
A Task Details528

Setup. Our simulation experiments are conducted on Robot Learning Benchmark (RLBench) envi-529

ronment [32].530

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

“open microwave” “open the door” “water plant” “lift toilet seat up”

“put the phone on the base” “put 1 books on bookshelf” “take umbrella out of stand” “open fridge”

“the gray target” “the azure square” “the triangle”

Figure 5: RLBench Tasks. Our simulation experiments encompass 11 tasks from RLBench. Tasks
(a)-(h) serve as the basis for single-task and multi-task learning, while tasks (i)-(k) are employed to
evaluate generalization performance.

For single-task and multi-task learning, we use 8 tasks that closely mirror real-world scenarios, for531

example, our tasks incorporate objects like microwaves, plants, phones, books, and toilets that align532

more closely with the reality of domestic robot environments. Our aim is to leverage the powerful533

semantic understanding and spatial reasoning capabilities of SGR to facilitate the manipulation of a534

diverse and complex array of objects in real-world situations.535

For the generalization part, we conduct experiments on 3 tasks characterized by a substantial amount536

of visual variations. Among the 3 tasks, two focus on color generalization, while the remaining one537

is centered around shape generalization. The color variations include 20 instances:colors = {red,538

maroon, lime, green, blue, navy, yellow, cyan, magenta, silver, gray, orange, olive,539

purple, teal, azure, violet, rose, black, white}. The shape variations include 5 instances:540

shapes = {cube, cylinder, triangle, star, moon}.541

As depicted in Figure 5, we utilize a diverse set of simulation tasks. In the following sections, we will542

provide a detailed examination of each task, and for those tasks that have been modified compared543

with the original RLBench implementation2, we will discuss the specifics of the modifications in544

detail.545

2https://github.com/stepjam/RLBench

14

https://github.com/stepjam/RLBench


A.1 Open Microwave546

Filename: open microwave.py547

Task: Open the microwave on the table.548

Modified: No.549

Objects: 1 microwave.550

A.2 Open Door551

Filename: open door.py552

Task: Grip the handle and push the door open.553

Modified: No.554

Objects: 1 door.555

A.3 Water Plants556

Filename: water plants.py557

Task: Pick up the watering can by its handle and water the plant.558

Modified: No.559

Objects: 1 watering can and 1 plant.560

A.4 Toilet Seat Up561

Filename: toilet seat up.py562

Task: Grip the edge of the toilet seat and lift it up to an upright position.563

Modified: No.564

Objects: 1 toilet with lid closed.565

A.5 Phone on Base566

Filename: phone on base.py567

Task: Grasp the phone and put it on the base.568

Modified: No.569

Objects: 1 phone and 1 phone base.570

A.6 Put Books571

Filename: put books on bookshelf.py572

Task: Pick up a book and place them on the top shelf.573

Modified: No. The original task has 3 variations, here we only use the first variation.574

Objects: 1 bookshelf and 3 books.575

A.7 Take out Umbrella576

Filename: take umbrella out of umbrella stand.py577

Task: Grasp the umbrella by its handle, lift it up and out of the stand.578

15



Modified: No.579

Objects: 1 umbrella and 1 umbrella stand.580

A.8 Open Fridge581

Filename: open fridge.py582

Task: Grip the handle and slide the fridge door open.583

Modified: No.584

Objects: 1 fridge with door closed.585

A.9 Reach Target586

Filename: reach target.py587

Task: Reach the language-instructed colored ball. There are 3 balls, distinguishable solely by their588

colors, which are randomly distributed in space. The 3 colors are sampled from the full set of 20589

color instances, thus offering 20 variations based on the target color.590

Modified: Yes. The sizes of the balls are enlarged so that they are distinguishable in the RGB-D591

input.592

Objects: 3 balls.593

A.10 Slide Block594

Filename: slide block to color target.py595

Task: Slide the block to the language-instructed colored square targets. There are 3 distractor target596

of different colors. The 4 targets are placed symmetrically and the colors are sampled from the full597

set of 20 color instances, which makes the 20 variations.598

Modified: Yes. The original slide block to target.py task contains only one target. Three599

other targets are added.600

Objects: 1 block and 4 colored target squares.601

A.11 Reach Shape602

Filename: reach shape.py603

Task: Reach the language-instructed shape of the block. There are always 1 target shape and 4604

distractor shapes, which are from the 5 shape instances and randomly placed on the table. The 5605

different target shapes make the 5 variations.606

Modified: Yes, newly added task.607

Objects: 5 shapes.608

B SGR Details609

B.1 Architecture Details610

Input Data. The SGR model takes as input RGB images {Ii}Ki=1 of size H×W and corresponding611

depth images of the same size from multiple camera views. Then point cloud, represented in the612

robot’s base frame, is derived from depth images with known camera extrinsics and intrinsics. A613

key detail here is that the RGB images and the organised point cloud are aligned, ensuring a one-614

to-one correspondence between the points across the two data forms. In the simulation setting, we615

have H = W = 128 and K = 4, corresponding to four camera positions: front, left shoulder, right616

