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SERIES EXPANSION OF THE SABR JOINT DENSITY

QI WU

Columbia University

Under the SABR stochastic volatility model, pricing and hedging contracts that
are sensitive to forward smile risk (e.g., forward starting options, barrier options) re-
quire the joint transition density. In this paper, we address this problem by providing
closed-form representations, asymptotically, of the joint transition density. Specifically,
we construct an expansion of the joint density through a hierarchy of parabolic equa-
tions after applying total volatility-of-volatility scaling and a near-Gaussian coordinate
transformation. We then establish an existence result to characterize the truncation er-
ror and provide explicit joint density formulas for the first three orders. Our approach
inherits the same spirit of a small total volatility-of-volatility assumption as in the
original SABR analysis. Our results for the joint transition density serve as a basis for
managing forward smile risk. Through numerical experiments, we illustrate the accu-
racy of our expansion in terms of joint density, marginal density, probability mass, and
implied volatilities for European call options.

KEY WORDS: forward smile risk, SABR stochastic volatility model, joint transition density.

1. INTRODUCTION

In the derivative markets for interest rates and currencies, smile risk is a key component
that one needs to manage. The SABR stochastic volatility model introduced by Hagan
et al. (2002) is a widely used model by practitioners in these institutional markets as the
model not only fits the implied volatility smile well, but also generates correct comove-
ments between the underlying level and its smile curve. The implied volatility result for
European call options in the original work of Hagan et al. (2002) is adequate for manag-
ing single-period smile exposures and has become one of the most widely used formulas
in the fixed income market due to its accuracy, simplicity, and clear interpretations of
model parameters.

However, as yesterday’s exotic products become today’s vanilla flow, markets expect
simple formulas to manage forward smile risks reflected in the liquidly traded products
where the payoff functions involve the underlying states at multiple future temporal
points, not just at the maturity. Conditional forward smile exposures, from one future
state to another future state, arise from this multiperiodicity feature in the payoff’s
structure. For instance in the interest rate market, the strike of a forward starting call
option on 3 month LIBOR rate with 1 year maturity is set as the future level of the
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3 month LIBOR rate at a certain future time between now and the option maturity. In the
currency market, a barrier option on an exchange rate has payoff functions depending
on the underlying states at a few intermediate or a whole continuum of intermediate
temporal points throughout the life of the contract. Holding positions of such liquid
products with forward starting or barrier features exposes one to forward smile risks,
which depends on the transition density from one future state to another future state.
Specifically, if a stochastic volatility model is used, the joint transition density of both the
underlying and the volatility are necessary. Marginal transition densities are not enough
to price and hedge such products.

Unfortunately, the following three properties of the SABR model prevent one from
obtaining a strictly closed form solution to the evolution equation that the joint tran-
sition density function satisfies. Namely, the nonlinearity from the constant elasticity
variance (CEV)-type local volatility function, the coupling between the underlying se-
curity process and the lognormal volatility process, and finally the correlation between
the two driving Brownian motions. When a diffusion becomes multidimensional and
furthermore with the presence of correlation and coupling effect, only a few results are
available for the nonaffine class. We therefore turn to asymptotic methods to approximate
the joint transition density.

To put our approach in context, we first briefly discuss earlier approaches to the SABR
model: the singular perturbation, heat kernel asymptotics, and Malliavin calculus. The
singular perturbation method was first applied in Hagan et al. (2002) where their keen
observation of the total volatility-of-volatility as a scaling parameter led to a remarkably
accurate implied volatility formula for European call options with clear interpretations
of how each of the model parameters in the formula affects the shape of a smile curve.
Other successful applications of perturbation techniques applied to multiscale stochastic
volatility models include Fouque, Papanicoluou, and Sircar (2000) and Fouque et al.
(2003, 2004). Further, an important existence and uniqueness result for implied volatility
function was established in Berestycki, Busca, and Florent (2004) for a general class of
two factor level-dependent stochastic volatility models including the SABR and Heston
model. A differential geometry approach based on heat kernel asymptotics on Rieman-
nian manifolds was developed in Henry-Labordère (2005) targeting a wider range of
stochastic volatility models, including the Heston model and SABR model with mean-
reversion in the volatility process, the λ-SABR model. In particular, the λ-SABR model
was shown to correspond to the hyperbolic Poincaré half-plane whose geodesic distance
is known and a formula for the first-order asymptotic smile was explicitly calculated.
Hagan, Lesniewski, and Woodward (2005) used the geometric approach and analyzed
specifically the original SABR model and obtained the marginal transition density under
various boundary conditions. Bourgade and Croissant (2005) applied the heat kernel
asymptotics approach for the same family of generalized SABR models as in Henry-
Labordère (2005). In a third approach, Osajima (2007) used the Watanabe–Yoshida
theory of the Malliavin calculus and proved the implied volatility formula developed in
Hagan et al. (2002) for the dynamic version of the SABR model. In Osajima (2007), a
second-order asymptotic expansion in terms of the same total volatility-of-volatility pa-
rameter as Hagan et al. (2002) is characterized for both European call prices and implied
volatilities.

Given the historical development on the subject, the aim of this paper is to look
for a systematic approach of calculating explicitly the joint transition density up to
arbitrarily high-order expansions with particular focus on two aspects: the tractability
of calculations and the characterization of finite-order truncation error. Our method
comprises the following steps.
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312 Q. WU

First, we start with the same assumption as Hagan et al. (2002) in that the total
volatility-of-volatility for the entire contract horizon is considered as a small quantity so
that it can be treated as a perturbation parameter to scale the problem.

Next we apply a coordinate transformation that greatly simplifies our expansion.
After this transformation, in the limit of the total volatility-of-volatility scaling, the
SABR generator converges to the generator of a correlated two-dimensional Brownian
motion which admits a bivariate Gaussian transition density. Without scaling, it is not
possible to completely standardize the SABR model due to presence of coupling effect
in the dynamics.

Then with this scaling limit result, we seek a perturbation expansion in the solution
of the transformed PDE and obtain a parabolic hierarchy at arbitrary order of scales.
By construction, the leading order solution is a bivariate Gaussian distribution and
all other higher order expansions are explicitly obtainable through convolutions of the
leading order solution against its spatial derivatives. The tractability stems from the
convolution structure of Gaussian functions against their moments. And the ultimate
form of a finite order expansion at arbitrary order will be of a product of the lead-
ing order bivariate Gaussian distribution multiplied by polynomial functions of state
variables.

Finally, we show by Duhamel’s principle and Young’s inequality that the expansion
series forms a global L1 solution with finite-order truncation error of order εn+1 where ε

is the total volatility-of-volatility scaling parameter and n is the highest order to which
the expansion is carried out.

Relating to the earlier work on the subject, our methodology is closest to the singular
perturbation approach in Hagan et al. (2002). In terms of results obtained, Hagan,
Lesniewski, and Woodward (2005) derived an explicit marginal density approximation
with free boundary condition and discussed in detail its relationship with solutions
for Dirichlet (or absorbing), Neumann (or reflecting), and Robin (or mixed) boundary
conditions at zero forward, as well as their impact on the implied volatilities at small
and large strikes. On the other hand, the heat kernel framework of Henry-Labordère
(2005) is set out to be more general for a wider class of stochastic volatility models.
Given the historical development in Hagan, Lesniewski, and Woodward (2005) and
Henry-Labordère (2005) and our motivation of pricing products with forward starting
and barrier features, the scope of this paper is specifically on the joint transition density
with free boundary condition. In particular, results developed in this paper are more
explicit and easier in terms of calculating higher order terms to refine the approximation.
Further, our results are supplemented by an error-bound proof that guarantees the
convergence of the proposed expansion. Other work involving the SABR model includes
extending interest rate market models to include SABR-consistent smile features (Hagan
and Lesniewski 2006; Henry-Labordère 2007; Morini and Mercurio 2007; Rebonato
2007), its moment properties (Andersen and Piterbarg 2007; Lions and Musiela 2005),
local time for the SABR model (Benhamou and Croissan 2007), and alternatives to the
SABR dynamics (Rogers and Veraart 2008). See Gatheral (2006) for an overview of
volatility surface modeling.

The rest of the paper is structured as follows. In Section 2, we state the SABR model
and its associated Kolmogorov equations. In Section 3, we introduce the total volatility-
of-volatility scaling and the near Gaussian transformation and show that the transformed
density function converges to a bivariate Gaussian under the scaling limit. In Section 4, we
seek a solution expansion around the limiting distribution and derive the corresponding
equation hierarchy. We then show that the expansion converges globally in L1 and further
characterize the truncation error in terms of the order of the scaling parameter. In
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SERIES EXPANSION OF THE SABR JOINT DENSITY 313

Section 5, we provide explicit formulas of the leading, first- and second-order expansion.
We conclude the paper in Section 6 with numerical examples to illustrate the accuracy of
the results.

2. THE SABR MODEL

We review the definition of the SABR dynamics and the evolution of its joint transition
density.

