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Appendix
Robust Model Selection of Gaussian Graphical Models

A Algorithmic Details

In the population setting, NoMAD takes as input the pairwise distances dij , for all i, j in the observed vertex
set V

o, and returns an articulated set tree Top , (Pop, Aop, Eop) (see Definition 3.1). Its operation is divided
into two main steps: (a) learning Pop and Aop; and (b) learning Eop. These steps are summarized in the
following.

A.1 Learning Pop and Aop for Top

In Phase 1, Subroutine 3 identifies the ancestors in G
j using the pairwise distances dij for all i, j œ V

o. In
this phase, it returns a collection V of vertex triplets such that each triplet collection V œ V contains (and
only contains) all vertex triples that share an identical ancestor in G

j. The key component for this is to use
TIA (Test Identical Ancestor). In the Phase 2, Subroutine 3 enrolls each collection in V to either Vobs or
Vhid, such that Vobs (Vhid) contains the collection of vertex triplets for which their corresponding ancestors
are observed (hidden resp.), and observed ancestors are enrolled in the set Aobs. For identifying the observed
ancestors from V, Subroutine 3 does the following for each collection V œ V: it checks for a vertex triplet T

in V for which one vertex in the triplet T separates the other two. In the final phase, Subroutine 3 accepts dij

for each pair i, j œ V
o and Vhid, and learns the pairwise distance dij for each i œ V

o and j œ Ahid by finding
a vertex triplet T in a collection Vj œ Vhid such that T contains i. Then, in the next step, Subroutine 3
learns dij for each i, j œ Ahid by selecting the most frequent distance in �pq as defined in Section 3.4.

Procedure 2 TestIdenticalAncestor (TIA)

1: procedure TIA(U, W )
2: if for all x œ U, ÷ at least a pair y, z œ W such that

dU
x + dW

y = dxy and dU
x + dW

z = dxz then

3: Return True.
4: end if

5: Return False.
6: end procedure

We next present Subroutine 4 for clustering the vertices in the
set V

o \ Aobs. It accepts Aobs, Ahid, and {dij}iœV o,jœAhid , and
enrolls each vertex in V

o \ Aobs either in a leaf cluster (see
Phase 1 of Subroutine 4) or in an internal cluster ( see Phase
2 of Subroutine 4). Now, for the collection of leaf clusters L,
each cluster L œ L is associated to a unique element a œ A such
that L2 is separated from A \ a by a. Each cluster I œ I is
associated with a subset of ancestors I1 µ A, such that I2 is
separated from all other ancestors in A \ I1 by I1.

Procedure 7 NonBlockNeighbors
1: Input: An ancestor vertex u, Cu, Aop, and the extended distance

set Dext.
2: Output: Neighbors ”(u) of u such that they do not belong to the

clusters that contains u.
3: Initialize: ”(u) , Aop \

t
CœCu

C3.

4: for each x œ ”(u) do

5: if ÷ a vertex b œ Cu\ s.t. dux = dub + dbx then

6: ”(u) Ω ”(u) \ x

7: end if

8: end for

9: for each k, ¸ œ
!

”(u)
2

"
do

10: if duk + dk¸ = du¸ then

11: ”(u) Ω ”(u) \ ¸.
12: end if

13: end for

Subroutine 8 Learning Eop for Top

1: Input: The collection of leaf clusters L and internal clusters I,
C , L fi I, a subset Eleaf of Eop.

2: Output: An edge set Eop for Top.
3: Initialize: Eop Ω Eleaf .
4: for each u œ Aop do

5: Let C œ C be the cluster such that C3 – u

6: Get ”(u) from NonBlockNeighbors(u, C, Aop).
7: for each Pu œ Pop s.t. Pu – u do

8: for each v œ ”(u) do

9: Eop Ω Eop fi (Pu, {v}, u, v)
10: end for

11: end for

12: end for

13: Return The edge set Eop for Top.

We now discuss NonCutTest appears in Procedure 5. The goal of NonCutTest is to learn (a) the non-cut
vertices, and (b) potential cut vertices of a non-trivial block from a leaf cluster. NonCutTest accepts a
set W ™ V

o s.t. |W | Ø 3, and partitions the vertex set W into Ccut (the set of potential cut vertices) and
Cnon≠cut (the set of vertices which can not be a cut vertex). Then we use Subroutine 6 for learning (a) vertex
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Subroutine 3 Identifying Ancestors and Extending the Pairwise Distance Set

1: Input: Pairwise distances D = {dij }i,jœV o , where V o is the set of
observed vertices.

2: Return: A collection of vertex triplets Vobs (Vhid resp.) with ob-
served (hidden resp.) ancestors, the set Aobs (Ahid resp.) of observed
(hidden resp.) ancestors, the set of pairwise distances {dij } for each
pair i, j œ V o fi Ahid.

3: Initialize: Vobs, Vhid, ÂD, Dhid Ω ÿ, collection of vertex triplets

V ,
!

V o
3

"
, counter n = 1

Phase 1 – Clustering Star Triplets

4: for each U œ V do

5: Vn , {W µ V : TIA (U, W ) is True} fi U

6: if |Vn| > 1 then n = n + 1
7: end if

8: V Ω V fi Vn Û enrolling the collection Vn to V

9: end for

10: Return: V = {V µ
!

V
3

"
: each U œ V has the same ancestor },

Phase 2 – Labeling Ancestors

11: for each collection V œ V do

12: if ÷ a triplet V , {u, v, w} œ V s.t. duv + dvw = duw then

13: Vobs Ω Vobs fi V
14: Aobs Ω Aobs fi v

15: else

16: Vhid Ω Vhid fi V
17: end if

18: end for

19: Set Ahid , {ai|i œ [
-
Vhid

-
]} Û introduce one vertex for each element

in Vhid
Phase 3 – Learning the pairwise distance set {dij }i,jœV ofiAhid

20: for each Vi œ Vhid do

21: for each j œ V o
do

22: Find a triplet U œ Vi s.t U – j Û cf. Claim 3

23: ÂD Ω ÂD fi
!

(i, j) , dU
j

"

24: end for

25: end for

26: for each p ”= q œ Ahid do

27: Pick a pair of triplets Up œ Vp, Uq œ Vq .

28: �pq =
)

dxy ≠ (d
Up
x + d

Ur
y ) : x œ Up, y œ Uq

*
.

29: Dhid Ω Dhid fi
!

(p, q) , mode(�pq)
"

Û most frequent element

in Dpq
30: end for

31: Return Vobs, Vhid, Aobs, Ahid, ÂD, and Dhid.

Subroutine 4 LearnClusters

1: Input: Aobs, Ahid, and D, and A , Aobs fi Ahid.
2: Output: A collection of leaf clusters L and internal clusters I.
3: Initialize: L , (L1, L2, L3), I , (I1, I2, I3), and

L1, L2, L3, I1, I2, I3 Ω ÿ.
Phase 1 – Learning Leaf Clusters

4: for each x œ V o \ Aobs do

5: if ÷a œ A such that dxa + daaÕ = dxaÕ for all aÕ œ A \ {a} then

6: if ÷ L œ L such that L1 = a then

7: L2 Ω L2 fi {x}
8: else

9: L , (a, {x}, ÿ)
10: L Ω L fi L
11: end if

12: V o Ω V o \ {x}
13: end if

14: end for

15: Return L = {L : L2 œ 2V o\Aobs
s.t. L2 is separated from A \ L1 by L1 where |L1| = 1}.

Phase 2 – Learning Internal Clusters

16: for each x œ V o \ Aobs do

17: for each Ã µ 2A s.t. |Ã| > 1 do

18: for each pair k, ¸ œ
!

Ã
2

"
do

19: if there exists a pair (k, ¸) s.t. dxk + dk¸ = dx¸ or dx¸ +
d¸k = dxk then

20: end if

21: Break

22: end for

23: end for

24: if ÷ a I œ I such that I1 = Ã then

25: I2 Ω I2 fi {x}.
26: else

27: I , (Ã, {x}, ÿ)
28: I Ω I fi I
29: end if

30: end for

31: Return I = {I : I2 œ 2V o\Aobs
s.t. I2 is separated from A \ I1 by I1 where |I1| > 1}.

Procedure 5 NonCutTest

1: Input: A leaf cluster L œ L such that |L2| Ø 2.
2: Output: A set Ccut, Cnon≠cut , L2 \ Ccut, L3 ™ L2.
3: Initialize: Ccut with L2.
4: for each x œ L2 do

5: for each pair y, z œ L2 \ {x} do

6: Pick any arbitrary pair –1, –2 œ V o \ L2.
7: Ui , {x, y, –1} and Uj , {x, z, –2}.
8: if TIA(Ui, Uj ) is False then

9: end if

10: Break

11: Ccut Ω Ccut \ {x} Û x is not a non-cut vertex.
12: end for

13: end for

14: if (|Ccut|) > 1 ·
!