16



M
LP

Se
t A

bs
tr

ac
5o

n 
0

Se
t A

bs
tr

ac
5o

n 
2

Se
t A

bs
tr

ac
5o

n 
3

Se
t A

bs
tr

ac
5o

n	
4

M
LP

Si
ze

 U
ps

am
pl

e
&

 
Ch

an
ne

l D
ow

ns
am

pl
e

Su
bs

am
pl

e 
0&

1
Se

t A
bs

tr
ac

5o
n 

1

Su
bs

am
pl

e

G
ro

up
in

g

M
LP

Re
du

c?
on

𝑎!"#$%

𝑎&'(()*+

𝑎"'!

𝑎',+$

[N,32]

[1,512]

[N/2,64] [N/4,128]

[N/16,512][N/8,256]

[N/4,128][N,128]
❄

Im
ag

e 
En

co
de

r

Ba
ck

-p
ro

je
c?

on

3D point cloud

2D images from 
mul5ple cameras

water the plant ❄ Text Encoder
Instruc5on(Op5onal)

Vi
su

al
 G

ro
un

di
ng

Share Subsample Process

Details Explana6on

Concatenate

❄ Frozen

Figure 6: Architecture Details.

shoulder, and wrist. For real robot experiments, the setup is H = W = 256 and K = 1, denoting a617

single front-facing camera.618

The model also receives proprioceptive data z, comprising four scalar values: gripper open state,619

left finger joint position, right finger joint position, and action sequence timestep. Additionally, if a620

task comes with language instruction S, this also forms part of the model’s input.621

Visual Grounding Module. The fundamental role of a visual grounding module is to localize622

visual areas that correspond to objects possessing a property as dictated by language. To equip623

our manipulation model with a deep comprehension of a variety of object properties and spatial624

relationships, including those not previously seen in the manipulation demonstration data, we take625

inspiration from MaskCLIP [69] and PROGRAMPORT [70].626

It’s worth noting that vanilla CLIP-ResNet-50 employs attention pooling to merge visual features627

from various spatial locations into one feature vector, and then uses a linear layer F as follows:628

fglobal = F

(∑
i

softmax

(
Embq(AvgPool (X)) · Embk (Xi)

T

C

)
Embv (Xi)

)
(2)

where Xi is the input feature at spatial location i, Embq,k,v(·) are linear embedding layers and C is629

some fixed scalar.630

Following MaskCLIP [69] and PROGRAMPORT [70], we establish two 1 × 1 convolution layers,631

Cv and Cl, which are initialized with the weights derived from Embv and F respectively. Applying632

these layers in sequence enables the visual feature to be projected into the same space as the language633

feature. Ultimately, our grounding module formulates a dense mask encompassing image segments634

corresponding to the language S in the following manner:635

falign =
∑

(TILE(H(S))⊙ Cl(Cv(X))) ∈ RH
′
×W

′
×1 (3)

where H(S) ∈ RD, Cl(Cv(X)) ∈ RH
′
×W

′
×D (H

′
, W

′
, D represent the height, width, and di-636

mension of the pre-aligned feature respectively). H is the CLIP language encoder and TILE serves637

as a spatial broadcast operator that expands the language embedding vector to match the spatial di-638

mensions of the visual features. The symbol ⊙ indicates an element-wise multiplication, while the639

summation is performed over the feature dimension D. Additionally, we concatenate this feature640

with the pre-aligned image feature to generate our aligned feature maps:641

M = Concat(falign, Cl(Cv(X))) ∈ RH
′
×W

′
×(1+D) (4)

17



Other Details. For the image encoder, we employ CLIP-ResNet-50. To maintain consistency with642

the resolution predominantly used in the pre-training of vision models, we upsample the input image643

size from 128 × 128 to 256 × 256 in simulation experiments. The CLIP text feature exhibits a644

dimensionality of 1024, and the CLIP image encoder generates a feature map of 8 × 8 with 2048645

channels. For the 3D encoder, we utilize PointNeXt-S. Detailed information regarding the number646

of channels and sub-points in each layer of the PointNeXt network can be seen in Figure 6.647