2.1. Transition Probability

The SABR model specifies the joint risk neutral dynamics of a security’s forward price
and a volatility process on a measurable space (�,F) equipped with the T-forward mar-
tingale measure QT (Musiela and Rutkowski 1997) and a filtration {Ft, t � 0} generated
by the σ -algebras of the two T-forward Brownian motions Ft � σ ((W1

s , W2
s ), 0 � s � t).

On the probability space (�,F,Ft, QT), the SABR dynamics reads: ∀t � 0⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d F̂ t = α̂t F̂ t
β

dW 1
t , F̂0 > 0, β ∈ [0, 1]

dα̂t = να̂t dW 2
t , α̂0 > 0, ν > 0

EQT

[ dW 1
t dW 2

t ] = ρdt, ρ ∈ (−1, 1),

(2.1)

where F̂ t is the T-forward price of the considered security with risk-free zero coupon
bond as the numéraire. The volatility function is of the form α̂t F̂ t

β
with F̂β

t corresponding
to the CEV component and α̂t following a lognormal process. (W1

t , W2
t ) are correlated

Brownian motions under the measure QT.
To study the SABR dynamics, we first construct its infinitesimal generator and then

solve for the joint transition probability density from its associated Kolmogorov equation.
To fix notation, we take horizon T as the contract exercise date and call t the current time
such that 0 < t < T. We call f and α backward variables which denote the state values of
F̂ t and α̂t. Accordingly, T is the future time and F and A are forward variables denoting
the state values of F̂ T and α̂T. The forward Kolmogorov equation (FKE) evolves with
respect to f , α and the backward Kolmogorov equation (BKE) with respect to F , A.

Assuming the existence of a transition density function for the conditional probability
measure to (2.1), we have them relating to each other in the following sense:

P(F < F̂ T � F + dF, A < α̂T � A+ dA | F̂ t = f , α̂t = α) = p(t, f , α; T, F, A) dF dA

and p(t, f , α; T, F , A) denotes the associated joint transition density. The SABR
dynamics are time homogeneous, so the joint transition density depends on T and t only
through their difference which we denote by s := T − t. We thereafter write the joint
transition density as p(s, f , α; F , A).

2.2. Kolmogorov Equation

We rewrite the SABR dynamics from (2.1) in vector form as(
d F̂ t

dα̂t

)
=
(

0

0

)
dt +

(
α̂t F̂β

t 0

0 να̂t

)(
dW 1

t

dW 2
t

)
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314 Q. WU

with its drift vector, diffusion matrix, and correlation matrix between two Brownian
motions denoted by 
, �, and �


(F̂ t, α̂t) =
(

0

0

)
, �(F̂ t, α̂t) =

(
α̂t F̂β

t 0

0 να̂t

)
, � =

(
1 ρ

ρ 1

)
.

For a general multidimensional diffusion process driven by correlated Brownian mo-
tions, the infinitesimal generator A and its adjoint operator A∗ relate to each other
through an inner product such that for any function pair f , g ∈ C2(R2) that vanishes at
±∞, we have 〈A f , g〉 = 〈 f ,A∗g〉. In our case when A and A∗ act on the joint transition
density p(t, f , α; T, F , A), they take the form

[Ap(t, f , α; ·)]( f , α) = 
( f , α) · ∇ p(t, f , α; ·)

+1
2

Tr[�( f , α)��T( f , α) × Hp(t, f , α; ·)]

= 1
2

[
a( f , α)

∂2 p
∂ f 2

+ 2b( f , α)
∂2 p

∂ f ∂α
+ c( f , α)

∂2 p
∂α2

]

[A∗ p(·; T, F, A)](F, A) = −∇ · p(·; T, F, A)
(F, A)

+ 1
2

Tr[H × p(·; T, F, A)�(F, A)��T(F, A)]

= 1
2

[
∂2a(F, A)p

∂ F2
+ 2

∂2b(F, A)p
∂ F∂ A

+ ∂2c(F, A)p
∂ A2

]

with ∇, H, Tr denoting the gradient vector, Hessian matrix and trace operator for a
symmetric matrix, and ·, × denoting operator products for vectors and matrices. Further
the diffusion coefficients a( f , α), b( f , α), c( f , α) and a(F , A), b(F , A), c(F , A) are
calculated as

a( f , α) = f 2βα2, b( f , α) = ρν f βα2, c( f , α) = ν2α2

a(F, A) = F2β A2, b(F, A) = ρνFβ A2, c(F, A) = ν2 A2.

Associated with A∗ and A, respectively, the FKE and BKE pair for the joint transition
density p(t, f , α; T, F , A) then takes the form

[
∂

∂T
− A∗

]
p(·; T, F, A) = 0, T > t, starting at lim

T→t
p(·; T, F, A) = δ(F − f )δ(A− α)

[
∂

∂t
+ A

]
p(t, f , α; ·) = 0, t < T, terminating at lim

t→T
p(t, f , α; ·) = δ( f − F)δ(α − A)

and the equation we will analyze onwards for p(t, f , α; T, F , A) is with respect to the
backward variables f , α where the forward variables F , A are treated as constants. With
s = T − t, the BKE becomes
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SERIES EXPANSION OF THE SABR JOINT DENSITY 315

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
∂

∂s
− 1

2

(
a( f , α)

∂2

∂ f 2
+ 2b( f , α)

∂2

∂ f ∂α
+ c( f , α)

∂2

∂α2

)]

p(s, f , α; F, A) = 0, s ∈ (0, T]

p(s, f , α; F, A) = δ( f − F)δ(α − A), s = 0.

(2.2)

When time to maturity T − t shrinks to zero, backward variables ( f , α) coincide with
forward variables (F , A). This is the terminal condition at t = T before the change of
variable s = T − t and the initial condition at s = 0 for (2.2) and it is represented by a
two-dimensional delta function, the point measure on a plane.

It is important to point out that although p(s, f , α; F , A) is a function of both f , α

and F , A, it is a probability density only in the forward variables F , A with backward
variables f , α fixed. The solution to the BKE as a function of f , α with F , A fixed is not
in general a probability function. This is particularly true for the BKE associated with
the SABR model as one can check that A is not self-adjoint.

Equation (2.2) is a linear second-order partial differential equation of parabolic type in
nondivergence form with coordinate-dependent coefficients. A set of sufficient conditions
for the existence of a unique fundamental solution to (2.2) are boundedness, uniform
ellipticity, and Hölder continuity in the diffusion coefficient functions a( f , α), b( f , α),
c( f , α), see page 3 in Friedman (1983). Unfortunately, the coefficients of (2.2) are neither
bounded nor uniformly elliptic, as is very often the case with PDEs arising from diffusion
processes. Nor do they satisfy relaxations of these conditions as in Aronson and Besala
(1967) and Chen (1986). To the best of our knowledge, equation (2.2) falls outside known
regularity conditions for existence and uniqueness of a fundamental solution. We will
therefore proceed on the assumption, standard in the mathematical finance literature,
that the model admits a transition density satisfying the BKE. In subsequent sections, the
equations we derive through scaling and transformation of (2.2) inherit the solvability
properties of (2.2) without further assumptions.

3. SCALING AND TRANSFORMATION

We first introduce the total volatility-of-volatility scaling and the near-Gaussian transfor-
mation. We then show that due to the correlation and coupling effect, SABR diffusion is
not able to be either strictly standardized nor completely decoupled. Instead, the bivari-
ate random vector of the SABR process at any given time will only become a bivariate
normal vector in the limit when the scaling parameter vanishes to zero.

3.1. Total Volatility-of-Volatility Scaling

The difficulty of applying typical solution construction methods to equation (2.2) stems
from two aspects: the arbitrarily noninteger-valued CEV component β and complex-
valued characteristic curves due to the presence of the correlation parameter ρ. The
spatial part of equation (2.2) is always elliptic for the range of SABR parameters except
at ρ = ±1, [ac − b2]( f , α) = ν2α4 f 2β (1 − ρ2) > 0, ∀ f > 0, α > 0, ν > 0. Thus the two
characteristic ODEs for the parabolic operator in (2.2) have complex-valued solutions.
Seeking a closed-form representation of the solution to (2.2) with real value operations
faces limited options, and very likely the only option is a series representation.
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316 Q. WU

The asymptotic expansion method is based on the fact that in a wide range of market
scenarios, the total volatility-of-volatility ν2T is not very large and can be considered as
a small quantity (Hagan et al. 2002). This complies with the spirit of the original SABR
methods. It then can be treated as a perturbation parameter ε :=

√
ν2T assuming ε � 1.

We take this as the starting point of our power series expansion analysis.
The scaling parameter ε corresponds to the following change of variables:

⎧⎪⎨
⎪⎩

τ (s) := s/T

x( f , α) := f

y( f , α) := α/ν

(3.1)

and we denote x(F , A), y(F , A) by X, Y which is F , A/ν. Applying (3.1) to equation (2.2)
through the chain rule

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂s
= ∂

∂τ

dτ

ds
= 1

T
∂

∂τ

∂2

∂ f 2
= ∂

∂x

(
∂

∂x
dx
d f

)
dx
d f

= ∂2

∂x2

∂2

∂ f ∂α
= ∂

x

(
∂

∂y
dy
dα

)
dx
d f

= 1
ν

∂2

∂x∂y

∂2

∂α2
= ∂

∂y

(
∂

∂y
dy
dα

)
dy
dα

= 1
ν2

∂2

∂α2

(3.2)

then equation (2.2) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∂

∂τ
− ν2T

2

(
x2β y2 ∂2

∂x2
+ 2ρxβ y2 ∂2

∂x∂y
+ y2 ∂2

∂y2

)]

p(τT, x, νy; X, νY) = 0, τ ∈ (0, 1]

p(τT, x, νy; X, νY) = 1
ν
δ(x − X)δ(y − Y), τ = 0.