L1 /œ Aobs
"

then

15: Pick an arbitrary vertex a from Ccut and set L3 , a.
16: end if

17: Return Ccut, Cnon≠cut, and L3.
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Subroutine 6 Partitioning and learning local edges (PaLE)

1: Input: The observed vertex set V o, the collection of leaf clusters L and
internal clusters I.

2: Output: The vertex set Pop, the articulation points Aop, and a subset
Eleaf of the edge set Eop for Top. Each element E œ Eleaf is an ordered
quadruple such that E1, E2 ™ V o, and E3 œ E1, E4 œ E2.

3: Initialize Pop, Aop, Eleaf Ω ÿ.
4: Acluster , {c œ L1 : c œ Aobs}
5: Pop Ω Pop fi (Aobs \ Acluster), Aop , Aobs.

Phase 1 – Partitioning and Local Edge Learning w.r.t. the Leaf Clusters

6: for each L œ L s.t. (|L2| < 3) · (L1 /œ Aobs) do Û ancestor in the
leaf cluster is not observed.

7: Pick an arbitrary vertex a œ L2, L3 Ω a, L2 Ω L2 \ {a},
Aop Ω Aop fi {a}.

8: Pop Ω Pop fi L2 fi L3
9: Eleaf Ω Eleaf fi (L2, L3, L2, L3)

10: end for

11: for each L œ L s.t. (|L2| Ø 3) · (L1 /œ Aobs) do Û ancestor in the leaf
cluster is not observed.

12: Get Ccut, Cnon≠cut and L3 from NonCutTest(L).
13: Aop Ω Aop fi L3
14: Set B , Cnon≠cut fi L3 Û Cnon≠cut and L3 contains the non-cut

vertices and cut vertex, respectively.
15: Pop Ω Pop fi B fi

t
vœCcut\L3

{v} Û Ccut can contain multiple cut

vertices.
16: Eleaf Ω Eleaf fi

t
vœCcut\L3

(B, {v}, L3, v)

17: end for

18: for each L œ L s.t. (|L2| = 1) · (L1 œ Aobs) do Û ancestor in the leaf
cluster is observed.

19: Pop Ω Pop fi L2 fi L3
20: Eleaf Ω Eleaf fi (L2, L3, L2, L3)
21: end for

22: for each L œ L s.t. (|L2| > 1) · (L1 œ Aobs) do Û ancestor in the leaf
cluster is observed.

23: Get Ccut, Cnon≠cut and L3 from NonCutTest(L)
24: Set B , Cnon≠cut fi L1.

25: Pop Ω Pop fi B fi
t

vœCcut

{v}.

26: Eleaf Ω Eleaf fi
t

vœCcut

(B, {v}, L3, v)

27: end for

Phase 2 – Partitioning w.r.t. the Internal Clusters

28: for each I œ I do

29: for each i œ I1 do

30: if i /œ Aobs then

31: Find the L œ L s.t. L1 = i

32: I3 Ω I3 fi i, Aop Ω Aop fi {i}
33: end if

34: end for

35: Pop Ω Pop \ I3
36: B , {I2 fi I3} and Pop Ω Pop fi B. Û B is an internal non trivial

block.
37: end for

38: Return Pop, Aop, and a subset Eleaf of Eop.

set Pop, (b) articulation points Aop, and a subset of the edge set Eop for Top. The Subroutine 6 learns (a),
(b), and (c) from both leaf clusters and internal clusters. In the following, we list all the possible cases of leaf
clusters Subroutine 6 considered in learning Pop and Aop: Leaf clusters contains 1. At most two vertices with
hidden ancestor, 2. More than two vertices with hidden ancestor, 3. One vertex with observed ancestor, and
4. More than one vertex with observed ancestor. For each I œ I, Subroutine 6 checks whether i œ Aobs. If
i /œ Aobs, then the subroutine finds the leaf cluster L s.t. L1 – i.

A.2 Learning Eop for Top

The next goal of NoMAD is to learn to learn the edge set Eop for Aop. Precisely, NoMAD learns the neighbors
of each articulation point in Aop. The learning of Eop is divided into two steps: (a) Learn the neighbors of
each articulation points (appears in Procedure 3), and (b) use the information obtained from (a) to construct
Eop (appears in Procedure 4).

B Theory: Guaranteeing the Correctness of the NoMAD

In this section we will prove that NoMAD correctly learns the equivalence class. We star this section by
restating Theorem 4.2 from Section 4.
Theorem B.1. Consider a covariance matrix �ú whose conditional independence structure is given by the
graph G, and the model satisfies Assumption 4.1. Suppose that according to the problem setup in Section 3.1,
we are given pairwise distance dij of a vertex pair (i, j) in the observed vertex set V

o, that is, dij , ≠log|flij |
where flij , �o

ij
/


�o

ii
�o

jj
. Then, given the pairwise distance set {dij}i,jœV o as inputs, NoMAD outputs the

equivalence class [G].

Proof Outline. We show that NoMAD correctly learns the equivalence class by showing that it can correctly
learn Top. Given this, and using Definition 3.2, the entire equivalence class can be readily generated. We
show that NoMAD learns Top correctly by proving that (a) the vertex set Pop, (b) the articulation points Aop,
and (c) the edge set Eop are learnt correctly. Following is the outline for (a) and (b). From Section 3.3, it is
clear that NoMAD succeeds in finding the ancestors, which is the first step, provided the TIA tests succeed
(established in Lemma B.7).Then, Proposition B.13 establishes that NoMAD learns Pop and Aop correctly.
The proof correctness of this step crucially depends on identifying the non-cut vertices (c.f. Lemma B.12).
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Then, for establishing the correctness of NoMAD in learning Eop, NoMAD learns the neighbor articulation
points of each articulation point. Proposition B.14 shows that NoMAD correctly learns Eop.
Lemma B.1. Let G be a graph on vertex set V , and Tast(G) be the corresponding articulated set tree of G.
Then, Tast(G) is a tree.

Proof. We prove Tast(G) is a tree by showing that Top is connected and acyclic. Suppose on the contrary that
Tast(G) contains a cycle B

Õ. Then, B
Õ is a non-trivial block in G with no cut vertex. This would contradict

the maximality of the non-trivial blocks contained in the cycle B
Õ. Hence, any cycle is contained in a unique

non-trivial block in Tast(G). We now show that Top is connected. Recall that vertices in Tast(G) can either
be a non-trivial block or a singleton vertices not part of any non-trivial block. Consider any vertex pair (u, v)
in Tast(G). We will find a path from u to v. Suppose that u and v are non-singletons, and associated with
non-trivial blocks Bu and Bv respectively. Since, G is connected, ÷ a path between the articulation points
of Bu and Bv. Hence, u and v are connected in Tast(G). The other cases where one of them is a singleton
vertex or both are singleton vertices follows similarly.

We now show that NoMAD correctly learns [G]. For the graph G on a vertex set V , let G
j = (V j

, E
j) be

defined as in Subsection 3.1. Let A
j be the set of ancestors in G

j. Recall that NoMAD only observes samples
from a subset V

o ™ V
j of vertices. NoMAD uses {dij}i,jœV o to learn Top, which in turn will output [G].

Hence, each theoretical section first states a result of G
j assuming that the pair (V j

, E
j) is known.

Correctness in Learning Pop and Aop. We first establish that NoMAD correctly identifies ancestors in G
j.

In the following, we first identify the vertices in G which are ancestors in G
j. Then, in Lemma B.5, we show

the existence of at least two vertex triplets for each ancestor in G
j. Finally, in Proposition B.10, we show

that Subroutine 3 correctly identifies the star triplets in G
j. We start with introducing uw-separator.

Definition B.2 (uw-separator). Consider an arbitrary pair u, w œ V in the graph G. We say v œ V \ {u, w}
is a uw- separator in G if and only if any path fi œ Puw contains v.
Lemma B.3. A vertex a œ V

j is an ancestor in G
j if and only if a is an uw- separator in G, for some

u, w œ V .

Proof. (∆) Suppose a œ V
j is an ancestor in G

j. Then, we show that a is an uw- separator in G. Fix a triplet
T , {a

e

1, a
e

2, a
e

3} œ Va, where Va , collection of all triplets with ancestor a in G
j. Then, any path fi œ Pa

e
i a

e
j

contains a in G
j, for i, j = 1, 2, and 3. Thus, a

e

i
‹‹ a

e

j
|a, and a is an uw-separator with u = a

e

i
, and w = a

e

j
.