B.2 Training Details648

Data Augmentation. To further improve the performance and robustness of our model, we incorpo-649

rate a variety of data augmentation techniques. (1) Translation perturbations: during training, the650

translation is perturbed with ±0.125 m. We also experimented with rotation perturbations but found651

they did not contribute to performance improvement. (2) Color drop is to randomly replace colors652

with zero values. This technique serves as a powerful augmentation for PointNeXt, leading to sig-653

nificant enhancements in the performance of tasks where color information is available. Qian et al.654

[29] suggest that by implementing color drop, the network is encouraged to pay more attention to the655

geometric relationships between points, leading to a boost in overall performance. (3) Point resam-656

pling is a common technique utilized in the processing of point cloud data, often applied to adjust657

the density of the point cloud. The technique involves selecting a subset of points from the original658

data, thereby creating a new dataset with altered density. In our simulation experiment, we resample659

4096 points from the original point cloud. (4) Keyframe discovery and demo augmentation [50]660

[33] are to convert every data point within a demonstration into a task that involves predicting the661

subsequent next-best keyframe action. Keyframes are extracted by a heuristic method: an action is662

a keyframe if the joint velocities are close to zero and the gripper open state is unchanged. This663

keyframe discovery strategy bypasses the need to predict long sequences of noisy actions, making664

policy learning more efficient.665

Hyperparameters. The configuration of hyperparameters applied in our studies can be found in666

Table 3. The single-task learning and generalization experiments are trained on a single NVIDIA667

GeForce RTX 3090 GPU, while the multi-task learning is trained on 8 GPUs. Since color plays668

a crucial role in some tasks and disregarding color information would render these tasks unsolv-669

able, such as reach target and slide block, the color drop is not utilized in the generalization670

experiments.671

Table 3: Hyper-parameters used in our simulation experiments.
Config Single-task Multi-task Generalization

Training iterations 40, 000 40, 000 40, 000
Leraning rate 0.0003 0.001 0.0003
Batch size 32 256 32
Optimizer AdamW AdamW AdamW
Weight decay 1× 10−6 1× 10−6 1× 10−6

Color drop 0.2 0.4 0
Instruction provided No Yes Yes
Number of input points 4096 4096 4096

C Evaluation Workflow672

Simulation. In pursuit of the reliability and stability of our results, our evaluation follows such sub-673

sequent steps. (1) Train the agent on the train set for 40,000 training iterations and save checkpoints674

every 1,000 iterations. (2) Evaluate the last 20 checkpoints for 25 episodes. (3) Evaluate the best 3675

checkpoints for 100 episodes, and use the average performance of the 3 checkpoints as the results.676

(4) Repeat the above steps for 3 random seeds.677

18



Method open
microwave

open
door

water
plants

toilet
seat up

phone
on base

put
books

take out
umbrella

open
fridge

Average

R3M 7.0± 5.9 24.2± 10.9 1.2± 0.7 59.7± 21.7 0.0± 0.0 15.3± 16.5 28.3± 19.0 4.7± 3.8 17.6
CLIP 9.1± 10.8 68.4± 8.8 4.1± 1.8 40.1± 20.8 7.3± 2.5 38.0± 16.3 66.7± 8.2 7.4± 2.8 30.2
PointNeXtULIP 9.4± 1.6 60.0± 5.5 10.4± 1.6 63.0± 7.9 35.6± 4.8 41.8± 1.7 49.8± 4.2 15.3± 1.2 35.7
PointNeXtLfS 17.0± 5.4 63.8± 6.2 28.2± 2.2 52.7± 14.5 65.9± 19.9 53.1± 16.0 95.1± 3.0 7.3± 4.7 47.9
PERACT 26.9± 4.3 47.8± 41.1 41.7± 3.1 67.1± 4.2 0.0± 0.0 63.7± 3.5 94.4± 1.3 10.1± 3.9 44.0
SGR (Ours) 52.6± 5.1 80.2± 2.7 40.2± 8.3 80.1± 1.2 81.1± 5.7 84.8± 7.4 94.7± 2.3 34.8± 2.0 68.6

Table 4: Single-task results with mean and standard deviation (%).

