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A Appendix1

A.1 Theoretical Derivation of Up-sampling Error2

Here, we take bilinear interpolation, a typical image interpolation method, as an example to analyze the3

relationship between the interpolation error and the resolution of a face image. Bilinear interpolation4

can be considered as a bivariate Lagrange interpolation problem containing two interpolation nodes5

in each of the two dimensions.6

Let D be a unit-bounded closed region in a two-dimensional image space, and7

Q1 (x0, y0) , Q2 (x1, y0) , Q3 (x0, y1) , Q4(x1, y1) ∈ D be four adjacent pixel points in this region.8

We use an interpolation polynomial P (x, y) for the interpolation approximation of the bivariate9

continuous function f(x, y) defined on D , and the interpolation error E(x, y) can be expressed as10

E(x, y) = f(x, y)− P (x, y) (1)

which indicates the potential error information introduced to the recognition of different identities.11

According to the the Rolle’s theorem, we can obtain12

E(x, y) =

∂4f(ξ,η)
∂x2∂y2

4
ω2(x)µ2(y) (2)

where ξ, η is an interior point of D and13

ω2(x) = (x− x0)(x− x1) (3)

µ2(y) = (y − y0)(y − y1) (4)

As x1 − x0 = y1 − y0 = 1 for adjacent pixel points, we can get the upper bound of |ω2(x)| and14

|µ2 (y) |15

|ω2(x)| <
1

4
, |µ2(y)| <

1

4
(5)

Thus, the error estimation can be expressed as16
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Table 1: Comparison of different training methods for our BTNet. “Acc.” denotes average 1:1
verification accuracy. “# Params.” indicates the amount of parameter storage for the branch network
B14.

Training method Acc. (%) # Params. (M)112&14 14&14
Scratch 49.90 78.00 43.59
Pretraining 78.05 76.87 43.59
Pretraining + BCT 85.90 78.04 43.59
Pretraining + BCT + Fix Trunk 85.07 77.22 2.29
Pretraining + BCT + Fix Trunk + Branch Distillation 94.08 90.90 2.29

E(x, y) ≤
|∂

4f(ξ,η)
∂x2∂y2 |
64

(6)

where ∂4f(ξ,η)
∂x2∂y2 can be approximated using the difference operator17

[
1 −2 1
−2 4 −2
1 −2 1

]
(7)

Based on the above theoretical analysis, we can experimentally study the relationship between the18

estimated up-sampling error and the image resolution.19

A.2 Instantiation of BTNet-res5020

We provide the detailed architecture of BTNet-res50 (φbt), an instantiation of BTNet framework21

based on ResNet50 [1]. Our method can be easily implemented by refining a network with the22

top-down hierarchical representation structure.23

A.3 Ablation Study24

In all these experiments, we report the average verification results on six benchmarks in 112&14 and25

14&14 matching, representing cross-resolution and same-resolution performance respectively.26

Training Method Alternatives. Here, we experimentally compare different training methods:27

(1) Scratch: train without pretrained trunk parameters. (2) Pretraining: initialize the backbone28

and classifier with the pretrained trunk network. (3) Backward-compatible training (BCT, [2]): fix29

parameters of the old classifier. (4) Fix-trunk: fix parameters of the trunk subnet Tr. (5) Branch30

distillation: use L2-distance to obtain the loss between the intermediate feature maps at the coupling31

layer of the pretrained trunk T and the branch Br.32

We compare different training method combinations in Table 1 and find that both pretraining and33

BCT succeeded in ensuring representation compatibility. Among these two, BCT performs better34

since it imposes a stricter constraint during training. Furthermore, we are able to observe that35

branch distillation is crucial for improving the discriminative power by transferring high-resolution36

information to low-resolution branches.37

Where should we have resolution-specific layers? We conducted an ablation to see the effects of38

different specific-shared layer allocation strategies. The experiment was done with different trunk39

layers (i.e., the parameters of these layers are inherited from the pretrained trunk without updating).40

Figure 2 shows the results. We find that increasing the number of branch layers (i.e., specific layers for41

different resolutions) will lead to better performance due to increased flexibility. Our specific-shared42

layer allocation of BTNet can achieve better parameter/accuracy tradeoffs. Since further increasing43

the number of trunk layers based on BTNet cannot lead to significantly better performance but44
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Figure 1: Detailed architecture of BTNet-res50 (φbt). Note that ‘S’ and ‘U’ represent stage and unit
respectively, and ‘/2’ means down-sampling by convolution with stride 2.

Figure 2: Comparison of verification accuracy and the amount of stored parameters for different
specific-shared layer allocation strategies. Note that “Stage x+” indicates that layers deeper than
“Stage x, Unit 1” are inherited from the pretrained trunk without updating.

increases parameter storage cost by a large margin, we use resolution-specific layers as shown in45

Figure 1.46

A.4 Visualization47

To interpret the behavior of learning compatible and discriminative representations, we visualize48

the intermediate feature maps in Figure 3. We find that φhr introduces the noise information while49

φmm has more discriminative but resolution-variant feature maps. The feature maps of φmr tend50

to be smoother, diminishing the error information, but the discriminability could be limited as51

high-frequency details benefit recognition [3].52
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Figure 3: Visualization of intermediate feature maps for inputs with different resolutions. We show
the feature maps located at output layers of BNets, denoted as stage1/2/3/4 respectively. We see our
method can transfer multi-resolution visual inputs to intermediate feature maps at corresponding
layers (indicated by bounding boxes of the same color) of TNet.