Furthermore, for a joint graph following is true for any vertex u and its corresponding noisy samples u
e:

u
e ‹‹ v|u for all v œ V

j \ {u, u
e}. Hence, we can conclude that ai ‹‹ aj | a, and a is an uw-separator in G.

(≈) Suppose that ÷ u, w œ V for which a œ V is an uw- separator in G. Then, we show that v is an ancestor
in G

j by constructing a triplet T with ancestor a. This construction directly follows from Definition B.2 and
Definition 3.4.

Lemma B.4. Let Vcut be the set of all cut vertices in G. Then, there does not exist any pair u, w œ V such
that b œ V \ Vcut is an uw- separator in G.

Proof. Let b œ V \ Vcut. Then, notice that b can be either (1) a non-cut vertex of a non-trivial block or a (2)
leaf vertex in G. For (1), by the definition of a block, any non-cut vertex ceases to be a uw-separator for any
u ”= b and w ”= b in V . For (2), since b is a leaf vertex, its degree is one, and hence, cannot be a uw-separator
for any u ”= b and w ”= b in V .

Lemma B.5. Let A
j be the set of all ancestors in G

j. Then, for each a œ A
j, there exists at least two triplets

U, W œ
!

V
o

3
"

for which a is the ancestor in G
j.
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Proof. We construct two triplets for any ancestor in G
j. Lemma B.4 states that only a cut-vertex in G

is an ancestor in G
j. First, let c be a cut-vertex of a non-trivial block B in G. Pick any two non-cut

vertices x, y œ B \ {c}. Then, consider the following two triplets in V
o : {x

e
, c

e
, –

e

1} and {y
e
, c

e
, –

e

2}, where
–1, –2 œ V \ B. Then both {x

e
, c

e
, –

e

1} and {y
e
, c

e
, –

e

2} share the ancestor c in G
j. Now, let c be a cut

vertex which is not in any non-trivial block. Consider two blocks Bi and Bj such that Bi ‹‹ Bj | c. Then,
consider the following pair: {i1, c, j1} and {i2, c, j2} s.t. i1, i2 œ Bi and j1, j2 œ Bj . Notice that {i

e

1, c
e
, j

e

1}
and {i

e

2, c
e
, j

e

2} in
!

V
o

3
"

share the ancestor c in G
j. Finally, if G is a tree on three vertices, then G has an

unique ancestor.

Claim 1. Let (a) {i, j, k} be a vertex triple in G, and (b) i
e be the corresponding noisy counterpart of i.

Then, j separates i and k if and only if j separates i
e and k in combined graph G

j

Proof. The forward implication directly follows from the construction of joint graph. For the reverse
implication suppose that in G

j, i
e ‹‹ k|j. We show that this implies i ‹‹ k|j and k in G. Suppose on the

contrary that i ”‹‹ k|j. That means ÷ a path fi between i and k that does not contain j. Now, notice that
fi fi {i, i

e} is a valid path between i
e and k in G

j that does not contain j, and it violates the hypothesis.

The following lemma relates an observed ancestor in a triplet T with the remaining pair.
Lemma B.6. Suppose that a triplet T œ

!
V

o

3
"

is a star triplet in G
j. A vertex v œ T is an uw≠ separator

for u, w œ T \ v if and only if v is the ancestor of T .

Proof. Suppose that a vertex v œ T is an uw≠ separator for u, w œ T \ v. We show that v is an ancestor. As
v is an uw≠ separator, i.e., u ‹‹ w|v. Suppose on the contrary that v

Õ ”= v is the ancestor of T in G
j. We

show that v is not an uw≠ separator for u, w œ T \ v. As v
Õ is the ancestor of T , u ‹‹ w|vÕ. (according to

Definition 3.4). This contradicts the hypothesis that u ‹‹ w|v. Thus, v and v
Õ are identical. Therefore, v is

the ancestor of {u, v, w}. The reverse implication follows from Definition 3.4.

We will now prove the correctness of the TIA test. We proceed with the following claim.
Claim 2. Suppose that U and W œ

!
V

o

3
"

are star triplets with non-identical ancestors ru and rw, resp. Then,
there exists a vertex u œ U and a pair, say w2, w3 œ W , such that all paths fi œ Puwi for i = 1, 2 contain both
ru and rw.

Proof. Without loss of generality, let W = {w1, w2, w3}. We prove this claim in two stages. In the first stage,
we show that for each vertex u œ U there exists at least a pair w2, w3 œ W such that u ‹‹ {w2, w3}|rw.
Then, in the next stage we show that there exists a vertex u œ U such that u ‹‹ rw|ru. For the first part,
suppose on the contrary that there exists a vertex u œ U and a pair w2, w3 œ W such that there exists a path
fi2 œ Puw2 and a path fi3 œ Puw3 such that rw /œ fi2 and rw /œ fi3. Then, one can construct a path between
w2 and w3 that does not contain rw, which violates the hypothesis that W is a star triplet. Now, in the next
step of proving the claim, we show that there exists a vertex u œ U such that u ‹‹ rw|ru. Now, suppose that
for all u œ U there exists a path between u and rw, that does not contain ru. We will next show that this
implies there has to be a path between u1 and u2 (u1, u2 œ U) that does not include ru. We will show this
constructively. Let s be the last vertex in the path fiu1rw that is also contained in fiu2rw . Note that fiu1s and
fiu2s are valid paths in the graph, and that their concatenation is a valid path between u1 and u2. This proves
that u1 and u2 are connected by a path that is not separated by ru, and hence contradicting the hypothesis
that U is a star triplet. Finally, let u

Õ œ U be the vertex for which u
Õ ‹‹ rw | ru. Then, there exists a triplet

{u
Õ
, w2, w3} such that both ru and rw separates u

Õ and w2, and both ru and rw separates u
Õ and w3.

Using Claim 2, we now show the correctness of our TIA test. Recall that the TIA (U, W ) accepts triplets
U, W œ

!
V

o

3
"
, and returns True if and only if U and W share an ancestor in G

j. Also recall the following
assumption: Let U, W œ

!
V

3
"

\ Vstar fi Vsep. Then, (i) there are no vertices x œ U and a œ W that satisfy
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d
U

x
+ d

W

a
= dxa, and (ii) there does not exist any vertex r œ V and x œ U for which the distance dxr satisfies

relation in equation 1.

Lemma B.7. (Correctness of TIA test) Fix any two vertex triplets U ”= W œ
!

V
o

3
"
. TIA(U, W ) returns

True if and only if U and W are star triplets in G
j with an identical ancestor r œ V .

Proof. From Subroutine 2 returning TRUE is same as checking that for all x œ U , there exist at least two
vertices y, z œ W such that both of the following hold

d
U

x
+ d

W

y
= dxy, (2)

d
U

x
+ d

W

z
= dxz. (3)

Suppose that U and W are star triplets with an identical ancestor r œ V . We prove by contradiction. Let
a œ U and assume that there is at most one vertex x œ V such that d

U

a
+ d

W

x
= dax. Therefore, one can find

two vertices y1, y2 œ V such that
d

U

a
+ d

W

yi
”= dayi , i = 1, 2. (4)

However, from our hypothesis that U and W are star triplets with the common ancestor r, we know that
d

U

a
= dar and d

W

yi
= dryi , for i = 1, 2. This, along with equation 4, implies that r does not separate a from y1

or y2. For i = 1, 2, let fiayi be the path between a and yi that does not include r. We will next show that this
implies there has to be a path between y1 and y2 that does not include r. We will show this constructively.
Let s be the last vertex in the path fiay1 that is also contained in fiay2 . Note that fiy1s and fisy2 are valid
paths in the graph, and that their concatenation is a valid path between y1 and y2. This proves that y1 and
y2 are connected by a path that is not separated by r, and hence contradicting the first hypothesis.

For the reverse implication, we do a proof by contrapositive. Fix two triplets U and W . Suppose that U and
W are not star triplets with an identical ancestor in G

j. We will show that this implies that there exists at
least one vertex in U for which no pair in W satisfies both Eq. equation 2 and Eq. equation 3. To this end,
we will consider all three possible configurations for a triplet pair U and W where they are not star triplets
with an identical ancestor in G

j: 1. U and W are star triplets with a non-identical ancestor in G
j, 2. Both

U and W are non-star triplets in G
j, 3. U is a star triplet and W is a non-star triplet in G

j. Then, for each
configuration, we will show that there exists at least a vertex x œ U for which no pair in W satisfies both Eq.
equation 2 and Eq. equation 3

U and W are star triplets with non-identical ancestors. Let U and W be two star triplets with two
ancestor ru and rw, respectively, such that ru ”= rw. As U and W are star triplets, d

U

x
and d

W

y
returns the

distance from their corresponding ancestors dxru for all x œ U , and dyrw for all y œ W , respectively. Now,
according to the Claim 2, there exists a vertex triplet, say {u, w1, w2} w.l.o.g., where u œ U and w1, w2 œ W

such that u is separated from wi for i = 1, 2 by both ru and rw. Furthermore, the same u identified above is
separated from rw by ru. This implies that duwi = duru + druwi = duru + drurw + drwwi for i = 1, 2. As we
know that ru and rw are not identical, drurw ”= 0, which implies that duwi ”= duru + drwwi , where i = 1, 2.
Thus we conclude the proof for the first configuration by showing that there exists a vertex u œ U and a pair
w1, w2 œ W such that the identities in equation 2 and equation 3 do not hold.