(3.3)

Define a new quantity p̃ε(τ, x, y; X, Y) as

p̃ε(τ, x, y; X, Y) � ν p (τT, x, νy; X, νY)(3.4)

and substitute (3.4) into (3.3) together with ε2 = ν2T, we have p̃ε(τ, x, y; X, Y) satisfying

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
∂

∂τ
− ε2

2

(
x2β y2 ∂2

∂x2
+ 2ρxβ y2 ∂2

∂x∂y
+ y2 ∂2

∂y2

)]

p̃ε(τ, x, y; X, Y) = 0, τ ∈ (0, 1]

p̃ε(τ, x, y; X, Y) = δ(x − X)δ(y − Y), τ = 0.

(3.5)

The quantity p̃ε(τ, x, y; X, Y) satisfying (3.5) is the transition density function of the
following scaled process, denoted by (X̂ε

τ , Ŷε
τ )

 14679965, 2012, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1467-9965.2010.00460.x by C

ity U
niversity O

f H
ong K

ong, W
iley O

nline L
ibrary on [25/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d X̂ε
t = εŶε

t

(
X̂ε

t

)β
dW̃1

t , X̂ε
0 = F̂0

dŶε
t = εŶε

t dW̃2
t , Ŷε

0 = α̂0/ν

EQT[
dW̃1

t dW̃2
t

] = ρ dt, ρ ∈ (−1, 1), t ∈ [0, 1]

(3.6)

with generator Ãε

⎧⎪⎨
⎪⎩
Ãε � L̃ε

x,y = 1
2

[
aε(x, y)

∂2

∂x2
+ 2bε(x, y)

∂2

∂x∂y
+ cε(x, y)

∂2

∂y2

]

aε(x, y) = ε2x2β y2, bε(x, y) = ε2ρxβ y2, cε(x, y) = ε2 y2.

The family L̃ε
x,y is of Laplacian type with correlation and coordinate-dependent coef-

ficients. The subscript (x, y) indicates that it acts on the spatial coordinates (x, y) and
the subscript ε indicates it is considered as an operator parameterized by ε. Accordingly,
p̃ε(τ, x, y; X, Y) defines a family of scaled transition densities each satisfying a scaled
BKE ⎧⎪⎨

⎪⎩
[

∂

∂τ

− L̃ε
x,y

]
p̃ε(τ, x, y; X, Y) = 0, 0 < τ � 1

p̃ε(τ, x, y; X, Y) = δ(x − X) δ(y − Y), τ = 0.

(3.7)

3.2. Near-Gaussian Transformation

Having introduced the scaling parameter ε, we then define a point-wise coordinate
transformation which we call the near-Gaussian transformation, and we will show
that under this coordinate change, the resulting generator converges to that of a two-
dimensional correlated Brownian motion as ε↓0. The corresponding transition density
at this limit is a bivariate Gaussian function around which we will seek a power series
expansion assuming the scale parameter ε is small.

The reason that we could not simply find a particular set of change of variables
such that A can be transformed into a standard Laplacian and why instead we need a
scaling first is because neither a standardization transform nor a decoupling transform
is possible for the original SABR process; the analysis is detailed in the Appendix. The
best alternative is then our notion of near-Gaussian transformation.

THEOREM 3.1. Let x, y, X, Y be the scaled coordinates in (3.1). Define the following
point-wise transformation from coordinate (x, y) to a new coordinate (u, v) as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u := φ(x, y) �
∫ x

X

dx′
√aε(x′,y)

= x1−β − X1−β

ε(1 − β)y

v := ψ(x, y) �
∫ y

Y

dy′
√cε(x,y′)

= ln y − ln Y
ε

(3.8)

and denote (φ(X, Y), ψ(X, Y)) by (U, V) which becomes a constant vector (0, 0).
Let p̂ε(τ, u, v ; U, V) denote the transition density in the new coordinates, shortened as
p̂ε(τ, u, v). Then p̂ε(τ, u, v) converges a.e. for τ , u, v and in L1 with respect to u, v for each
τ to a bivariate Gaussian function p̂0(τ, u, v):
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318 Q. WU

p̂ε(τ, u, v) → p̂0(τ, u, v) = 1

2πτ
√

1 − ρ2
exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)

as ε ↓ 0.

Proof . To show the statement in Theorem 3.1 requires proofs of the following three
parts. First we calculate explicitly the solution to equation (3.7) after applying (3.8) at the
limit ε = 0. Then we show that the sequence of scaled solutions indexed by ε converges to
the limit as ε ↓ 0 using the semigroup property and further show the sequence is bounded
above by an integrable function, thus concluding the convergence.

First we verify the inverse map x(u, v), y(u, v) exists, i.e., it is locally invertible. In
fact, for ε > 0, x > 0, y > 0, the inverse map of (3.8) admits a Jacobian with nonzero
determinant

∀ε > 0, x > 0, y > 0∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ =
∣∣∣∣∣xu xv

yu yv

∣∣∣∣∣ = ε2xβ y2 �= 0.

Therefore the inverse map of (3.8) is one to one and explicitly given by

{
x(u, v) = [ε(1 − β)uYeεv + X1−β ]

1
1−β

y(u, v) = Yeεv .
(3.9)

Let us denote by L̂ε
u,v the resulting operator of L̃ε

x,y upon applying (3.8). Through
chain rule, L̂ε

u,v is calculated as follows:

L̂ε
u,v � 1

2
[aε (x(u, v), y(u, v)) ∂xx + 2bε (x(u, v), y(u, v)) ∂xy + cε (x(u, v), y(u, v)) ∂yy]

with

∂xx =
[(

∂φ

∂x

)2
]

∂2

∂u2
+
[

2
∂φ

∂x
∂ψ

∂x

]
∂2

∂u∂v
+
[(

∂ψ

∂x

)2
]

∂2

∂v2
+
[

∂2φ

∂x2

]
∂

∂u

+
[

∂2ψ

∂x2

]
∂

∂v

∂xy =
[

∂φ

∂x
∂φ

∂y

]
∂2

∂u2
+
[

∂φ

∂y
∂ψ

∂x
+ ∂φ

∂x
∂ψ

∂y

]
∂2

∂u∂v
+
[

∂ψ

∂x
∂ψ

∂y

]
∂2

∂v2

+
[

∂2φ

∂x∂y

]
∂

∂u
+
[

∂2ψ

∂x∂y

]
∂

∂v

∂yy =
[(

∂φ

∂y

)2
]

∂2

∂u2
+
[

2
∂φ

∂y
∂ψ

∂y

]
∂2

∂u∂v
+
[(

∂ψ

∂y

)2
]

∂2

∂v2

+
[

∂2φ

∂y2

]
∂

∂u
+
[

∂2ψ

∂y2

]
∂

∂v
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SERIES EXPANSION OF THE SABR JOINT DENSITY 319

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂x
= 1

εxβ y

∂φ

∂y
= x1−β − X1−β

ε(1 − β)

(−1
y2

)
= −u

y

∂2φ

∂x2
= −β

εxβ+1 y

∂2φ

∂xy
= −1

εxβ y2

∂2φ

∂y2
= x1−β − X1−β

ε(1 − β)

(
2
y3

)
= 2u

y2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ

∂x
= 0

∂ψ

∂y
= 1

εy

∂2ψ

∂x2
= 0

∂2ψ

∂xy
= 0

∂2ψ

∂y2
= −1

εy2
.

Organizing terms, we then have

L̂ε
u,v = 1

2
[lε(u, v) ∂uu + 2mε(u, v)∂uv + nε(u, v)∂vv + jε(u, v)∂u + kε(u, v)∂v ] ,

where lε(u, v), mε(u, v), nε(u, v), j ε(u, v), kε(u, v) are

lε(u, v) =
[

aε(x, y)
(

∂φ

∂x

)2

+ 2bε(x, y)
∂φ

∂x
∂φ

∂y
+ cε(x, y)

(
∂φ

∂y

)2
]

= 1 − 2ρuε + u2ε2

mε(u, v) =
[

aε(x, y)
∂φ

∂x
∂ψ

∂x
+ bε(x, y)

(
∂φ

∂x
∂ψ

∂y
+ ∂φ

∂y
∂ψ

∂x

)
+ cε(x, y)

∂φ

∂y
∂ψ

∂y

]
= ρ − εu

nε(u, v) =
[

aε(x, y)
(

∂ψ

∂x

)2

+ 2bε(x, y)
∂ψ

∂x
∂ψ

∂y
+ cε(x, y)

(
∂ψ

∂y

)2
]

= 1

jε(u, v) =
[

aε(x, y)
∂2φ

∂x2
+ 2bε(x, y)

∂2φ

∂x∂y
+ cε(x, y)

∂2φ

∂y2

]
= −(2ρ + βxβ−1 y)ε + 2uε2

kε(u, v) =
[

aε(x, y)
∂2ψ

∂x2
+ 2bε(x, y)

∂2ψ

∂x∂y
+ cε(x, y)

∂2ψ

∂y2

]
= −ε.