We also show that through the resolution-specific feature transfer of multiple branches, φbt can53

encourage the transferred features to be aligned before fed into the trunk network in corresponding54

layers. For instance, at stage 2, the feature maps of φbt with input resolution 112 and 28 are more55

similar than those of φhr, φmm, φmr. Furthermore, more detailed information can be found in56

the feature maps of φbt with input resolution 28 compared to φmr. This inspiring phenomenon57

suggests that BTNet can learn compatible representations while improving the discriminability in58

low-resolution domain through the knowledge transferred from high-resolution visual signals.59

A.5 Additional Experimental Results60

Multi-Resolution Identity Matching. We report the detailed results for 1:1 verification on each61

dataset (i.e., LFW, CFP-FF, CFP-FP, AgeDB-30, CALFW and CPLFW). The relative drop of φbt in62

high-resolution setting (i.e., 112&112) becomes almost negligible compared to the improvement for63

all the other settings which incorporate low-resolution inputs.64

Multi-Resolution Feature Aggregation. We report the detailed results on the IJB-C dataset,65

including TAR at different FAR (see Table 3, 4), ROC Curve (see Figure 4, 5) for 1:1 verification,66

and TPIR at FPIR=0.01, Top-1, Top-5, Top-10 accuracy (see Table 6, 7) for 1:N identification. We67

are able to observe that φbt can be comparable to or serve as the paradigm model (i.e., model with68

the best performance) in each resolution setting, both for identity matching and feature aggregation.69

4



Table 2: Detailed cross-resolution 1:1 verification accuracy (mean±std over 5 trails) per-benchmark.
φhr φmm φmr φbt (Ours)

112&7

LFW 63.0±2.0 51.5±2.6 77.4±1.4 96.1±0.7
CFP-FF 56.2±1.2 51.2±2.0 64.7±2.0 90.9±1.3
CFP-FP 54.9±1.3 49.8±1.6 60.8±2.5 80.2±2.3
AgeDB-30 57.3±1.6 50.0±1.4 60.5±2.0 79.8±2.3
CALFW 58.5±1.7 51.2±1.6 66.1±1.8 87.8±1.7
CPLFW 56.6±1.6 49.8±1.5 65.6±1.3 81.8±1.3

112&14

LFW 91.0±1.2 49.1±1.3 96.9±0.6 99.4±0.3
CFP-FF 81.7±1.7 50.0±1.5 90.4±1.0 98.2±0.4
CFP-FP 75.5±1.4 50.2±2.0 82.3±1.8 92.6±1.2
AgeDB-30 76.9±1.5 51.3±1.8 82.7±1.1 91.3±1.2
CALFW 81.8±1.0 49.7±1.5 88.0±0.8 93.9±1.1
CPLFW 79.2±1.3 49.1±1.4 84.5±1.4 89.1±1.7

112&28

LFW 99.5±0.3 48.9±1.1 99.7±0.2 99.7±0.2
CFP-FF 99.0±0.3 51.5±1.8 99.5±0.3 99.7±0.2
CFP-FP 94.9±1.1 49.4±2.0 95.4±0.8 97.0±0.5
AgeDB-30 95.7±1.0 49.5±0.7 95.5±1.1 96.3±1.1
CALFW 95.0±1.0 50.6±0.7 94.9±1.0 95.5±1.0
CPLFW 91.3±1.2 50.3±1.2 91.3±1.2 91.7±1.0

Table 3: Detailed same-resolution 1:1 verification accuracy (mean±std over 5 trails) per-benchmark.
φhr φmm φmr φbt (Ours)

7&7

LFW 70.8±2.9 74.0±1.5 72.5±1.8 92.7±1.2
CFP-FF 67.4±2.3 69.4±1.7 67.7±1.4 86.1±1.5
CFP-FP 57.1±2.3 59.1±2.3 56.5±1.3 73.8±1.4
AgeDB-30 54.3±1.9 54.2±2.2 53.5±1.8 62.5±2.2
CALFW 58.2±1.0 60.1±1.3 59.2±2.1 76.0±1.5
CPLFW 56.4±1.7 58.6±1.2 56.7±1.1 75.6±1.5

14&14

LFW 87.9±0.9 93.4±1.2 94.8±0.9 98.5±0.5
CFP-FF 79.0±2.2 84.7±1.6 86.7±1.6 96.2±0.7
CFP-FP 68.2±1.5 73.7±2.0 78.0±1.5 89.0±1.0
AgeDB-30 64.1±1.7 64.2±2.4 65.9±2.3 84.2±1.6
CALFW 71.8±0.9 75.6±1.3 77.5±1.4 89.9±0.7
CPLFW 72.3±1.6 76.4±1.8 79.0±1.7 87.6±1.9