U is a star triplet and W is a non-star triplet in G
j
. We show that there exists a triplet {y, a, b} where

y œ U and a, b œ W such that identities in equation 2 and equation 3 do not hold. Let W be a non-star
triplet, and U be a star triplet with the ancestor r œ V in G

j. Now, as U is a star triplet, d
U

x
returns the

distance from its ancestor dxr for all x œ U . Suppose that there exists a vertex pair x œ U and a œ W for
which dxr + d

W

a
= dax. We know that for a non-star triplet W , the computed distance d

W

a
”= dar for any

a œ W from Assumption 4.1. Thus, for the pair {x, a}, dxr + dar ”= dxa. This implies from the Fact 1 that
x ”‹‹ a | r. Similarly, we can conclude that x ”‹‹ b | r. Then, y ‹‹ a | r and y ‹‹ b | r. Otherwise, one can
construct a path between y and x that does not contain r which violates the assumption that U – x, y is a
star triplet with ancestor r. As y ‹‹ a | r and y ‹‹ b | r, using the Fact 1 we have that dyr + dra = dya and
dyr + drb = dyb. As a œ W , and dar ”= d

W

a
, thus, dyr + d

W

a
”= dya. Similarly, for the pair {y, b}, we have that

dyr + d
W

b
”= dyb. Thus, for the triplet {y, a, b}, the identities in Eq. equation 2 and equation 3 do not hold.
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U and W are both non-star triplets in G
j
. The proof for this configuration follows from the Assump-

tion 4.1.

Notice that these three cases combined proves that the TIA test returns TRUE if and only if the triplets
considered are both start triplets that share a common ancestor.

Now recall that the first phase of Subroutine 3 identifies the star triplets in G
j, the observed ancestors in G

j,
and outputs a set Ahid such that |Ahid| equals to the number of hidden ancestors in G

j. Formally, the result
is as follows.
Proposition B.8 (Correctness of Subroutine 3 in identifying ancestors). Given the pairwise distances
{dij}i,jœV o , Subroutine 3 correctly identifies (a) the star triplets in G

j, (b) the observed ancestors in G
j, and

(b) introduces a set Ahid such that |Ahid| equals to the number of hidden ancestors in G
j

Proof. Combining Lemma B.5 and Lemma B.7, we prove that the Subroutine 3 successfully cluster the
star triplets in G

j. Then, it partitions V into Vobs and Vhid s.t. following is true: for any triplet collection
Vi œ Vobs (V œ Vhid resp.), the ancestor of the triplets in Vi is observed (hidden resp.) Finally, Subroutine 3
outputs a set Ahid s.t. |Ahid| = |Vhid|.

We show the correctness of Subroutine 3 in learning (a) {dij}ieœV o,jœAhid , and (b) {dij}i,jœAhid .
Claim 3. Fix any a œ A

j, where A
j = set of all ancestors. Let Va be the collection of vertex triplets which

shares common ancestor. Then, any i œ A
j is s.t. at least one triplet in Va.

Proof. Fix any ancestor a œ A
j. Construct a triplet Ti for a fixed vertex i ”= a œ V

j s.t. a is the ancestor of
Ti in G

j. From Lemma B.4: a is a cut vertex in G. Thus, fixing i and a, find another vertex w œ V such
that a separates i and w in G. Hence, from Lemma B.3 we can conclude the following: a is the ancestor for
the triplet Ti , {i, a, w} in G

j.

Claim 4. Let Ui and Uj be both star triplets with ancestor i and j respectively, and i ”= j. Let x œ Ui and
y œ Uj be a vertex pair such that x ‹‹ y|i and x ”‹‹ y|j Then, x ”‹‹ i|j.

Proof. x ‹‹ y|i implies any path between x and y contains i. x ”‹‹ y|j implies ÷ a path fi between x and y

that does not contain j. Notice that, the path fi contains i. As fi contains both x and i, ÷ a path between
x and i which does not contain j. Hence, x ”‹‹ i|j.

Lemma B.9. For any pair of distinct ancestors i, j œ A
j, pick arbitrary triplets Ui œ Vi and Uj œ Vj . Define

the set D(Ui, Uj) as follows:

�(Ui, Uj) ,
)

dxy ≠ (dUi
x

+ d
Uj
y

) : x œ Ui, y œ Uj

*
(5)

The most frequent element in �(Ui, Uj), that is, mode(�ij) is the true distance dij with respect to G
j.

Proof. To aid exposition, we suppose that Ui = {x1, x2, x3} and Uj = {y1, y2, y3}. We also define for any
x œ Ui and y œ Uj : �(x, y) , dxy ≠

1
d

Ui
x

+ d
Uj
y

2
. Observe that according to the Claim 2, for two start triplets

Ui, Uj œ
!

V
o

3
"

with non-identical ancestors, there exist a vertex, say x1 œ Ui and a pair, say y1, y2 œ Uj such
that following is true: x1 ‹‹ yi|i and x1 ‹‹ yi|j for i = 1, 2 Furthermore, the same x1 (identified above) is
separated from j by i, that is, x1 ‹‹ j|i. This similar characterization is also true for a vertex triplet where
one vertex is from Uj and a pair from Ui. Now observe that

�(x1, y1) = dx1y1 ≠ dx1i ≠ dy1j = dx1j + dy1j ≠ dx1i ≠ dy1j = dx1j ≠ dx1i = dij .

Similarly, it can be checked that �(x1, y2) = dij . The similar calculation can be shown for the other triplet
(where one vertex is from Uj and a pair from Ui). In other words, we have demonstrated that 4 out of the 9
total distances in D(Ui, Uj) are equal to dij . All that is left to be done is to show that no other value can
have a multiplicity of four or greater.
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Now, our main focus is to analyze the five remaining distances, i.e., �(x3, y3), �(x3, y1), �(x3, y2), �(x1, y3),
and �(x2, y3), for two remaining configurations: (a) x3 is separated from y3 by only one vertex in {i, j}, and
(b) x3 ”‹‹ y3|i and x3 ”‹‹ y3|j. For configuration (a), consider without loss of generality that x3 ‹‹ y3|i and
x3 ”‹‹ y3|j. Then, according to Claim 4, we have the following two possibilities:

1. x3 ‹‹ y3|i, x3 ”‹‹ y3|j, and x3 ‹‹ j|i: As x3 ”‹‹ y3|j, it must be the case that x3 ‹‹ y‹ |j for ‹ = 1, 2.
Otherwise, one can construct a path between y1 and y‹ which does not contain j, and that violates
the hypothesis that Uj = {y1, y2, y3} is a star triplet. Next, notice that in this set up, x3 ‹‹ j|i. Now,
notice the following:

�(x3, y‹) = dx3y‹ ≠ dx3i ≠ dy‹ j = dx3j + dy‹ j ≠ dx3i ≠ dy‹ j = dx3i + dij ≠ dx3i = dij .

Therefore, for this set up, six distances are equal to dij .

2. x3 ‹‹ y3|i, x3 ”‹‹ y3|j, and x3 ”‹‹ j|i: As x3 ”‹‹ y3|j, it must be the case that x3 ‹‹ y‹ |j for ‹ = 1, 2.
Otherwise, one can construct a path between y1 and y‹ which does not contain j, and that violates
the hypothesis that Uj = {y1, y2, y3} is a star triplet. �(x3, y‹) = dx3y‹ ≠ dx3i ≠ dy‹ j = dx3j + dy‹ j ≠
dx3i ≠ dy‹ j = dx3j ≠ dx3i. Now, dx3j ≠ dx3i equals to dij implies that x3 ‹‹ j|i which contradicts the
setup. Therefore, �(x3, y‹) not equals to dij . Therefore, for this set up, even if three remaining
distances are equal, correct dij will be chosen.