Then (3.7) becomes an equation in coordinates (u, v)

⎧⎪⎪⎨
⎪⎪⎩

[
∂

∂τ

− L̂ε
u,v

]
p̃ε(τ, x(u, v), y(u, v); X, Y) = 0, 0 < τ � 1

p̃ε(τ, x(u, v), y(u, v); X, Y) = 1
ε2 XβY2

δ(u)δ(v), τ = 0

(3.10)

with (x(u, v), y(u, v)) given by (3.9).
Next define a new quantity p̂ε(τ, u, v ; U, V) as

p̂ε(τ, u, v ; U, V) � ε2 XβY2 p̃ε(τ, x(u, v), y(u, v); X, Y)(3.11)

and plug (3.11) into equation (3.10), we have p̂ε(τ, u, v ; U, V) satisfying
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320 Q. WU

⎧⎪⎨
⎪⎩
[

∂

∂τ

− L̂ε
u,v

]
p̂ε(τ, u, v ; U, V) = 0, 0 < τ � 1

p̂ε(τ, u, v ; U, V) = δ(u)δ(v), τ = 0

(3.12)

with L̂ε
u,v and xβ−1 y in terms of u, v given by

L̂ε
u,v = 1

2

⎡
⎢⎢⎣

(1 − 2ρuε + ε2u2)
∂2

∂u2
+ 2(ρ − εu)

∂2

∂uv
+ ∂2

∂v2

+[−(2ρ + βxβ−1 y)ε + 2uε2]
∂

∂u
+ (−ε)

∂

∂v

⎤
⎥⎥⎦

xβ−1 y = Yeεν

ε(1 − β)uYeεν + X1−β
.

(3.13)

We will shorten p̂ε(τ, u, v ; U, V) as p̂ε(τ, u, v) from now on.
Setting ε = 0 in (3.13), we obtain the limiting generator as

Â0 = 1
2

[
∂2

∂u2
+ 2ρ

∂2

∂uv
+ ∂2

∂v2

]

with p̂0(τ, u, v) denoting the solution to the corresponding limiting equation of (3.12).
Then p̂0(τ, u, v) solves⎧⎪⎨

⎪⎩
∂ p̂0

∂τ
−
[

∂2 p̂0

∂u2
+ 2ρ

∂2 p̂0

∂uv
+ ∂2 p̂0

∂v2

]
(τ, u, v) = 0, τ ∈ (0, 1]

p̂0(τ, u, v) = δ(u)δ(v), τ = 0

and is explicitly given by

p̂0(τ, u, v) = 1

2πτ
√

1 − ρ2
exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)

.

The associated semigroup sequence Tε
τ defined via p̃ε(τ, u, v) as

(
Tε

τ f
)
(u, v) �

∫
f (u, v) p̂ε(τ, u, v ; u′, v ′) du′ dv ′ ∈ Cb, ∀ f ∈ Cb

is a strong continuous contraction semigroup. Then ∀ f ∈ C2
b (R2

+),

(
Tε

τ f
) → (Tτ f ) on C2

b

(
R2

+
)

as ε → 0

which implies the convergence of the kernel Ethier and Kurtz (1986)

p̂ε(τ, u, v) → p̂0(τ, u, v) a.e. as ε → 0.

Further at each fixed ε, there exists a constant K > 0 such that for all ξ = (ξ1, ξ2) ∈ R2

and all (u, v) ∈ R2, we have

aε(u, v)ξ 2
1 + 2bε(u, v)ξ1ξ2 + cε(u, v)ξ 2

2 ≤ (1 − ερu + ε2u2)ξ 2
1 + (ρ − εu)

(
ξ 2

1 + ξ 2
2

) + ξ 2
2

≤ K(1 + u2 + v2)
(
ξ 2

1 + ξ 2
2

)
,
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SERIES EXPANSION OF THE SABR JOINT DENSITY 321

then each p̂ε(τ, u, v) is bounded above by Gaussian kernel (Fabes and Stroock 1984,
1986; Fabes 1992) which is clearly integrable

| p̂ε(τ, u, v)| ≤ CK

2πτ
exp

(
−u2 + v2

2τCK

)

for some constant CK depending only on K . Thus not only p̂ε → p̂0 as ε ↓ 0 but also the
sequence p̂ε is bounded by a integrable function for all ε. Taking (u, v) as a continuity
point, Lebesgue Dominated Convergence Theorem then concludes the convergence. �

4. SERIES EXPANSION

4.1. Convergence of Expansion

With the total volatility-of-volatility scaling and near-Gaussian transformation estab-
lished in Section 3, we have successfully transformed the original problem (2) into (3.12)
which we will rewrite here as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂

∂τ

− L̂ε
u,v

]
p̂ε(τ, u, v) = 0, 0 < τ � 1

p̂ε(τ, u, v) = δ(u)δ(v), τ = 0

where L̂ε
u,v = 1

2

⎡
⎢⎢⎣

(1 − 2ρuε + ε2u2)
∂2

∂u2
+ 2(ρ − εu)

∂2

∂uv
+ ∂2

∂v2

+[−(2ρ + βxβ−1 y)ε + 2uε2]
∂

∂u
+ (−ε)

∂

∂v

⎤
⎥⎥⎦

xβ−1 y = Yeεv

ε(1 − β)uYeεv + X1−β

(4.1)

and so far everything is exact and no approximation is made. To prepare for a power
series expansion, we further expand xβ−1 y to the first order of ε

xβ−1 y = [Xβ−1Y] + [[(β − 1)X2(β−1)Y2]u + [Xβ−1Y]v ]ε + O(ε2).

With the limiting solution p̂0(τ, u, v) established in Theorem 3.1, we will show that
the following proposed power series representation of p̂ε(τ, u, v) converges in the sense
that the finite partial sum of this expansion is a global L1 solution to (4.1) with xβ−1 y
expanded the second order of ε. By a global L1 solution, we mean that the infinite power
series expansion has bounded L1 norm for every τ ∈ (0, 1).

Plugging the following expansion ansatz:

p̂ε = p̂0 + ε p̂1 + ε2 p̂2 + · · · + εn p̂n + · · ·(4.2)

into (4.1) for positive integer n ≥ 1, and equating like orders of ε for both the equation
and the initial condition, we obtain the following hierarchy:[

∂

∂τ

− 1
2
L0

ε

]
p̂0(τ, u, v) = 0; p̂0(0, u, v) = δ(u) δ(v)

[
∂

∂τ

− 1
2
L0

ε

]
p̂1(τ, u, v) = 1

2

[
L1

ε p̂0
]
(τ, u, v); p̂1(0, u, v) = 0
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322 Q. WU

[
∂

∂τ

− 1
2
L0

ε

]
p̂2(τ, u, v) = 1

2

[
L1

ε p̂1 + L2
ε p̂0

]
(τ, u, v); p̂2(0, u, v) = 0

...[
∂

∂τ

− 1
2
L0

ε

]
p̂n(τ, u, v) = 1

2

[
L1

ε p̂n−1 + L2
ε p̂n−2

]
(τ, u, v); p̂n(0, u, v) = 0

...

(4.3)

with L0
ε, L1

εand L1
ε denoting the source operators at each order of ε⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L0
ε = ∂2

∂u2
+ 2ρ

∂2

∂u∂v
+ ∂2

∂v2

L1
ε = −2ρu

∂2

∂u2
− 2u

∂2

∂u∂v
− (2ρ + β Xβ−1Y)

∂

∂u
− ∂

∂v

L2
ε = u2 ∂2

∂u2
+ [(2 + β(1 − β)X2(β−1)Y2)u − (β Xβ−1Y)v ]

∂

∂u
.

(4.4)

We call p̂0(τ, u, v) the leading order expansion to p̂ε and it is the solution to the
first equation in the hierarchy (4.3). p̂1(τ, u, v) is called the first-order expansion which
solves the second equation in (4.3) and is explicitly obtainable by applying Duhamel’s
principle once p̂0(τ, u, v) is obtained. Similarly p̂2(τ, u, v) is the second-order expansion
which solves the third equation in (4.3) once p̂1 and p̂0 are obtained. Progressively, the
expansion hierarchy in (4.3) up to finite order n can be obtained explicitly.

Let us denote the partial sum truncated at the nth order expansion by

p̂n
ε = p̂0 + ε p̂1 . . . + εn p̂n, for n ≥ 1.(4.5)

We then introduce the mixed norm L2
τ ((0, 1)) × L1

u,v (R2) to make precise the expansion
and convergence

‖ f (τ, u, v)‖L2
τ ((0,1))×L1

u,v (R2):=
[∫ 1

0

∣∣∣∣
∫

R2
| f (τ, u, v)| du dv

∣∣∣∣
2

dτ

] 1
2

.