Method open
microwave

open
door

water
plants

toilet
seat up

phone
on base

put
books

take out
umbrella

open
fridge

Average

CLIP 6.0± 6.9 78.0± 2.0 6.7± 6.1 7.3± 8.1 10.0± 10.4 38.0± 21.2 15.3± 13.3 9.3± 5.0 21.3
PointNeXtLfS 22.7± 1.2 80.0± 11.1 19.3± 3.1 32.0± 20.0 69.3± 12.2 65.3± 13.3 72.0± 10.0 18.0± 2.0 47.3
PERACT 22.7± 2.3 58.7± 11.4 8.0± 10.6 64.7± 12.9 0.0± 0.0 47.3± 18.1 96.0± 2.0 4.0± 3.5 37.7
SGR (Ours) 38.7± 15.0 84.0± 3.5 20.7± 1.2 67.3± 10.3 86.0± 10.6 80.0± 15.6 88.0± 6.9 26.7± 11.7 61.4

Table 5: Multi-task results with mean and standard deviation (%).

reach target slide block reach shape

Method Seen Unseen Seen Unseen Seen Unseen

R3M 20.2± 6.2 5.5± 0.9 11.0± 5.9 3.0± 2.8 78.1± 24.5 6.7± 8.2
CLIP 42.0± 27.0 17.7± 4.8 49.0± 14.3 16.3± 2.8 95.5± 2.8 0.2± 0.3
PointNeXtULIP - - - - 45.9± 2.0 6.7± 4.7
PointNeXtLfS 99.7± 0.3 4.0± 2.3 96.5± 1.0 6.2± 0.8 99.8± 0.4 1.8± 1.6
DenseFusion 71.8± 4.0 9.5± 3.1 26.5± 1.0 16.5± 1.5 99.3± 0.6 3.8± 3.4
SGR (Ours) 94.0± 2.6 36.8± 1.6 97.7± 1.3 43.0± 3.0 99.9± 0.2 27.7± 4.0

Table 6: Generalization results with mean and standard deviation (%) .

Real-Robot. For the real-robot experiments, we train the agent for 40,000 iterations and simply678

choose the last checkpoint for evaluation, since it’s expensive to evaluate more checkpoints in the679

real robot. We evaluate 10 episodes per task. During the evaluation of a trained agent, the agent680

keeps acting until achieving the goal or reaching the maximum episode length.681

D Real-Robot Setup682

For our real-robot experiments, we use a Franka Emika Panda manipulator equipped with a parallel683

gripper. Perception is achieved through an Intel RealSense D415 camera, positioned in front of the684

scene. The camera generates RGB-D images with a resolution of 1280 × 720. We leverage the685

realsense-ros3 to align depth images with color images. The extrinsic calibration between the686

camera frame and robot base frame is carried out using the easy handeye package4.687

When preprocessing the RGB-D images, we initially crop the 1280 × 720 images to a 720 × 720688

frame, and then resize them to 256× 256 using nearest-neighbor interpolation. This interpolation is689

preferred over others, such as bilinear interpolation, as the latter can cause non-existent points in the690

depth map, leading to a noisy point cloud. Following these steps, we can process RGB-D images in691

the same manner as in our simulation experiments. It’s important to note that the camera’s intrinsics692

must be adjusted accordingly after the images are cropped and resized. We train SGR for 40,000693

training steps with 64 demonstrations in total and use the final checkpoint for inference.694

E Additional Results695

For all simulation experiments, we use 3 random seeds to ensure the reliability of our results. While696

we present averaged results in the main body of the paper for clarity, we provide more comprehen-697

sive results in this section. Here, we report both the mean and standard deviation derived from our698

3https://github.com/IntelRealSense/realsense-ros
4https://github.com/IFL-CAMP/easy_handeye

19

https://github.com/IntelRealSense/realsense-ros
https://github.com/IFL-CAMP/easy_handeye


simulation results to offer a complete view of our experimental outcomes. Table 4, Table 5, and Ta-699

ble 6 show the results of single-task learning, multi-task learning, and generalization, respectively.700

20


	Introduction
	Related Work
	Method
	Background
	Semantic-Geometric Representation
	Robot Learning Framework

	Experiments
	Simulation Setup
	Simulation Results
	Real-Robot Results

	Discussion
	Task Details
	Open Microwave
	Open Door
	Water Plants
	Toilet Seat Up
	Phone on Base
	Put Books
	Take out Umbrella
	Open Fridge
	Reach Target
	Slide Block
	Reach Shape

	SGR Details
	Architecture Details
	Training Details

	Evaluation Workflow
	Real-Robot Setup
	Additional Results