In the following we will analyze the distance between �(x3, y3) and �(x3, y‹) using the following assumption
common in graphical models literature: For any vertex triplet i, j, k œ

!
V

o

3
"
, if i ”‹‹ j|k, then |dij ≠ dik ≠ djk| >

“.

�(x3, y3) ≠ �(x3, y‹) = dx3y3 ≠ dx3i ≠ dy3j ≠ dx3y‹ + dx3i + dy‹ j ,

=dx3i + dy3i ≠ dx3i ≠ dy3j ≠ dx3j ≠ dy‹ j + dx3i + dy‹ j = dy3i + dx3i ≠ dy3j ≠ dx3j = dx3y3 ≠ dy3j ≠ dx3j .

Now, as x3 ”‹‹ y3|j according to Assumption 5.2, |�(x3, y3) ≠ �(x3, y‹)| > “ for ‹ = 1, 2. For configuration
(b), we analyze the five remaining distances, i.e., �(x3, y3), �(x3, y1), �(x3, y2), �(x1, y3), and �(x2, y3),
and show that these five distances can not be identical which in turn will prove the lemma.

x3 ”‹‹ y3|i and x3 ”‹‹ y3|j. For this configuration we note the following two observations:

O1 As x3 ”‹‹ y3|j, it must be the case that x3 ‹‹ y‹ |j for ‹ = 1, 2. Otherwise, one can construct a path
between y1 and y‹ which does not contain j, and that violates the hypothesis that Uj = {y1, y2, y3}
is a star triplet.

O2 Similarly, as x3 ”‹‹ y3|i, it must be the case that x‹ ‹‹ y3|i for ‹ = 1, 2. Otherwise, one can
construct a path between x1 and x‹ which does not contain i, and that violates the hypothesis that
Ui = {x1, x2, x3} is a star triplet.

Recall that our goal for configuration (b) is to analyze the distances �(x3, y3), �(x3, y1), �(x3, y2), �(x1, y3),
and �(x2, y3). We start with the distance pair �(x3, y‹) and �(x3, y3) for ‹ = 1, 2.

�(x3, y‹) (a)= dx3j + dy‹ j ≠ dx3i ≠ dy‹ j = dx3j ≠ dx3i,

where (a) follows from the O1. Furthermore, the distance �(x3, y3) = dx3y3 ≠ dy3j ≠ dx3i. Now, �(x3, y‹)
equals to �(x3, y3) implies that dx3j ≠ dx3i = dx3y3 ≠ dy3j ≠ dx3i which is equivalent to saying that dx3j + dy3j

equals to dx3y3 . Then, dx3j + dy3j = dx3y3 will imply x3 ‹‹ y3|j – which contradicts the hypothesis of the
configuration that x3 ”‹‹ y3|j.

24



Published in Transactions on Machine Learning Research (04/2025)

Thus, �(x3, y3) is not equal to �(x3, y‹) for ‹ = 1, 2. (based on O1). Similarly, (based on the O2) �(x3, y3)
is not equal to �(x‹ , y3) for ‹ = 1, 2. Thus, the distance �(x3, y3) is not equal to any of the following
distances: �(x3, y1), �(x3, y2), �(x1, y3), and �(x2, y3).

Now all that remains to prove the lemma is to show that the 4 (remaining) distances �(x3, y1), �(x3, y2),
�(x1, y3), and �(x2, y3) are not identical. To this end, we analyze two distances: �(x1, y3) and �(x3, y1).
First notice from the O2 that �(x1, y3) = dx1i + dx3i ≠ dx3i ≠ dy3j equals to dy3i ≠ dy3j , and �(x3, y1) =
dx3j + dy3j ≠ dx3i ≠ dy3j equals to dx3j ≠ dx3i. As neither i nor j is separating x3 from y3, the event that
dy3i ≠ dy3j equals to dx3j ≠ dx3i happens only on a set of measure zero. We end this proof by computing the
distance between �(x3, y3) and �(x3, y‹ .

�(x3, y3) ≠ �(x3, y‹) = dx3y3 ≠ dy3j ≠ dx3i ≠ dx3j ≠ dy‹ j + dx3i + dy‹ j = dx3y3 ≠ dy3j ≠ dx3j .

Now, as x3 ”‹‹ y3|j, according to Assumption 5.2, |�(x3, y3) ≠ �(x3, y‹)| > “ for ‹ = 1, 2.

Lemma B.10 (Correctness in extending the distances.). Given {dij}i,jœV o , Subroutine 3 correctly learns (a)
{dij}i,jœV ofiA and (b) {dij}i,jœAhid , where A , Aobs fi Ahid.

Proof. Follows directly from Claim 3 and Lemma B.9.

Lemma B.11 (Correctness in learning clusters). Subroutine 4 correctly learns leaf clusters and internal
clusters.

Proof. As the distances {dij}i,jœAhid and {dij}i,jœV ofiAhid are learned correctly by Subroutine 3, where V
o

and Ahid is the set of observed vertices, and hidden ancestors, respectively, the correctness of learning the
leaf clusters and internal clusters follows from Fact 1.

Lemma B.12. Let L µ 2V be a subset of vertices in G s.t. only noisy samples are observed from the
vertices in L. Then, ÷ a vertex v œ L, where v œ Vcut, s.t. v separates L \ {v} from the remaining vertices
v

Õ œ Vcut \ {v} Let L
e be the noisy counterpart of L. The noiseless counterpart of x

e is a non-cut vertex if
and only if ÷ at least a pair y

e
, z

e œ L
e \ {x

e} such that TIA ({x
e
, y

e
, –

e

1}, {x
e
, z

e
, –

e

2}) returns False, where
–

e

1, –
e

2 œ V
j \ L

e.

Proof. (∆) Suppose that x is a non-cut vertex of a non-trivial block in G. We show the existence of a pair
y

e
, z

e œ L
e \ {x

e} in V
j such that TIA ({x

e
, y

e
, –1}, {x

e
, z

e
, –

e

2}) returns False, where –
e

1, –
e

2 œ V
j \ L

e.
From Section 3 we have that any non-trivial block in G has at least three vertices. Hence, there exists
another vertex y

e œ L
e for which the noiseless counterpart is a non-cut vertex. We will show that one

of {x
e
, y

e
, –

e

1} and {x
e
, z

e
, –

e

2} is not a star triplet, where z
e œ L

e \ x
e
, y

e, and –
e

1, –
e

2 œ V
j \ L

e. Then,
the TIA ({x

e
, y

e
, –

e

1}, {x
e
, z

e
, –

e

2}) being False will follow from Lemma B.7. As x and y both are non-cut
vertices, there does not exist a cut vertex that separates x and y in G, which implies that there does not exist
an ancestor a in G

j s.t. x
e ‹‹ y

e|a. Hence, {x
e
, y

e
, –

e

1} is not a star triplet in G
j. Then, the proof follows

from Lemma B.7.

(≈ ) Notice that the pair ({x
e
, y

e
, –

e

1}, {x
e
, z

e
, –

e

2}) can not share an ancestor, as it would violate the claim
that {x

e
, y

e
, z

e} is in a leaf cluster. Then, from Lemma B.7 we have that if TIA ({x
e
, y

e
, –

e

1}, {x
e
, z

e
, –

e

2})
returns False, then at least one of the triplets is a non-star triplet, which rules out the existence of star
triplets with non-identical ancestor. Suppose that {x

e
, y

e
, –

e

1} is a non-star triplet. As –
e

1 /œ L
e, an ancestor

separates x
e and –

e

1, and y
e and –

e

1. Then, the ancestor identified above does not separate x
e and y

e. Hence
in G, there does not exist a cut vertex that separates x and y.

Unidentifiability of the articulation point from a leaf cluster. According to Lemma B.12 the NonCutTest
returns the non-cut vertices of a non-trivial block from a leaf cluster, and the next (immediate) step is to
learn the cut vertices of the non-trivial blocks. We now present a claim which shows a case where identifying
the articulation point from a leaf cluster is not possible. This ambiguity is exactly the ambiguity (in robust
model selection problem) of the label swapping of the leaf vertices with their neighboring internal vertices of a
tree-structured Gaussian graphical models Katiyar et al. (2019).
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Claim 5. Let (i) a vertex v œ Vcut separates a subset L µ 2V of vertices from any v
Õ œ Vcut \ v where L

contains at least one leaf vertex, and (ii) L
e be the noisy counterpart of L. Then, there exist at least two vertices

x
e

1, x
e

2 œ L
e fi {v

e} such that TIA({x
e
, y

e
, –

e

1}, {x
e
, z

e
, –

e

2}) returns True for any pair y
e
, z

e œ L
e fi {v

e}
where x

e œ {x
e

1, x
e

2}, and –
e

1, –
e

2 œ V
j \ L

e fi {v
e}.