A function f (τ , u, v) is further said to be in the space of L2
τ ((0, 1)) × L1

u,v (R2)⋂
C1,2((0, 1) × R2)⎧⎨

⎩ f : C1,2((0, 1) × R2) → R

∣∣∣∣
[∫ 1

0

∣∣∣∣
∫

R2
| f (τ, u, v)| du dv

∣∣∣∣
2

dτ

] 1
2

< ∞
⎫⎬
⎭

if it is differentiable once in τ and twice in u, v and further it has finite L1 norm in the
spatial variables u, v on R2 and finite L2 norm in the temporal variable τ on interval
(0, 1). We then have the following result.

THEOREM 4.1. Let p̂ε : (0, 1) × R2 �→ R be a C1,2 function that solves (4.1). Let
p̂i : (0, 1) × R2 �→ R, i = 1, . . . , n be a hierarchy of C1,2 functions that solves the equation
hierarchy in (4.3) and let p̂n

ε be the partial sum of p̂i defined in (4.5), then there exists a
constant C > 0, independent of ε, such that ∀ε > 0
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SERIES EXPANSION OF THE SABR JOINT DENSITY 323

∥∥ p̂ε(τ, u, v) − p̂n
ε (τ, u, v)

∥∥
L2

τ ((0,1))×L1
u,v (R2) � Cεn+1.(4.6)

Proof . The proof consists of the following three steps. The first step is to find an
integral representation for the truncation error after nth-order expansion. We denote the
truncation error as

ξ n
ε := p̂ε − p̂n

ε .

This requires an evolution equation that ξ n
ε satisfies and it is obtained by summing up the

expansion hierarchy. Then by Duhamel’s principle, we will show that we can represent
the solution to the error equation as a convolution of a correlated bivariate Gaussian
kernel with source terms that involves only the nth and (n − 1)th order expansion.

In the next step, we observe that for expansion at any given order n other than the
leading order, the corresponding equation in hierarchy (4.3) involves the source oper-
ators L1

ε,L2
ε (4.4) which are differentiations of expansions at order n − 1 and n − 2.

Specifically, the highest order effect of the source operator acting on the fundamental so-
lution of hierarchy (4.3) will be multiplication by spatial polynomials umvn and temporal
polynomials τ−l. All (m, n, l) are positive integers.

Finally, through Young’s inequality, we are able to obtain L1 control for the spatial
convolution as both of the kernel as functions in the spatial domain is of Gaussian and
Gaussian moments type and hence Lp for p ≥ 1. For the temporal integration, the kernel
as functions in the temporal variable does not have enough decay within the subinterval
of (0,1) and in fact one of them is only L2 above, hence we obtain a L2 control on the
temporal integration. �
Step I: Equation for ξ n

ε

Recalling that we have an expansion ansatz as in (4.2), let us formally complete the
expansion as

p̂ε = p̂0 + ε p̂1 + ε2 p̂2 + · · · + εn p̂n + ξ n
ε = p̂n

ε + ξ n
ε(4.7)

with ξ n
ε denoting the truncation error after the expansion to the nth order. Plugging (4.7)

into (4.3) and with some algebra, we find all the “lower-order” terms in the subtraction
cancel and what remains is the equation for the error term ξ n

ε

[
∂

∂τ
− 1

2
L0

ε

]
ξ n
ε (τ, u, v) = 1

2
εn+1 [L1

ε p̂n + L2
ε p̂n−1 + εL2

ε p̂n
]

(τ, u, v), ξ n
ε (0, u, v) = 0.

(4.8)

The solution to the error equation will then be established in the following proposition
as a direct consequence of applying Duhamel’s principle to (4.8) for an inhomogeneous
evolution equation with [∂τ − 1

2L0
ε ] as the evolution operator. And indeed, the full equa-

tion hierarchy shares the same left-hand side as [∂τ − 1
2L0

ε ] and the solution structure of
the truncation error will be similar to that of the expansions.

PROPOSITION 4.2. Consider the inhomogeneous Cauchy problem[
∂

∂τ
− 1

2

(
∂

∂u2
+ 2ρ

∂

∂uv
+ ∂

∂v2

)]
p̂ε(τ, u, v) = f (τ, u, v), τ > 0

p̂ε(τ, u, v) = g(u, v), τ = 0

(4.9)
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324 Q. WU

the solution to (4.9) is represented via that of the homogeneous problem through the initial
condition g(τ , u, v) and the source terms f (τ , u, v) as

p̂ε(τ, u, v) =
∫

R2
G(τ, u − u′, v − v ′)g(u′, v ′) du′ dv ′

+
∫ τ

0

∫
R2

G(τ − s, u − u′, v − v ′) f (s, u′, v ′) du′ dv ′ ds,

(4.10)

where the kernel G(.) in (4.10) is the fundamental solution of (4.9) solving the following
the homogeneous problem[

∂

∂τ
− 1

2

(
∂

∂u2
+ 2ρ

∂

∂uv
+ ∂

∂v2

)]
G(τ, u, v) = 0, τ > 0

G(τ, u, v) = δ(u)δ(v), τ = 0

and is given by

G(τ, u, v) = 1

2πτ
√

1 − ρ2
exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)

.(4.11)

Proof . Equation (4.10) is simply Duhamel’s principle and (4.11) follows from recog-
nizing the equation as the generator for two-dimensional Brownian motion with corre-
lation ρ.

Equation (4.11) is the bivariate Gaussian limit that we saw in Theorem 3.1
as the limiting density function to a correlated bivariate Brownian motion. With
Proposition 4.2, the solution to the error equation (4.8) is given by

ξ n
ε (τ, u, v) = 1

2
εn+1

∫ τ

0

∫
R2

G(τ − s, u − x, v − y)

× [
L1

ε pn + L2
ε pn−1 + εL2

ε pn] (s, x, y) dx dy ds.

(4.12)

For instance, the truncation error after the first-order expansion will be

ξ 1
ε = 1

2
ε2
∫ τ

0

∫
R2

G(τ − s, u − x, v − y)
[
L1

ε p1 + L2
ε p0 + εL2

ε p1] (s, x, y) dx dy ds.

Thus we have successfully obtained an equation for the truncation error and observe it
is of order εn+1 from the coefficients in (4.12). What remains is to show that the integral
in (4.12), aside from the coefficient εn+1, is bounded. �
Step II: Effect of Source Operator on the Green’s Function.

To control the size of the integral in (4.12), we need an analysis of the effect of the source
operator L1

ε and L2
ε on the expansions, precisely at order n and n − 1. In fact L1

ε,L2
ε are

differentiations in the spatial variables whose effect can be characterized as multiplication
by a polynomial function in the state variables τ , u, v . The complication in our case is
the fact that G(τ , u, v) is of Gaussian type only in u, v , but not in τ ; further it is bivariate
with correlation.

For now let us first write down explicitly the solution representation to the expansion
hierarchy up to order n in (4.3). Invoking (4.10) in Proposition 4.2 and identifying
individually the initial condition and the source term at different expansion order, the
solutions to the hierarchy up to order n in (18) can be represented by
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SERIES EXPANSION OF THE SABR JOINT DENSITY 325

p̂0(τ, u, v) = G(τ, u, v); for n = 0

p̂1(τ, u, v) =
∫ τ

0

∫
R2

G(τ − s, u − x, v − y)

×
[

1
2
L1

εG
]

(s, x, y) dx dy ds; for n = 1

p̂2(τ, u, v) =
∫ τ

0

∫
R2

G(τ − s, u − x, v − y)

×
[

1
2
L1

ε p̂1 + 1
2
L2

ε p̂0

]
(s, x, y) dx dy ds; for n = 1

...

p̂n(τ, u, v) =
∫ τ

0

∫
R2

G(τ − s, u − x, v − y)
1
2

× [
L1

ε p̂n−1 + L2
ε p̂n−2

]
(s, x, y) dx dy ds; for n ≥ 2.

(4.13)

To shorten notation, we use “�” to represent this specific form of integral where
convolution in the spatial variables u, v is defined for the full domain while in the
temporal variable τ it is a partial convolution on an interval

[ f � g] (τ, u, v) :=
∫ τ

0

∫
R2

f (τ − s, u − x, v − y)G(s, x, y) dx dy ds.

Then (4.13) in this simplified notation becomes

p̂0(τ, u, v) = G; for n = 0

p̂1(τ, u, v) = G �
[

1
2
L1

εG
]

; for n = 1

p̂2(τ, u, v) = G � 1
2
L1

ε

[
G �

[
1
2
L1

εG
]]

+ G �
[

1
2
L2

εG
]

...

pn(τ, u, v) = G � 1
2

[
L1

ε pn−1 + L2
ε pn−2] for n ≥ 2

with the solution to the hierarchy written down, we can now examine the effect of the
two source operators L1

ε,L2
ε in (19) on pn(τ , u, v) where G is given by (4.11).

