. Here, the
motion relation networks are mappings defined from one instance to another in the same motion
space, i.e., Tv1 : V→V , Tv2 : V→V and Tv3 : V→V . Similarly, the pose transformations are expressed
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A. (    ,      )  pairs for non-local relational energy

Original sequence Slow backward Flip backward

Original sequence Slow backward Flip backward

Original sequence Slow backward Flip backward

flip-backward

slow-backward

B. (    ,      )  pairs to train the relational transformers

Original sequence

flip-backward

slow-backward

Original sequence

flip-backward

slow-backward

flip-backward
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Original sequenceOriginal sequence

Figure 3: Example relation pairs. A. Relation pair examples, for flip-backward and slow-backward,
constructed in the video modality, X̃ . Note that, to construct slow-backward pairs, the original sequence is
sampled at 15 FPS to enable a 30 FPS temporally slow video taken from the mid region (notice the blue box).
B. Relation pair examples constructed in the motion modality, Ỹ . Note that, we do not have access to any
cross-modal correspondence information.

A. Results on 3DPW (in-the-wild)

B. Results on LSP (in-the-wild)

C. Results on Web-dataset (in-the-wild)

Figure 4: Qualitative analysis. The 3D pose estimation results are shown on 3DPW, LSP, and Web-datasets, with
an alternate view. Predictions shown are obtained via Ours(SH→W). The failure cases (rare poses, inter-limb
occlusion, and high foreground-background clutter) are highlighted by results with red bases.

as, Tz1 : Z→Z , Tz2 : Z→Z and Tz3 : Z→Z . Fig. 3 example relation pairs in the video and motion
modalities.

Below, we elaborate more details of the pre-learning modules (see Fig. 2 for an overview).

a) Pose embedding. Human 3D pose follows a complex structural articulation constrained by the
kinematic plausibility limits [3]. In this work, the motivation to learn a pose embedding is of two folds.
Firstly, it is used to restrain the model from predicting implausible pose patterns by constraining the
solution space to follow a particular prior distribution. Secondly, the same embedding space is used
as the shared latent representation to define higher order relations for the cross-modal alignment.

We train an AAE [11], {Ep, Dp} on the unpaired 3D pose samples, y ∈ Y. Its latent embedding z ∈ Z
follows a uniform prior distribution U[−1, 1]32. The generative pose decoder Dp maps any random
vector z ∈ U[−1, 1]32 to a continuous human pose manifold (see Fig. 2A). Note that, a simple tanh
non-linearity on the neural output of the image-to-latent model ensures decoding of plausible pose
pattern (see Fig. 2C), thus constraining the solution space. Further, we minimize the modeling burden
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Table 3: Assets and the corresponding Licenses
Asset used License Links
CMU MoCap [1] CC BY-ND 4.0 Dataset, License
Human3.6M [7] Custom, for research purposes Dataset, License
MPI-INF-3DHP [13] Custom, for research purposes Dataset, License
Sports-1M [8] CC BY 3.0 License Dataset, License
SURREAL [17] Custom, for research purposes Dataset, License
3DPW [18] Custom, for research purposes Dataset, License

Table 4: Specifications of the machine used for training the complete pipeline.
CPU GPU RAM VRAM CUDA

Intel Xeom E5-2689 NVIDIA Tesla V100 256GB GB 32 GB V11.0

of the auto-encoder by decomposing the raw root-relative 3D locations into parent-relative local
unit vectors (i.e. view-invariant). Here, the view-variant information is retained in the coordinates
of the neck, left-hip, and right-hip joints with pelvis being their parent, as presented in the original
root-relative system. Thus, the neural output of the decoder Dp is required to be passed through a
forward-kinematic [19] module (FK in Fig. 2A) to obtain the final root-relative 3D pose. Here, the
pose embedding is trained to model both rigid view-variations and non-rigid 3D articulations.

b) Motion embedding. Next, we train the motion embedding, v ∈ V as the intermediate represen-
tation of a recurrent auto-encoder {Em, Dm}. We prepare fixed-length pose sequences, Y ∈ Ỹ to be
used as the motion samples (see Fig. 2B). Unlike auto-regressive models [20, 12], we do not feed
chained input to motion decoder Dm. As discussed before, the purpose of the motion embedding is
to lay a suitable ground to formalize higher order temporal relations among entities in the shared
latent space, Z . Thus, the recurrent encoder operates on the sequence of pose embeddings which is
obtained by passing the pose sequences through the frozen pose encoder, i.e. Z = Ep(Y ). The output
of the motion encoder, v = Em(Z) is fed as the only input to initialize the hidden states of the motion
decoder Dm. Dm outputs a sequence of reconstructed pose embeddings which are then fed to the pose
decoder to obtain the reconstructed pose sequence.

c) Pre-training on labeled source data. From the perspective of Unsupervised Domain Adap-
tation [4, 16], the SURREAL dataset can be seen as a labeled, synthetic source domain. The
source-specific image-to-latent model, Gs is trained by minimizing ‖Dp ◦Gs(xs) − ys‖, where ◦
denotes functional composition. Accordingly, our next objective is to adapt the source-trained model
to make it work for real images x ∈ X which are sampled from the unpaired in-the-wild videos,
i.e., the unlabeled target domain. During adaptation we learn a target-specific [10] image-to-latent
mapping G which is initialized from Gs. However, only a minimal set of parameters of Gs are allowed
to learn target-specific mapping [14] whereas others are kept frozen from source initialization.

6 Qualitative analysis

We extend the qualitative results for 3D human pose estimation from the main paper and show exten-
sive results on in-the-wild datasets in Fig. 5 and Fig. 4. The results shown are using Ours(SH→W)
model as described in the main paper. The datasets used are highly diverse in foreground appearance,
poses, and backgrounds. Even under such variations, the model generalizes to complex athletic
poses establishing the effectiveness of the learned pose embedding. The last row, separated by
the horizontal line shows the failure cases. Highly cluttered background, rarely seen poses, and
multi-level inter-limb occlusion pose a challenge for the model. Despite this, the predicted poses still
look plausible and quite close to the ground truth in most of the cases.

7 Reference to code and assets

We utilize the machine specifications mentioned in Table 4 for training and testing all our models. We
implement the model using the open source TensorFlow 1.0 [2] framework in Python3.8. Table 3 lists
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Figure 5: Qualitative analysis. The 3D pose estimation results are shown on Web-dataset, which consists of
highly diverse pose, background, and foreground apparel. Predictions shown are obtained via Ours(SH→W).
The failure cases (rare poses, inter-limb occlusion, and high foreground-background clutter) are highlighted by
results with red bases, below the horizontal bar.
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licenses of the assets used in our research. A sample codebase of the proposed approach is provided
at our project page1.
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