Proof. As v is a cut vertex, v
e ‹‹ y

e|v, v
e ‹‹ –

e

1|v, and y
e ‹‹ –

e

1|v. Here, v is a unique separator since no other
cut vertex (or ancestor in G

j) separates v
e and y

e. Hence, v is the ancestor of {v
e
, y

e
, –

e

1} in G
j. Similarly, one

can construct another triplet {v
e
, x

e
, –

e

1} which has an ancestor v in G
j. Hence, TIA({v

e
, y

e
, –

e

1}, {v
e
, x

e
, –

e

2})
will return True. Now, let us consider a leaf vertex x1 in L. Now, x

e

1 ‹‹ –
e

1|v, x
e

1 ‹‹ y
e|v, and –

e

1 ‹‹ y
e|v.

Hence, v is the ancestor of {x
e

1, y
e
, –

e

1}. Similarly, one can construct another triplet such that v is the ancestor
of {x

e

1, x
e
, –

e

2}. Hence, TIA({x
e

1, y
e
, –

e

1}, {x
e

1, x
e
, –

e

2}) will return True.

Proposition B.13. Suppose that Subroutine 6 is invoked with the correct leaf clusters and internal clusters.
Further suppose that NonCutTest succeeds in identifying the non-cut vertices of a non-trivial block. Then,
Subroutine 6 correctly learns Pop and Aop for Top.

Proof. According to Lemma B.12, Subroutine 6 correctly learns the non-cut vertices of any non-trivial block
I with more than one cut vertices. If the cut vertex is observed, then it is identified in Subroutine 3, and
declared as one the articulation points of the vertex I in Pop. Otherwise, the noisy counterpart belongs to a
leaf cluster associated with an hidden ancestor, and the cut vertex be identified by selecting the label of the
leaf cluster which is associated with the hidden ancestor (unobserved cut vertex of non-trivial block.)

We now establish the correctness of NoMAD in the learning the edge set Eop for Top. This goal is achieved
correctly by Procedure NonBlockNeighbors of NoMAD.
Proposition B.14. Suppose that Procedure 4 is invoked with the correct Pop and Aop. Then, Procedure 4
returns the edge set Eop correctly.

Proof. Procedure NonBlockNeighbors correctly learns the neighbors of any fixed articulation point in
Aop by ruling out the non-neighbor articulation points in Top. First, the procedure gets rid of the articulation
points which are separated from the articulation points of the same vertex in Aop. Then, from the remaining
articulation points it chooses the set of all those articulation points such that no pair in the set is separated
from each other by the fixed articulation point. Then, Procedure 4 creates edges between vertices which
contains the neighboring articulation points.

Constructing the Equivalence Class. Finally, in order to show that we can construct the equivalence
class [G] from the articulated set tree Top, we note some additional definitions in the following. For graph
G, let Bnon-cut be the set of all non-cut vertices in a non-trivial block B. Define Bnon-cut ,

t
BœBNT Bnon-cut,

where BNT is the set of all non-trivial blocks. Let a set Fi referred as a family be defined as {v : deg(v) =
1 and {v, i} œ E(G)} fi {i} where E(G) is the edge set of G, and let F =

t
iœV

Fi. Let K be the set
of cut vertices whose neighbors do not contain a leaf vertex in G. For any vertex k œ K, let a family
Fk œ F be such that there exists a vertex f œ Fk such that {k, f} œ E(G). For example, in Fig. 1a,
F = {{10, 11, 12, 13}, {14, 15, 16}, {17, 20, 21}}; two sets {1, 2, 3}, {18, 19} in Bnon-cut, and K = {4, 6, 7, 8, 9}.
Also, for example, F4 = {10, 11, 12, 13}. For any arbitrary graph ÂG, let Bnon-cut( ÂG), F( ÂG), and K( ÂG) be the
corresponding sets from ÂG.

Now, notice that in Top, each vertex k œ K has at least an edge in Top. Let Nart(k) be the neighbors of
k œ K in the edge set Eop returned for Top. Now, notice that as as long as Bnon-cut, F , and K are identified
correctly in Top, and the following condition holds in Eop for any i œ Nart(k) for each k œ K: (a) if i œ K,
then {i, k} œ E(G), and (b) otherwise, there exists a vertex j œ Fk such that {j, k} œ E(G). Informally,
identifying Bnon-cut and F correctly, makes sure that vertices that constructs the local neighborhoods of any
graph in [G] are identical; identifying K correctly, and satisfying the above-mentioned condition makes sure
that the correct articulation points are recovered. Notice that the sets Bnon-cut, F , and K are identical in all
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the graphs in Fig. 2. Following proposition shows that the sets Bnon-cut, F , and K are identified correctly
from Top.

Lemma B.15. Let ÂG be an arbitrary graph. Then, ÂG œ [G] if and only if the following holds:

1. Bnon-cut( ÂG) = Bnon-cut(G), F( ÂG) = F(G), and K( ÂG) = K(G).

2. For any vertex k œ K, let a family Fk œ F be such that there exists a vertex f œ Fk such that
{k, f} œ E( ÂG). Now, for any neighbor i œ N(k): (a) if i œ K, then {i, k} œ E( ÂG), and (b) otherwise,
there exists a vertex j œ Fk such that {j, k} œ E( ÂG).

Proof. (∆) The forward implication follows from Definition 3.2.

(≈) For the reverse implication, notice that the first condition is associated with the equality between sets.
Bnon-cut( ÂG) = Bnon-cut(G) implies non-cut vertices are identified correctly, and F( ÂG) = F(G) implies families
are identified correctly. The second condition implies that an edge associated with a vertex k œ K will have
an ambiguity when the other vertex is from a family. Recall that from Definition 3.2, the label of a cut vertex
can be swapped with it’s neighbor leaf vertices.

The reverse implication of the above-mentioned proof can be understood as follows: Identifying Bnon-cut and
F ensures that essentially the local structures are identical between G and ÂG. Recovering K correctly and
satisfying the second condition ensure that these local structures are correctly attached at the appropriate
points.
Proposition B.16 (Correctness in Learning the Equivalence Class). Suppose that Pop, Aop, and Eop returned
by Top is correct. Then, following is true: (a)The sets Bnon-cut, F , and K are identified correctly, and (b) the
condition is true for Nart(k) for each k œ K.

Proof. We first show that NoMAD correctly identifies the sets Bnon-cut, F , and K. By Lemma B.12,
Subroutine 6 correctly identifies the set Bnon-cut. Now, recall that each F œ F is a set of vertices constructed
with a cut vertex and its neighbor leaf vertices. Hence, each family F œ F is captured in one of the leaf
clusters returned by Subroutine 4. As Subroutine 6 correctly identifies the non-cut vertices from each leaf
cluster, F is identified correctly. Finally, by Claim 5, the ambiguity in learning an articulation point is
present only when a cut vertex has leaf vertex as it’s neighbor; but K does not contain such cut vertices.
Hence, Subroutine 6 correctly learns K. We now show that above-mentioned condition is satisfied for the
neighbor articulation points in Nart(k) for any k œ K. As K are identified correctly by Subroutine 6, and
the Procedure 4 returns correct Nart(k), it is clear that if any neighbor articulation point i œ Nart(k) fl K,
then {i, k} œ E(G). Now, suppose that i /œ Nart(k) fl K. Then, from Definition 3.2, the label of a cut vertex
can be swapped with it’s neighbor leaf vertices. As each family F œ F are identified correctly, there exists a
vertex j œ Fk (which is an unidentified cut vertex in G) such that {i, j} œ E(G).

C Sample Complexity Result

Recall that NoMAD returns the equivalence class of a graph G while having access only to the noisy samples
according to the problem setup in Section 3.1. But, in the finite sample regime, instead of the population
quantities, we only have access to samples. We will use these to create natural estimates ‚flij , for all i, j œ V

o

of the correlation coe�cients given by ‚flij , ‚�o
ij

‚�o
ii ‚�o

jj

, where „�o
ij = 1

n

q
n

k=1 y
(k)
i

y
(k)
j

. Indeed, these are

random quantities and therefore we need to make slight modifications to the algorithm as follows:

Change in the TIA test. We start with the following assumption: For any triplet pair U, W œ
!

V

3
"

\ Vstar fi
Vsep and any vertex pair (x, a) œ U ◊ W , there exists a constant ’ > 0, such that

--dU

x
+ d

W

a
≠ dxa

-- > ’. As
we showed in Lemma B.7, for any pair U, W œ

!
V

3
"

\ Vstar fi Vsep, there exists at least one triplet {x, a, b}
where x œ U and a, b œ W such that dxa ≠ d

U

x
≠ d

W

a
”= 0 and dxb ≠ d

U

x
≠ d

W

b
”= 0. Hence, the observation
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in Lemma B.7 motivates us to replace the exact equality testing in the TIA test in Definition 3.5 with the
following hypothesis test against zero: max

Ó--- ‚dxa ≠ ‚dU

x
≠ ‚dW

a

--- ,

--- ‚dxb ≠ ‚dU

x
≠ ‚dW

b

---
Ô

Æ ›, for some › <
’

2 .