28&28

LFW 99.1±0.4 99.6±0.6 99.6±0.3 99.8±0.3
CFP-FF 97.2±0.7 98.4±0.7 99.1±0.4 99.4±0.3
CFP-FP 91.9±1.3 93.5±1.3 95.0±1.0 96.8±0.9
AgeDB-30 90.9±1.2 92.6±0.8 92.4±1.0 94.9±1.1
CALFW 92.9±1.3 93.4±0.9 93.9±1.3 95.0±0.9
CPLFW 89.5±1.3 90.6±1.2 90.7±1.3 91.7±0.9

112&112

LFW 99.8±0.2 99.8±0.2 99.8±0.2 99.8±0.2
CFP-FF 99.9±0.1 99.9±0.1 99.8±0.2 99.8±0.2
CFP-FP 98.9±0.3 98.9±0.3 98.1±0.4 98.1±0.4
AgeDB-30 98.4±0.7 98.4±0.7 97.2±0.8 97.2±0.8
CALFW 96.0±1.2 96.0±1.2 95.9±1.0 95.9±1.0
CPLFW 93.1±1.3 93.1±1.3 92.7±1.0 92.7±1.0

Table 4: 1:1 verification TAR at different FAR on the IJB-C dataset for cross-resolution feature
aggregation.

112&7 112&14 112&28
FAR 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1

φhr 67.99 81.65 93.18 96.38 98.65 78.83 87.44 95.86 97.79 99.05 88.87 92.56 97.19 98.33 99.06
φmm 53.57 64.34 84.01 91.96 97.12 83.22 89.56 96.10 97.71 98.82 86.84 92.33 97.16 98.10 99.01
φmr 37.83 49.12 76.80 88.32 95.79 77.97 85.46 95.64 97.79 99.21 85.55 91.86 97.25 98.46 99.19
φbt (Ours) 66.84 78.40 94.27 97.63 99.16 81.92 88.38 96.64 98.34 99.28 86.61 92.48 97.38 98.47 99.20
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Table 5: 1:1 verification TAR at different FAR on the IJB-C dataset for same-resolution feature
aggregation.

7&7 14&14 28&28 112&112
FAR 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1

φhr 0.69 1.73 12.58 27.63 56.81 9.82 20.38 52.57 72.61 90.30 75.67 83.24 94.21 97.15 98.74 89.58 94.51 97.57 98.40 99.06
φmm 0.68 1.73 11.93 27.48 56.84 7.59 15.61 48.28 71.13 91.04 73.68 85.14 95.82 97.65 98.89 89.58 94.51 97.57 98.40 99.06
φmr 0.74 1.76 11.11 25.98 54.26 14.21 24.72 60.39 79.84 94.35 78.91 86.42 96.04 98.07 99.09 88.48 93.37 97.50 98.51 99.23
φbt (Ours) 12.09 20.70 57.17 79.02 93.90 57.75 70.63 90.85 96.06 98.68 82.85 90.32 96.94 98.31 99.15 88.48 93.37 97.50 98.51 99.23

(a) 112&7 (b) 112&14

(c) 112&28

Figure 4: 1:1 verification ROC Curve on the IJB-C dataset for cross-resolution feature aggregation.

Table 6: 1: N identification TPIR(%@FPIR=0.01), Top-1, Top-5, Top-10 accuracy on the IJB-C
dataset for cross-resolution feature aggregation.

112&7 112&14 112&28

TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10

φhr 75.35 92.76 95.14 95.92 81.98 93.89 96.25 96.98 90.42 96.05 97.47 97.80

φmm 59.07 88.89 92.33 93.35 86.39 95.15 96.86 97.31 90.04 96.00 97.31 97.72

φmr 43.89 82.29 87.74 89.42 82.18 93.87 96.20 96.89 88.90 95.93 97.36 97.84

φbt(Ours) 73.40 91.30 94.86 95.88 84.78 94.78 96.84 97.41 89.84 96.16 97.46 97.90

6



(a) 7&7 (b) 14&14

(c) 28&28 (d) 112&112

Figure 5: 1:1 verification ROC Curve on the IJB-C dataset for same-resolution feature aggregation.

Table 7: 1: N identification TPIR(%@FPIR=0.01), Top-1, Top-5, Top-10 accuracy on the IJB-C
dataset for same-resolution feature aggregation.

7&7 14&14 28&28 112&112

TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10

φhr 1.20 11.77 19.95 24.28 15.16 50.96 63.62 68.68 77.52 91.62 94.95 95.99 92.66 96.58 97.71 97.94

φmm 1.24 20.38 30.23 34.83 11.62 62.08 72.33 76.33 79.31 93.87 96.09 96.81 92.66 96.58 97.71 97.94

φmr 1.36 17.41 26.53 31.03 23.72 68.64 78.38 81.99 83.82 94.53 96.67 97.33 90.89 96.44 97.65 98.00

φbt(Ours) 15.55 55.49 67.98 73.05 63.69 86.35 92.14 94.01 86.87 95.42 97.06 97.62 90.89 96.44 97.65 98.00
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