On explicit calculation, we see the exact form of the first-order derivative ∂uG, ∂vG
and the second-order derivative ∂uuG, ∂uvG. They are the four core components of the
effect of the source operator L1

ε and L2
ε on G.

∂G(τ, u, v)
∂u

=
[

u − ρv
(1 − ρ2)τ

]
G(τ, u, v)

=
[

1
2π (1 − ρ2)3/2

] [
u − ρv

τ 2

]
exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)
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326 Q. WU

∂G(τ, u, v)
∂v

=
[

v − ρu
(1 − ρ2)τ

]
G(τ, u, v)

=
[

1
2π (1 − ρ2)3/2

] [
v − ρu

τ 2

]
exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)

∂2G(τ, u, v)
∂u2

=
[

(u − ρv)2 + (−1 + ρ2)τ
(1 − ρ2)2τ 2

]
G(τ, u, v)

=
[

1
2π (1 − ρ2)5/2

] [
(u − ρv)2 + (−1 + ρ2)τ

τ 3

]
exp

(
−u2 − 2ρuv + v2

2τ (1 − ρ2)

)

∂2G(τ, u, v)
∂u∂v

=
[

(−ρ(u2 + v2) + (1 + ρ2)uv) + ρ(1 − ρ2)τ
(1 − ρ2)2τ 2

]
G(τ, u, v)

=
[

1
2π (1 − ρ2)5/2

] [
(−ρ(u2 + v2) + (1 + ρ2)uv) + ρ(1 − ρ2)τ

τ 3

]

× exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)

.

As we see, ∂uG is of the form u exp (−u2) in its highest order of u, the same for v up to
a constant with a different sign. In terms of τ it is of the form 1

τ 2 exp(− 1
τ

) in the highest
order of τ . Further ∂uuG and ∂uvG are of the form u2exp (−u2) in the highest order of
u and 1

τ 3 exp(− 1
τ

) in the highest order of τ . Here we single out the highest order term in
τ for analysis of the size due to the fact that ∀τ ∈ (0, 1), 1

τ n is an increasing function in
n. More generally, when ∂m+n

∂mu∂nv acts on G(τ , u, v) , the result is a polynomial coefficient
with um+n and vm+n as the highest order terms in the numerator and τm+n as the highest
order term in the denominator. Without losing generality, we consider the highest order
effect in terms of u and τ

∂m+n

∂mu∂nv
G(τ, u, v) ∼ um+n 1

τm+n
G(τ, u, v),

where (m, n) are positive integers and by ∼ we mean the highest order effect of the source
operator.

If we can control the size of the mixed convolution type quantity ∂m+n

∂mu∂nv � G, then
the size of expansion pn

ε (τ, u, v) can be bounded as it consists of a finite number of
items which are equal or smaller than the above quantity. The same argument applies to
pn−1

ε (τ, u, v).

Step III: Convolution Control.

Pertaining the analysis in step II, we next seek control for the following quantity:

I(τ, u, v) �
∫ τ

0

∫
R2

G(τ − s, u − x, v − y)
[

xm+n 1
sl+1

G(s, x, y)
]

(s, x, y) dx dy ds(4.14)

and claim the following.

PROPOSITION 4.3. ‖ I ‖L2
τ ((0,1))L1

uv (R2)< +∞.
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SERIES EXPANSION OF THE SABR JOINT DENSITY 327

Proof . Recall the classical Young’s inequality states the following. Let f ∈ Lp and
g ∈ Lq , then the convolution

f ∗ g �
∫

Rn
f (x − ξ )g(ξ ) dξ

satisfies inequality

‖ f ∗ g ‖Lr � ‖ f ‖Lp ‖ f ‖Lq

for

1 + 1
r

= 1
p

+ 1
q

and 0 � p, q, r � +∞.

The first observation is that (4.14) is an integral of convolution type. More specifi-
cally with G of two-dimensional Gaussian form in mind, the integration in the spatial
variables x and y, omitting nonvariable dependent coefficients, is a full two-dimensional
convolution on R2

[exp (−(x2 − 2ρxy + y2))] ∗ [xm+n exp (−(x2 − 2ρxy + y2))].(4.15)

In contrast, the integration in the temporal variable s is of the form of a partial convo-
lution as the range is a subset of finite interval (0, τ ) on (0, 1)[

1
t

exp
(

−1
t

)]
∗
[

1
tl+1

exp
(

−1
t

)]
.(4.16)

Here “∗” stands for the standard convolution on the full domain.
The second observation is that (4.15) and (4.16) as functions of space and as functions

of time converge in different spaces. In fact exp (−(x2 − 2ρxy + y2)) and xm+nexp (−(x2

− 2ρxy + y2)) have finite Lp(R2) norm for p ≥ 1 since they are Gaussian and Gaussian
moments while for t−1exp (−t−1) and t−(l+1)exp (−t−1) we do not have such a unform
result on the whole temporal domain R+. Indeed t−1exp (−t−1) is not L1(R+) as the
integration doesn’t converge on the half open interval R+, its Lp(R2) norm is finite only
for p ≥ 2. Here we will stay with an L2 argument as our purpose in the section is to
show boundedness rather than obtain an explicit solution. The case for t−(l+1)exp (−t−1)
is nicer, it is always a Lp function for p ≥ 1 and even for the half open real line R+ since
l + 1 is always larger than 1 due to the source effect and the Lp integration converges
uniformly for p ≥ 1.

Therefore both G and (u, v)m+nG are L1 in R2. By Young’s inequality with p = 1, q =
1, we have r = 1 for

‖G(τ − s, u, v) ∗ (u)m+nG(s, u, v)‖L1(R2) ≤‖ G(τ − s, u, v)‖L1(R2) ·‖ um+nG(s, u, v)‖L1(R2)

≤ C1

τ − s
exp

( −C2

τ − s

)
· C3

s
exp

(−C4

s

)

≤ C5
1

τ − s
exp

( −1
τ − s

)
· 1

s
exp

(−1
s

)
,

where C1, C2, C3, C4, C5 are constants chosen to ensure the inequalities follows and they
are all bounded below from zero.
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328 Q. WU

Then as t−(l+1)exp (−t−1) is uniformly bounded in Lp for p ≥ 1 and t−1exp (−t−1) is
only L2 and above, the best one will obtain is the case for p = 1, q = 2, hence r = 2 as∥∥∥∥C5

∫ τ

0

1
τ − s

exp
( −1

τ − s

)
· 1

sl+1
exp

(−1
s

)
ds
∥∥∥∥

L2([0,1])

≤
∥∥∥∥C5

∫ ∞

0

1
τ − s

exp
( −1

τ − s

)
· 1

sl+1
exp

(−1
s

)
ds
∥∥∥∥

L2(R+)

=
∥∥∥∥C5

1
τ

exp
(−1

τ

)
∗ 1

sl+1
exp

(−1
s

)∥∥∥∥
L2(R+)

≤ C6

∥∥∥∥1
τ

exp
(−1

τ

)∥∥∥∥
L2(R+)

·
∥∥∥∥ 1

sl+1
exp

(−1
s

)∥∥∥∥
L1(R+)

≤ C6 · C7 · C8.

Again C6, C7, C8 are constants bounded away from zero.
Finally,

‖ I ‖L2
τ ([0,1])×L1

uv (R2) ≤ C6 · C7 · C8 < +∞. �

5. JOINT DENSITY FORMULAS

Having proved the convergence of the expansion, we will calculate explicit expansion
formulas up to the second order and illustrate the accuracy by numerical examples.

5.1. Leading Order

Recall the solution to the leading order problem is given by a bivariate normal distri-
bution

p̂0(τ, u, v) = G(τ, u, v) = 1

2πτ
√

1 − ρ2
exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)

.(5.1)

5.2. First Order

Then the first-order system solves the following inhomogeneous problem with source
term involving leading order solution. Together with zero initial condition, it reads:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
∂

∂τ
− 1

2
L0

ε

]
p̂1(τ, u, v) = 1

2

[
L1

ε p̂0
]
(τ, u, v), ∀0 < τ � 1

L1
ε = −2ρu

∂2

∂u2
− 2u

∂2

∂u∂v
− (2ρ + β Xβ−1Y)

∂

∂u
− ∂

∂v
p̂1(0, u, v) = 0.

By Duhamel representation, we have p̂1(τ, u, v) as

p̂1(τ, u, v) =
∫ τ

0

∫
R2

1
2

[
L1

ε p̂0
]

(s, x, y)G(τ − s, u − x, v − y) dx dy ds.(5.2)
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SERIES EXPANSION OF THE SABR JOINT DENSITY 329

As p̂0(τ, u, v) = G(τ, u, v) from (5.2), we first calculate 1
2L1

εG as

[
1
2
L1

εG
]

(τ, u, v) = f10(τ, u, v)G(τ, u, v), with

f10(τ, u, v) =
[
− (2ρ + β Xβ−1Y)(u − ρv) + (v − ρu)

2(−1 + ρ2)

]
1
τ

+
[

uv(u − ρv)
(−1 + ρ2)

]
1
τ 2

.