Change in the Mode test. In order to compute the distance between the hidden ancestors in the finite
sample regime, we first recall from (the proof of) Lemma B.9 that there are at least 4 instances (w.l.o.g.)
�(x1, y1), �(x1, y2), �(x2, y1), and �(x2, y2) where �(x, y) where x œ Ui and y œ Uj such that equals to dij .
We also showed that no set of identical but incorrect distance has cardnilaity more than two. Hence, In the
finite sample regime, we replace the mode test in Subroutine 3 with a more robust version, which we call the
‘d ≠ mode test, where ‘d < min( ›

14 , “) based on the following definition.
Definition C.1 (‘d ≠ mode). Given a set of real numbers {r1, . . . , rn}, let S1, . . . , Sk be a partition where
each r, r

Õ œ Si is such that |r ≠ r
Õ| < ‘d for each i. Then, the ‘d-mode of the this set is defined as selecting an

arbitrary number from the partition with the largest cardinality.

In the finite sample regime, we run NoMAD with the mode replaced by the ‘d-mode defined above such that
‘d < min( ›

14 , “). We will call this modified mode test as the ‘d-mode test.

Change in Separation test. For any triplet (i, j, k) œ
!

V
o

3
"
, in order to check whether i ‹‹ j|k, instead of

the equality test in Fact 1, we modified the test for the finite sample regime as follows: | ‚dij ≠ ‚dik ≠ ‚djk| <
‘d
6 .

We now introduce two new notations to state our main result. Let flmin(p) = min
i,jœ(p

2)|flij | and Ÿ(p) =
log((16 + (flmin(p))2

‘
2
d
)/(16 ≠ (flmin(p))2

‘
2
d
)), where ‘d = min( ›

14 , “), where “ is from Assumption 5.2.
Theorem C.3. Suppose the underlying graph G of a faithful GGM satisfies Assumptions 5.2-5.3. Fix
any · œ (0, 1]. Then, there exists a constant C > 0 such that if the number of samples n satisfies n >

C

1
1

Ÿ(p)

2
max

1
log

1
p

2

·

2
, log

1
1

Ÿ(p)

22
, then with probability at least 1 ≠ · , NoMAD accepting ‚dij outputs the

equivalence class [G].

Proof. First, there are (at most) seven pairwise distances to be estimated in terms of
max

Ó--- ‚dxa ≠ ‚dU

x
≠ ‚dW

a

--- ,

--- ‚dxb ≠ ‚dU

x
≠ ‚dW

b

---
Ô

. Therefore, the probability that our algorithm fails is bounded
above by the probability that there exists a pairwise distance estimate that is ›/14 away from its mean. To
this end, let us denote a bad event Bi,j for any pair i, j œ V

o as the following:

Bi,j , {|dij ≠ ‚dij | Ø ‘d}. (6)

Then, the error probability P[[Talgo] ”= [G]] is upper bounded as

P ([Talgo] ”= [G]) Æ P

A
€

i,jœV o

Bi,j

B
Æ

ÿ

i,jœV o

P (Bi,j) , (7)

where [Talgo] is the output equivalence class. We now consider two following events: Ki,j , {|‚flij | Æ flmin
2 } 6,

and Ri,j , {|flij ≠ ‚flij | <
flmin‘d

2 }. We will upper bound P(Bi,j) for any pair i, j using P(Ki,j) and P(Ri,j).
Before that, notice the following chain of implications:
!
|flij ≠ ‚flij | <

flmin◊‘d

2
"

∆
!
||flij | ≠ |‚flij || <

flmin◊‘d

2
"

∆
3---dij ≠ ‚dij

--- <
||flij |≠|‚flij||

min(|‚flij|,|flij |)

4
∆

3---dij ≠ ‚dij

--- <
||flij |≠|‚flij||

min( flmin
2 ,flmin)

4
∆

1---dij ≠ ‚dij

--- <

flmin
2 ◊‘d
flmin

2

2
∆

1---dij ≠ ‚dij

--- < ‘d

2
. These implications establish

that Ri,j flK
c

i,j
™ B

c

i,j
. Notice that as Ri,j flK

c

i,j
™ B

c

i,j
flK

c

i,j
, it will imply that P(Bc

i,j
flK

c

i,j
) Ø P(Ri,j flK

c

i,j
).

Now, we can write the following bound:

P(Bi,j |Kc
i,j) Æ P(Rc

i,j |Kc
i,j). (8)

6
for notational clarity we write flmin instead of flmin(p)
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Then, P(Bij) can be upper bounded as follows:

P (Bi,j) = P (Bi,j |Ki,j)P (Ki,j) + P
!
Bi,j |Kc

i,j

"
P

!
Kc

i,j

"
, (9)

Æ P (Bi,j |Ki,j)P (Ki,j) + P
!
Rc

i,j |Kc
i,j

"
P

!
Kc

i,j

"
, (10)

Æ (1 ◊ P (Ki,j)) +
!
P

!
Rc

i,j |Kc
i,j

"
◊ 1

"
. (11)

Then, P ([Talgo] ”= [G]) can be further bounded as

P ([Talgo] ”= [G]) Æ
ÿ

i,jœV o

P (Bi,j) Æ
ÿ

i,jœV o

P (Ki,j) +
ÿ

i,jœV o

P
!
Rc

i,j |Kc
i,j

"
.

Because P
!
R

c

i,j
|Kc

i,j

"
< P

!
R

c

i,j

"
/P

!
K

c

i,j

"
, we note that

P ([Talgo] ”= [G]) Æ
ÿ

i,jœV o

P (Ki,j) +
ÿ

i,jœV o

P
!
Rc

i,j

"

P
!
Kc

i,j

" .

We now find the required number of samples n in order for P ([Talgo] ”= [G]) to be bounded by · . Before
computing n we note an important inequality from Kalisch & Bühlman (2007) which we use in bounding all
the following events. For any 0 < ‘ Æ 2, and sup

i ”=j
|flij | Æ M < 1, following is true.

P (|‚flij ≠ flij | > ‘) Æ Cfl (n ≠ 2) exp
3

≠ (n ≠ 4) log
3

4 + ‘2

4 ≠ ‘2

44
, (12)

for some constant 0 < Cfl < Œ depending on M only.
We now note the following assumption on bounded correlation which is a common assumption in learning the
graphical models: 0 < flmin Æ flmax < 1. Now notice that,

!
|‚flij | Æ flmin

2
"

together with |flij | Ø flmin implies
that |flij | ≠ |‚flij | Ø flmin ≠ flmin

2 = flmin
2 , since flmin >

flmin
2 . Furthermore, |flij ≠ ‚flij | Ø |flij | ≠ |‚flij | implies that

|flij ≠ ‚flij | Ø flmin
2 . Then, we have the following:

P (Ki,j) Æ P
1

|flij ≠ ‚flij | Ø flmin
2

2
Æ Cfl (n ≠ 2) exp

3
≠ (n ≠ 4) log

3
16 + fl2

min
16 ≠ fl2

min

44
. (13)

Eq. equation 13 follows from Eq. equation 12. Now, According to Claim 6,

n1 >max

A
C1

log
1

2Cfl(p
2)

·

2

log
1

16+fl2
min

16≠fl2
min

2 ◊ C2C1

(C1 ≠ 1) log
1

16+fl2
min

16≠fl2
min

2 , log

Q

a C1

(C1 ≠ 1) log
1

16+fl2
min

16≠fl2
min

2

R

b
B

+ 4 (14)

implies
q

i,jœV o
P(Ki,j) <

·

2 ,

n3 >max

A
C1

log
1

Cfl

1≠· Õ

2

log
1

16+fl2
min

16≠fl2
min

2 ,
C2C1

(C1 ≠ 1) log
1

16+fl2
min

16≠fl2
min

2 ◊ log

Q

a C1

(C1 ≠ 1) log
1

16+fl2
min

16≠fl2
min

2

R

b
B

+ 4 (15)

implies P(Kc

i,j
) > ·

Õ, where ·
Õ
> 1 ≠ Cfl, and

n4 > max

A
C1

log
1

2Cfl(p
2)

·· Õ

2

log
1

16+fl2
min‘2

d
16≠fl2

min‘2
d

2 ,
C2C1

(C1 ≠ 1) log
1

16+fl2
min‘2

d
16≠fl2

min‘2
d

2 ◊ log

Q

a C1

(C1 ≠ 1) log
1

16+fl2
min‘2

d
16≠fl2

min‘2
d

2

R

b
B

+ 4 (16)
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implies P(Rc

i,j
) <

··
Õ

2(p
2)

. Now, notice that n2 , max (n3, n4) implies P(R
c
i,j)

P(K
c
i,j) <

·

2(p
2)

. Therefore, acquiring at

least n2 samples will imply
q

i,jœV o

P(R
c
i,j)

P(K
c
i,j) <

·

2 . Finally, for P([Talgo] ”= [G]) to be upper bounded by · , it is

su�cient for the number of samples n to satisfy n > max (n1, n2).

