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A Appendix

A.1 Theoretical Derivation of Up-sampling Error

Here, we take bilinear interpolation, a typical image interpolation method, as an example to analyze the
relationship between the interpolation error and the resolution of a face image. Bilinear interpolation
can be considered as a bivariate Lagrange interpolation problem containing two interpolation nodes
in each of the two dimensions.

Let D be a unit-bounded closed region in a two-dimensional image space, and
Q1 (z0,90), Q2 (z1,%0), Qs (xo,y1), Qa(x1,y1) € D be four adjacent pixel points in this region.
We use an interpolation polynomial P(z,y) for the interpolation approximation of the bivariate
continuous function f(z,y) defined on D , and the interpolation error F(z, y) can be expressed as

E(z,y) = f(x,y) — P(z,y) )

which indicates the potential error information introduced to the recognition of different identities.
According to the the Rolle’s theorem, we can obtain

T
E(w,y) = ——wa(z)p2(y) )
where &, 7 is an interior point of D and
wa(x) = (& — mo)(x — 21) 3
n2(y) = (y —yo)(y — v1) 4)

As x1 —x9 = y1 — yo = 1 for adjacent pixel points, we can get the upper bound of |wa(z)| and
2 (y) |

1 1
wr(@)] < 3, )] < )

4
Thus, the error estimation can be expressed as
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Table 1: Comparison of different training methods for our BTNet. “Acc.” denotes average 1:1
verification accuracy. “# Params.” indicates the amount of parameter storage for the branch network
Byy.

.. Acc. (%)
Training method &14 ( 14&14 # Params. (M)
Scratch 49.90 78.00 43.59
Pretraining 78.05 76.87 43.59
Pretraining + BCT 85.90 78.04 43.59
Pretraining + BCT + Fix Trunk 85.07 77.22 2.29

Pretraining + BCT + Fix Trunk + Branch Distillation ~ 94.08 90.90 2.29

38 f2(§ )] |
E < Oyt 6
(@,9) < —¢; ©)
where 7 f2(§ Z) can be approximated using the difference operator
1 -2 1
-2 4 =2 @)
1 -2 1

Based on the above theoretical analysis, we can experimentally study the relationship between the
estimated up-sampling error and the image resolution.

A.2 Instantiation of BTNet-res50

We provide the detailed architecture of BTNet-res50 (), an instantiation of BTNet framework
based on ResNet50 [1]]. Our method can be easily implemented by refining a network with the
top-down hierarchical representation structure.

A.3 Ablation Study

In all these experiments, we report the average verification results on six benchmarks in 112&14 and
14& 14 matching, representing cross-resolution and same-resolution performance respectively.

Training Method Alternatives. Here, we experimentally compare different training methods:
(1) Scratch: train without pretrained trunk parameters. (2) Pretraining: initialize the backbone
and classifier with the pretrained trunk network. (3) Backward-compatible training (BCT, [2]]): fix
parameters of the old classifier. (4) Fix-trunk: fix parameters of the trunk subnet 7;.. (5) Branch
distillation: use L2-distance to obtain the loss between the intermediate feature maps at the coupling
layer of the pretrained trunk 7" and the branch B,..

We compare different training method combinations in Table[T|and find that both pretraining and
BCT succeeded in ensuring representation compatibility. Among these two, BCT performs better
since it imposes a stricter constraint during training. Furthermore, we are able to observe that
branch distillation is crucial for improving the discriminative power by transferring high-resolution
information to low-resolution branches.

Where should we have resolution-specific layers? We conducted an ablation to see the effects of
different specific-shared layer allocation strategies. The experiment was done with different trunk
layers (i.e., the parameters of these layers are inherited from the pretrained trunk without updating).
Figure 2]shows the results. We find that increasing the number of branch layers (i.e., specific layers for
different resolutions) will lead to better performance due to increased flexibility. Our specific-shared
layer allocation of BTNet can achieve better parameter/accuracy tradeoffs. Since further increasing
the number of trunk layers based on BTNet cannot lead to significantly better performance but
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Figure 1: Detailed architecture of BTNet-res50 (). Note that ‘S” and ‘U’ represent stage and unit
respectively, and ‘/2’ means down-sampling by convolution with stride 2.

95 Stage 4+ Fully finetuning
Stage 3+(Ours)

94 1 Stage 2+
- Stage 1+
£ 93 1
>
®
5 Stage 4+ Fully finetuning
8 92 -
c
°
s Stage 3+ (Ours)
o 91 A
-
©
= 90 Stage 2+

89 -

Stage 1+ — 14814
— 112814
0 10 20 30 40 50

# Params (M)

Figure 2: Comparison of verification accuracy and the amount of stored parameters for different
specific-shared layer allocation strategies. Note that “Stage x+” indicates that layers deeper than
“Stage x, Unit 1” are inherited from the pretrained trunk without updating.

increases parameter storage cost by a large margin, we use resolution-specific layers as shown in
Figure[I]

A.4 Visualization

To interpret the behavior of learning compatible and discriminative representations, we visualize
the intermediate feature maps in Figure[3] We find that ¢y, introduces the noise information while
(mm has more discriminative but resolution-variant feature maps. The feature maps of ¢, tend
to be smoother, diminishing the error information, but the discriminability could be limited as
high-frequency details benefit recognition [3].
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Figure 3: Visualization of intermediate feature maps for inputs with different resolutions. We show
the feature maps located at output layers of BNets, denoted as stage1/2/3/4 respectively. We see our
method can transfer multi-resolution visual inputs to intermediate feature maps at corresponding
layers (indicated by bounding boxes of the same color) of TNet.