Then p̂1(τ, u, v) is obtained as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̂1(τ, u, v) =
∫ τ

0

∫
R2

[ f10G](s, x, y)G(τ − s, u − x, v − y) dx dy ds

= C1

[
a11(u, v) + a10(u, v)

1
τ

]
p̂0(τ, u, v),

(5.3)

where the coefficents C1, a11(u, v), a10(u, v) are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1 = 1
2(−1 + ρ2)

a11(u, v) = −β Xβ−1Y(u − ρv)

a10(u, v) = uv(u − ρv).

(5.4)

Finally,

p̂1(τ, u, v) = −1
4πτ 2(1 − ρ2)3/2

[
(u − ρv)(uv − β Xβ−1Yτ )

]
exp

(
−u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
)

.

5.3. Second Order

In the second-order expansion, the inhomogeneous problem will have two source terms
involving solutions at both the first order and the leading order.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂

∂τ

− 1
2
L0

ε

]
p̂2(τ, u, v) = 1

2

[
L1

ε p̂1 + L2
ε p̂0

]
(τ, u, v), ∀0 < τ � 1

L1
ε = −2ρu

∂2

∂u2
− 2u

∂2

∂u∂v
− (2ρ + β Xβ−1Y)

∂

∂u
− ∂

∂v

L2
ε = u2 ∂

∂u2
+ [(2 + β(1 − β)X2(β−1)Y2)u − (β Xβ−1Y)v ]

∂

∂u
p̂2(0, u, v) = 0.

With [ 1
2L1

ε p̂1](τ, u, v) and [ 1
2L2

ε p̂0](τ, u, v) calculated as

[
1
2
L1

ε p̂1

]
(τ, u, v) = f11(τ, u, v)G(τ, u, v),
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330 Q. WU

where

f11(τ, u, v) = (a − 2ρ)(a − ρ)
4(−1 + ρ2)

+ 1
τ 3

2u4v2 − 4u3v3ρ + 2u2v4ρ2

4(−1 + ρ2)2

+ 1
τ 2

−2u4 − 3au3v + 7u3vρ − 3uv3ρ(−1 + aρ) + u2v2(−5 + 6aρ − 3ρ2)
4(−1 + ρ2)2

+ 1
τ

v2(a − ρ)ρ(−2 + aρ) + u2(5 + a2 − 3aρ − 3ρ2) + uv(5a − 2(4 + a2)ρ + aρ2 + 4ρ3)
4(−1 + ρ2)2

and [
1
2
L2

ε p̂0

]
(τ, u, v) = f20(τ, u, v)G(τ, u, v),

where

f20(τ, u, v) = 1
τ 2

u2(u − vρ)2

2(−1 + ρ2)2
+ 1

τ

(1 + b)u2 + cv2ρ − uv(c + bρ)
2(−1 + ρ2)

.

Then p̂2(τ, u, v) is obtained as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̂2(τ, u, v) =
∫ τ

0

∫
R2

[ f11G + f20G] (s, x, y)G(τ − s, u − x, v − y) dx dy ds

= C2

[
a23(u, v)τ + a22(u, v) + a21(u, v)

1
τ

+ a20(u, v)
1
τ 2

]
p̂0(τ, u, v),

(5.5)

where the coefficients C2, a23(u, v), a22(u, v), a21(u, v), a20(u, v) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2 = 1
24(1 − ρ2)2

a23(u, v) = (8 − 3a2 − 6b) + (12a)ρ + (−28 + 3a2 + 12b)ρ2 + (−12a)ρ3 + (20 − 6b)ρ4

a22(u, v) = u2[3a2 − 12aρ + 2(5 + ρ2 + 3b(−1 + ρ2))]

− 2uv [−3(a + c) + (10 + 3a2 − 3b)ρ + 3(−3a + c)ρ2 + (2 + 3b)ρ3]

+ v2[−2 + (2 + 3(a − 2ρ)2)ρ2 + 6cρ(−1 + ρ2)]

a21(u, v) = u4 + ρ2v4 + 2[−3a + 4ρ]u3v + 2[ρ2(−3a + 4ρ)]uv3

+ 2[−2 + 6aρ − 7ρ2]u2v2

a20(u, v) = 3u4v2 − 6u3v3ρ + 3u2v4ρ2

with a, b, c given by

a = 2ρ + β Xβ−1Y, b = 2 + β(1 − β)X2(β−1)Y2, c = β Xβ−1Y.

5.4. Explicit Formulas

Summarizing the result obtained so far, we start from the total volatility-of-volatility
scaling in (3.1) and introduce the scale parameter ε = ν

√
T so p(T − t, f , α; T, F ,

A) becomes p̃ε(τ, x, y; X, Y) as in (3.4). We then applied the near Gaussian transfor-
mation (x, y) → (u, v) in (3.8) to partially standardize the scaled SABR density from
p̃ε(τ, x, y; X, Y) to p̂ε(τ, u, v ; U, V) as in (3.11). Finally, p̂ε(τ, u, v ; U, V) is expanded in
terms of ε (4.5) around the limiting solution p̂0(τ, u, v) (5.1).
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SERIES EXPANSION OF THE SABR JOINT DENSITY 331

Based on Theorem 4.1, the joint transition density p(T − t, f , α; F , A) at time to
maturity T − t conditional on the current state values f , α has the following series
expansion:

pn(T − t, f , α; F, A) = 1
νTFβ A2

n∑
k=0

(ν
√

T)k p̂k

(
T − t

T
,

f 1−β − F1−β

α(1 − β)
√

T
,

ln(α/A)

ν
√

T

)
.

(5.6)

As we solve the expansion hierarchy (4.3) to the first three orders with p̂0, p̂1, p̂2

obtained in (5.2), (5.3), and (5.5), we express explicitly the density approximations in the
following in terms of the original forward and backward variables (t, f , α; T, F , A) and
model parameters (β, ρ, ν).

(i) Approximation up to zero, first, and second order

p0(T − t, f , α; F, A) = 1
νTFβ A2

p̂0(τ, u, v)(5.7)

p1(T − t, f , α; F, A) = 1
νTFβ A2

[ p̂0(τ, u, v) + ν
√

T p̂1(τ, u, v)]

= 1
νTFβ A2

[
1 + ν

√
T

2(−1 + ρ2)
(a11 + a10/τ )

]
p̂0(τ, u, v)

(5.8)

p2(T − t, f , α; F, A)

= 1
νTFβ A2

[ p̂0(τ, u, v) + ν
√

T p̂1(τ, u, v) + ν2T p̂2(τ, u, v)]

= 1
νTFβ A2

⎡
⎢⎢⎢⎣

1 + ν
√

T
2(−1 + ρ2)

(a11 + a10/τ )

+ ν2T
24(1 − ρ2)2

(a23τ + a22 + a21/τ + a20/τ
2)

⎤
⎥⎥⎥⎦ p̂0(τ, u, v).

(5.9)

In (5.7), (5.8), and (5.9), transformed variables (τ , u, v), zero-order expansion
p̂0(τ, u, v), spatial coefficients at first order a11, a10 and second order a23, a22, a21,
a20 are explicitly given in terms of original variables (t, f , α, T, F , A) and model
parameters β, ρ, ν as follows:

(ii) Transformed variables (τ , u, v), p̂0(τ, u, v) and zero-order expansion p̂0(τ, u, v)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ = T − t
T

, u = f 1−β − F1−β

α(1 − β)
√

T
, v = ln (α/A)

ν
√

T

p̂0(τ, u, v) = 1

2πτ
√

1 − ρ2
exp

[
− u2 − 2ρuv + v2

2τ
(
1 − ρ2

)
]

= 1

2π
√

1 − ρ2

(
1 − t

T

)

× exp

⎡
⎢⎢⎢⎣−

(
f 1−β − F1−β

α(1 − β)
√

T

)2

− 2ρ

(
f 1−β − F1−β

α(1 − β)
√

T

)(
ln (α/A)

ν
√

T

)
+
(

ln (α/A)

ν
√

T

)2

2(1 − ρ2)
(

1 − t
T

)
⎤
⎥⎥⎥⎦ .

(5.10)
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332 Q. WU

(iii) Spatial coefficients at first and second order

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = −βFβ−1 Aν−1(u − ρv), a10 = u2v − ρuv2

a23 = ρ4(20 − 6b) + ρ3(−12a) + ρ2(−28 + 3a2 + 12b) + ρ(12a) + (8 − 3a2 − 6b)

a22 = u2[3a2 − 12aρ + 6b(−1 + ρ2) + 2ρ2 + 10]

− 2uv [ρ3(2 + 3b) + ρ2(−9a + 3c) + ρ(10 + 3a2 − 3b) − (3a + 3c)]

+ v2[(2 + 3(a − 2ρ)2)ρ2 + 6cρ(−1 + ρ2) − 2]

a21 = u4 + v4ρ2 + u3v(8ρ − 6a) + uv3(8ρ3 − 6aρ2) + u2v2(−14ρ2 + 12aρ − 4)

a20 = 3u4v2 − 6u3v3ρ + 3u2v4ρ2

a = 2ρ + βFβ−1 Aν−1, b = 2 + β(1 − β)F2(β−1) A2ν−2, c = βFβ−1 Aν−1.