Claim 6. There exist positive constants T, C, and Â– such that if n > max(T, C◊Â–logÂ–), then n≠Â–log (n) > T .

Proof. We start the proof with the following claim: Suppose that there exists a constant C1, C2 where
C1 < C2 such that C1mlogm < n < C2mlogm. Notice that for m su�ciently large (m > C2), we can
show that n > mlogn. Therefore, for some constant C1, C2, n > C2 ◊ C1

(C1≠1)–
log

1
C1

(C1≠1)–

2
implies

n >
C1

(C1≠1)–
log (n). Now, suppose that max

1
C1T,

C2C1
(C1≠–) log

1
C1

(C1≠1)–

22
= C1T . Then, n > C1T implies

n > C2 ◊ C1
(C1≠1)–

log
1

C1
(C1≠1)–

2
. Then, from the initial claim we have that n >

C1
(C1≠1)–

log (n). Then,

n
(C1≠1)

C1
>

1
–

log (n), and n ≠ 1
–

log(n) >
n

C1
. As n

C1
> T , we have that n ≠ 1

–
log(n) > T . Further, suppose

that max
1

C1T,
C2C1

(C1≠–) log
1

C1
(C1≠1)–

22
= C2C1

(C1≠–) log
1

C1
(C1≠1)–

2
. Then, from the initial claim we have that

n >
C2C1

(C1≠–) log
1

C1
(C1≠1)–

2
implies n >

C1
(C1≠1)–

log (n). Also, n >
C2C1

(C1≠–) log
1

C1
(C1≠1)–

2
implies n > C1T ,

which will imply n ≠ 1
–

log(n) >
n

C1
> T . Setting Â– equals to C1

(C1≠1)–
proves the result.

D Identifiability Result

Proof. We first consider the case where there is only one non-trivial block BNT inside G and that the block
cut vertices of BNT do not have neighboring leaf nodes. As a result, BNT contains exactly two block cut
vertices b1 and b2 connected to the cut vertices p1 and p2, respectively. Thus, we express the vertex set V of
G as a union of disjoint sets V1 fi {p1}, V2 fi {p2}, and VNT —the vertex set of BNT .
Without loss of generality, let V1 fi{p1} = {1, . . . , p1}, VNT = {p1 +1, . . . , p2 ≠1}, and V2 fi{p2} = {p2, . . . , p}.
Also, let b1 = p1 + 1 and b2 = p2 ≠ 1. Because G, it follows that V1 fi {p1} ‹‹ V1 fi {p2} | VNT . In words,
VNT separates V1 fi {p1} and V2 fi {p2}. Furthermore, b1 shares an edge with p1 and b2 shares an edge with
p2. From these facts, K

ú = (�ú)≠1 can be partitioned as in equation 17 (see below). Let K1, KNT , and K2
be the first, second, and third diagonal blocks of K

ú in equation 17. Let ej be the canonical basis vector in
Rp. Then, we can express K

ú in equation 17 as

Kú = Blkdiag(K1, KNT , K2) + ep1+1eT
p1 Kp1+1,p1 + ep1 eT

p1+1Kp1,p1+1 + ep2≠1eT
p2 Kp2≠1,p2 + ep2 eT

p2≠1Kp2,p2≠1. (18)

Recall that �0 = �ú + D. Decompose the diagonal matrix D as D = D
(1) + D

(2), where

D(1) = Blkdiag(0, D(1)
NT , 0), (19)

D(2) = Blkdiag(D1, D(2)
NT , D2), (20)

K
ú =

S

WWWWWWWWWWWWWWWU

K11 . . . K1,p1 0 . . . 0
...

. . .
...

...
. . .

...
Kp1,1 . . . Kp1,p1 Kp1+1,p1 . . . 0

0 . . . Kp1,p1+1 Kp1+1,p1+1 . . . Kp1+1,p2≠1 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 Kp2≠1,p1+1 . . . Kp2≠1,p2≠1 Kp2≠1,p2 . . . 0
0 . . . Kp2,p2≠1 Kp2,p2 . . . Kp2,p

...
. . .

...
...

. . .
...

0 . . . 0 Kp,p2 . . . Kp,p

T

XXXXXXXXXXXXXXXV

(17)
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and the dimensions of D1, DNT , and D2 are same as those of K1, KNT , and K2, resp. Furthermore,
D

(1)
NT

= diag(0, ◊, . . . , ◊, 0) and D
(2)
NT

= diag(◊, 0, . . . , 0, ◊). Here ◊ can be a zero or a positive value. Let
�q = �ú +D

(1) and D
q = D

(2). From the above notations, we have �0 = �ú +D = �ú +D
(1) +D

(2) = �q +D
q.

We show that there exists a decomposition of D into D1 and D2 such that the inverse of �q , �ú + D
(1)

has di�erent structure. It su�ces to show that (�q)≠1 exactly equals the expression of K
ú in equation 18,

except for the second diagonal block KNT in Blkdiag(K1, KNT , K2). Recall that di�erent values of KNT

yield di�erent subgraphs on the non-trivial block, and consequently, di�erent graphs in [G]; see Definition 3.1.
Consider the following identity:

(�q)≠1 = (�ú + D(1))≠1 = (I + (�ú)≠1D(1))≠1(�ú)≠1 = (I + KúD(1))≠1Kú. (21)

We first evaluate (I + K
ú
D

(1))≠1. Note that ep1+1, ep1 , ep2≠1, and ep2 lie in the nullspace of D
(1) and

K
ú
D

(1). Using this fact and the formulas in equation 18 and equation 19, we can simplify (I + K
ú
D

(1)) as

(I + K
ú
D

(1)) = Blkdiag(I, I + KNT D
(1)
NT

, I), (22)

where, ÂKNT , I + KNT D
(1)
NT

is a positive definite matrix, and hence, invertible. This is because KNT D
(1)
NT

and (D(1)
NT

)1/2
K

1/2
NT

K
1/2
NT

(D(1)
NT

)1/2 are similar matrices, where we used the facts that KNT is positive definite
and D

(1)
NT

is non-negative diagonal. Thus,

(I + K
ú
D

(1))≠1 = Blkdiag(Ip1 , ÂK≠1
NT

, Ip≠p2+1). (23)

Also, note that the null space vectors ep1+1, ep1 , ep2≠1, and ep2 of K
ú
D

(1) are also the eigenvectors of
(I + K

ú
D

(1))≠1, with eigenvalues all being equal to one. Putting together the pieces, from equation 18,
equation 21, and equation 23 we have (�q)≠1 = (I + K

ú
D

(1))≠1
K

ú which equals to the following:

= Blkdiag(K1, ÂK≠1
NT KNT , K2) + ep1+1eT

p1 Kq
p1+1,p1 + ep1 eT

p1+1Kq
p1,p1+1 + ep2≠1eT

p2 Kq
p2≠1,p2 + ep2 eT

p2≠1Kq
p2,p2≠1.

Moreover, ÂK≠1
NT

KNT = (I + KNT D
(1)
NT

)≠1
KNT = (�NT + D

(1)
NT

)≠1, where �NT = K
≠1
NT

is the covariance of
the random vector associated with BNT . Thus, K

ú in equation 18 and (�q)≠1 are identical, except in their
second diagonal blocks, as required. Furthermore, in order for the subgraph associated with ÂKNT to be a tree
the entries in �q needs to be such that it matches the correlation factorization propert of a tree-subgraph.
Using similar arguments, we can handle multiple internal blocks with block cut vertices that are not adjacent
to leaf nodes. In the case where blocks have leaf nodes, we can combine the construction above with the
construction in (Katiyar et al., 2019, Theorem 1) for tree structured graphical models. Combining these two,
we can show that we can choose a decomposition D = D1 + D2 such that (a) the structure is arbitrarily
di�erent inside blocks, and (b) the block cut vertices are preserved (i.e., same as the ones in G), except they
may be swapped with a neighboring leaf.
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