We also show that through the resolution-specific feature transfer of multiple branches, ¢; can
encourage the transferred features to be aligned before fed into the trunk network in corresponding
layers. For instance, at stage 2, the feature maps of ¢;; with input resolution 112 and 28 are more
similar than those of ¢y, Ymm, @mr. Furthermore, more detailed information can be found in
the feature maps of ¢p; with input resolution 28 compared to ¢,,,-. This inspiring phenomenon
suggests that BTNet can learn compatible representations while improving the discriminability in
low-resolution domain through the knowledge transferred from high-resolution visual signals.

A.5 Additional Experimental Results

Multi-Resolution Identity Matching. We report the detailed results for 1:1 verification on each
dataset (i.e., LFW, CFP-FF, CFP-FP, AgeDB-30, CALFW and CPLFW). The relative drop of ¢ in
high-resolution setting (i.e., 112&112) becomes almost negligible compared to the improvement for
all the other settings which incorporate low-resolution inputs.

Multi-Resolution Feature Aggregation. We report the detailed results on the IJB-C dataset,
including TAR at different FAR (see Table 3| ), ROC Curve (see Figure d} [5) for 1:1 verification,
and TPIR at FPIR=0.01, Top-1, Top-5, Top-10 accuracy (see Table[f] [7) for 1:N identification. We
are able to observe that ¢}, can be comparable to or serve as the paradigm model (i.e., model with
the best performance) in each resolution setting, both for identity matching and feature aggregation.



Table 2: Detailed cross-resolution 1:1 verification accuracy (mean=std over 5 trails) per-benchmark.
Phr Pmm Pmr P©bt (Ours)
LFW 63.0+£2.0 51.5£2.6 774£14 96.1+0.7
CFP-FF 56.24+1.2 512420 64.7£2.0 90.9+1.3
CFP-FP 549413 49.8+1.6 60.8£2.5 80.2+2.3

H2&7 AgeDB-30 57.3+1.6 50.0£14 60.5+£2.0 79.8+2.3
CALFW 585+1.7 51.2£1.6 66.1£1.8 87.8£1.7
CPLFW 56.6+1.6 49.8+415 65613 81.8+1.3
LFW 91.0£1.2 49.1+1.3 96.9+0.6 99.4+0.3
CFP-FF 81.7+£1.7 50.0£1.5 90.4+1.0 98.2+0.4
12& 14 CFP-FP 75.5+14 50.242.0 823£1.8 92.6+1.2
AgeDB-30 76.9+1.5 51.3+1.8 82.7+1.1 91.3£1.2
CALFW 81.8£1.0 49.7+1.5 88.0+0.8 93.9+1.1
CPLFW 79.2+£13 49.1+14 845+14 89.1+1.7
LFW 99.5+£0.3  489+1.1 99.7+£0.2 99.7+0.2
CFP-FF 99.0+£0.3 51.5£1.8 99.5+£0.3 99.7+0.2
112828 CFP-FP 949+1.1 494420 954+0.8 97.0+0.5

AgeDB-30 95.7+£1.0 49.5£0.7 955+1.1 96.3£1.1
CALFW 95.0£1.0 50.6£0.7 949+1.0 95.5+1.0
CPLFW 91.3+12 503£1.2 913+12 91.7£1.0

Table 3: Detailed same-resolution 1:1 verification accuracy (mean=std over 5 trails) per-benchmark.
Phr Pmm Omr @bt (Ours)
LFW 70.8£2.9 74.0+1.5 72.5+£1.8 92.7+1.2
CFP-FF 67.4+23 69.4+1.7 67.7£1.4 86.1f£1.5
CFP-FP 57.1£23 59.14+£23 56.5+£13 73.8+14

&7 AgeDB30  S543L1.9 542422 535418 625122
CALFW 582410 60.01E13 592521 76.0LL5
CPLEW — 564L17 586412 56.7L11 75.6L15
LEW 879000 934112 948409 98.510.5
CFP-FE 79.0422 847L16 86.7L16 96207
g1y CFPFP  682EIS 737220 780£L5  89.0+L0
AgeDB30 64117 642424 659423 842416
CALFW 718409 756413 775414 89.900.7
CPLEW — 723L1.6 764L18 79.0L17 87.6L19
LEW 99.1004  99.640.6 99.6403 99.8+0.3
CFPFF 072407 984107 99.1404 99.410.3
rsgpg CFPFP OL9EI3 035£13 950410 968409
AgeDB30 909+12 92.640.8 924+1.0 949%L1
CALEFW 929413 034409 939L13 95.0L0.9
CPLEW 895413 906&12 90.7E13 91.7+0.9
LEW 99.810.2 99.8410.2 99.8102 99.8:0.2
CFPFF 99.900.1 99.940.1 998402 99.840.2
loglly CFPFP 989503 98903 O8.1:04 981404

AgeDB-30 98.4+0.7 98.4+0.7 97.2+0.8 97.2+0.8
CALFW 96.0+£1.2 96.0+1.2 959+1.0 959+1.0
CPLFW 93.1+1.3 931413 92.7+£1.0 92.7£1.0

Table 4: 1:1 verification TAR at different FAR on the IJB-C dataset for cross-resolution feature
aggregation.

112&7 112&14 112&28
FAR 10=% 107% 1073 1072 10=' 107% 1075 10=® 102 10! 1076 1075 10°% 1072 10!
Ohr 6799 8165 93.18 9638 0865 78.83 8744 0586 9779 99.05 88.87 9256 97.19 9833  99.06
Omm 5357 6434 8401 9196 O07.12 8322 8956 9610 9771 9882 8684 9233 9716 98.10  99.01
Pmr 3783 4912 7680 8832 9579 7797 8546 9564 9779 9921 8555 9186 9725 9846  99.19

©pt (Ours)  66.84 7840 9427  97.63  99.16 81.92 88.38 96.64  98.34  99.28 86.61 92.48 97.38  98.47  99.20




Table 5: 1:1 verification TAR at different FAR on the IJB-C dataset for same-resolution feature

aggregation.
&7 14&14 28428 1124112
R 0% 10 10 w0 w0t o0t o w0 o ot oo ot o ot ot o ot o? ot ot
Ohr 069 173 1258 2763 5681 982 2038 5257 7261 9030 7567 8324 %2 9705 9874 8958 9451 9757 9840 99.0
P 068 173 1193 2748 5684 759 1561 4828 TLI3 9104 7368 8514 9582 9765 9889 89.58 9451 9757 9840 99.06
Omr 074176 ILIL 2598 5426 1420 2472 6039 7984 9435 7891 8642 9604 9807 99.09 8848 9337 9750 9851 99.3
ot Ous) 1209 2070 5747 7902 9390 5775 7063 9085 9606 98.68 8285 9032 9694 9831 99.15 8848 9337 9750 9851 9.3
1.0 1.00
0.9 1 0.95
0.8 1 0.90
SOJ EO.ES
%0.64 %0.80
;0,54 F0,75
[@nr (AUC = 99.36 %)] [@n (AUC = 99.57 %)]
0.4 [@mm (AUC = 98.67 %)] 0.70 [@mm (AUC = 99.49 %)]
[@mr (AUC = 98.13 %)] [@mr (AUC = 99.63 %)]
[@oe (Ours) (AUC = 99.66 %)] [@oe (Ours) (AUC = 99.68 %)]
0.3 0.65
107° 107° 1074 1072 1072 107! 107° 10°° 1074 1073 1072 107!
False Positive Rate False Positive Rate
(a) 112&7 (b) 112&14
1.00
0.97
0.94
50.91
gO.SB
F0.85
[@nr (AUC = 99.55 %)]
o R
[@be (Ours) (AUC = 99.66 %)]
0.79
1076 1075 107* 1073 1072 107!
False Positive Rate
(c) 112&28

Figure 4: 1:1 verification ROC Curve on the IJB-C dataset for cross-resolution feature aggregation.

Table 6: 1: N identification TPIR(% @FPIR=0.01), Top-1, Top-5, Top-10 accuracy on the IJB-C
dataset for cross-resolution feature aggregation.

112&7 112&14 112&28
TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10
Phr 7535 9276 95.14 9592 8198 93.89 9625 9698 9042 96.05 9747 97.80
Pmm 59.07 88.89 9233 9335 8639 9515 9686 9731 90.04 96.00 9731 97.72
Pmr 43.89 8229 87.74 8942 8218 9387 9620 96.89 8890 9593 9736 97.84
pue(Ours)  73.40 91.30 9486 95.88 8478 9478 96.84 9741 8984 96.16 9746 97.90
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Figure 5: 1:1 verification ROC Curve on the IJB-C dataset for same-resolution feature aggregation.

Table 7: 1: N identification TPIR(% @FPIR=0.01), Top-1, Top-5, Top-10 accuracy on the IJB-C
dataset for same-resolution feature aggregation.

787 14&14 28&28 112&112
TPIR  Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10
Phr 120 1177 1995 2428 1516 5096 63.62 6868 7752 91.62 9495 9599 9266 9658 9771 97.94
Omm 124 2038 3023 3483 1162 6208 7233 7633 7931 9387 96.09 9681  92.66 9658 9771 97.94
Omr 136 1741 2653 3103 2372 6864 7838 8199 8382 9453 9667 9733 9089 9644 97.65 98.00
@b (Ours) 1555 5549 6798 73.05 63.69 8635 9214 9401 8687 9542 97.06 97.62 9089 9644 97.65 98.00
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