(5.11)

Through (5.7)–(5.10), expressions are explicit up to algebraic, logarithmic, and expo-
nentiation operations. For p(T − t, f , α; F , A) to be a conditional probability function,
the variables will be the time to maturity T − t, the future price F , and the future volatility
A. The model parameters (β, ρ, ν) and current level of underlying and volatility ( f , α)
are constants.

6. NUMERICAL EXAMPLES

To evaluate the accuracy of our result, we report numerical comparisons between ours,
that of finite difference solver, and those from earlier work in Hagan et al. (2002) and
Hagan, Lesniewski, and Woodward (2005). In particular, the comparisons are made in
terms of four aspects: joint density, marginal density, conservation of probability mass,
and implied volatility for European call options.

6.1. Joint Transition Density

Both point-wise l∞ error and global l2 error are compared for system (4.1) between
expansions obtained at second-order expansion (5.5) and finite difference solver where
ADI scheme is used to discretize (4.1), see page 64 in Morton and Mayers (2005) for
details. The scheme is unconditionally stable and the discretization error is second order
in both temporal and spatial variables with Dirichlet boundaries.

Equation (4.1) has Dirac initial mass centered at (u, v) = (0, 0) and the solution to
(4.1) decays very rapidly as the domain tends from the center (0, 0) to R2. We choose the
domain under numerical evaluation to be T (τ ) × �(u, v) = [0, 1] × [−6, 6] × [−6, 6] in
absolute values with a partition of 100 time steps in τ and 101 × 101 spatial grids in (u, v).
Dirichlet boundary conditions are imposed at p̂ε(τ, u, v) |∂�(u,v)= 0, ∀τ ∈ [0, 1] together
with the discrete Dirac initial condition being p̂ε(0, u, v) |(0,0)= 1

�u�v at the center and
zero elsewhere p̂ε(0, u, v) |�(u,v)/(0,0)= 0. The domain chosen as such is consistent with
discretizations in the sense that the numerical solution outside �(u, v) is observed to
be below the level of discretization error. At each step of temporal marching, we have
a 10201 × 10201 sparse matrix and we use a Bi-conjugate Gradient solver to solve the
resulting linear system to precision 10−12.
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SERIES EXPANSION OF THE SABR JOINT DENSITY 333

TABLE 6.1
Point-wise l∞ Error and Global l2 Error between Joint Densities from Second-Order
Expansion in Equation (5.9) and Joint Densities from Finite Difference Solver at T

Equal to 1, 3, 6, 12 Months and ν Equal to 10%, 40%, 80%, 100%

‖ p̂ε − ( p̂0 +
ε p̂1 + ε2 p̂2)‖ β = 0.0001 β = 0.5000 β = 0.9999

ν T (months) ‖·‖l∞ log10(‖·‖l2 ) ‖·‖l∞ log10(‖·‖l2 ) ‖·‖l∞ log10(‖·‖l2 )

0.1 1 0.2204% −3.4093 0.2204% −3.4093 0.2204% −3.4089
0.4 1 0.2206% −3.4066 0.2206% −3.4066 0.2216% −3.4023
0.8 1 0.2219% −3.3352 0.2219% −3.3352 0.2219% −3.3209
1.0 1 0.2234% −3.2009 0.2234% −3.2008 0.2234% −3.1845
0.1 3 0.2204% −3.4092 0.2204% −3.4092 0.2204% −3.4065
0.4 3 0.2214% −3.3727 0.2214% −3.3726 0.2214% −3.3385
0.8 3 0.2292% −2.7376 0.2292% −2.7375 0.2292% −2.7055
1.0 3 0.2408% −2.2746 0.2437% −2.2746 0.3009% −2.2569
0.1 6 0.2205% −3.4089 0.2205% −3.4089 0.2205% −3.3988
0.4 6 0.2232% −3.2186 0.2232% −3.2183 0.2232% −3.1287
0.8 6 0.3460% −1.9985 0.3511% −1.9984 0.4509% −1.9744
1.0 6 0.6527% −1.4938 0.6587% −1.4937 0.7856% −1.4817
0.1 12 0.2205% −3.4078 0.2205% −3.4077 0.2206% −3.3700
0.4 12 0.2292% −2.7376 0.2292% −2.7372 0.2293% −2.6214
0.8 12 0.9123% −1.2176 0.9227% −1.2175 1.1267% −1.2103
1.0 12 1.6355% −0.7247 1.6495% −0.7246 1.9166% −0.7165

The comparisons are made in three different market conditions categorized by the
value of β, where β = 0.0001 corresponds to “normal” market, β = 0.5 for “CIR”
market, and β = 0.9999 for “lognormal” market. As the expansion accuracy mostly
depends on the perturbation parameter ε = ν

√
T, we vary volatility-of-volatility ν from

10% to 100% and maturity T from 1 month to 12 months and fix other parameters in
(4.1) as ρ = 0, F = 100, A = 0.1. It takes about 30 milliseconds for one evaluation of
(5.5) on a machine with 2.93 GHZ Xeron CPU while the computation time for one call
of the finite difference solver is about 6–7 minutes on the same machine. The potential
savings in computation time are thus enormous.

Results are reported in Table 6.1. The point-wise l∞ error ranges from 0.2% to 2%
in absolute values for all three β cases, and the global l2 error ranges from −3.4 to
−0.7 in base 10 logarithm for all β cases. While the errors are all small across different
values of ν and T, they increase monotonically as the perturbation parameter ε = ν

√
T

increases, which is consistent with the small total volatility-of-volatility assumption for
the expansions.

6.2. Marginal Transition Density

Earlier work on the marginal transition density from f to F is available in Hagan,
Lesniewski, and Woodward (2005). To evaluate the accuracy of our method, we take the
marginal density result in Hagan, Lesniewski, and Woodward (2005), which is readily
available, as the benchmark and report comparisons to ours across a wide range of
underlying levels f , time-to-maturities T − t, and model parameters (α, β, ρ, ν). In
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334 Q. WU

FIGURE 6.1. Marginal densities when correlation ρ equals to −0.7 and 0.7. The upper
two figures correspond to ρ = −0.7 and the lower two figures correspond to ρ = 0.7.
Other parameters are f = 100, α = 60%, β = 0.5, ν = 40%, T − t = 3 months.

the case of Hagan, Lesniewski, and Woodward (2005), the marginal density is given by
equation (90) which is analytically obtained by integrating the joint density expression
from equation (83). In our case, we obtain the marginal density by numerically integrating
the second-order joint density formula in equation (40) along the dimension of future
volatility state A. Noted also that it is in the forward variable F that the marginal
transition density pF (T − t, f , α; F) is a probability distribution function, not the
backward variables f , α.

To illustrate an important point that relates to the impact of parameter changes on
the shape of densities, we also plot the corresponding joint transition distributions along
with the marginals for the same model parameters used. The point we want to make by
adding the joint density next to the marginal is that a change in the model parameter can
lead to a dramatic change in the shape of joint density function but not so in the shape of
marginals. And one should not wrongly imply that Hagan, Lesniewski, and Woodward
(2005) did not provide a joint density expression. In fact, it is given by equation (90) in
Hagan, Lesniewski, and Woodward (2005).
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SERIES EXPANSION OF THE SABR JOINT DENSITY 335

FIGURE 6.2. Marginal densities when volatility-of-volatility ν equals to 20% and 80%.
The upper two figures correspond to ν = 20% and the lower two figures correspond to
ν = 80%. Other parameters are f = 100, α = 60%, β = 0.5, ρ = 0, T − t = 3 months.

Results are illustrated in Figures 6.1–6.3 in which HLW05 refers to results from
Hagan, Lesniewski, and Woodward (2005). Figure 6.1 reports comparisons when the
correlation parameter ρ change signs from −0.7 to 0.7. Other parameters are fixed at
f = 100, α = 60%, β = 0.5, ν = 0.4, T − t = 3 months. Figure 6.2 reports comparisons
when volatility-of-volatility ν increases from 20% to 80%. Other parameters are fixed at
f = 100, α = 60%, β = 0.5, ρ = 0, T − t = 3 months. Figure 6.3 corresponds to time to
maturities T − t at 1 year and 5 years with f = 100, α = 20%, β = 0.9999, ρ = −0.3,
ν = 10%.

The truncated domain for numerical evaluation in Figures 6.1 and 6.2 is �(F , A)
∈ [0.8 f , 1.2 f ] × [0.0001α, 3α] with 2001 × 2001 spatial grids for the joint density in
(5.9) and �(F) ∈ [0.8 f , 1.2 f ] with 2001 spatial grids for the marginal density from
Hagan, Lesniewski, and Woodward (2005). For Figure 6.3, the same number of spatial
grids are used and the truncated domain is [0.0001 f , 2.5 f ] × [0.0001a, 2a] for the joint
density in (5.9) and [0.0001 f , 2.5 f ] for the marginal density from Hagan, Lesniewski,
and Woodward (2005).

 14679965, 2012, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1467-9965.2010.00460.x by C

ity U
niversity O

f H
ong K

ong, W
iley O

nline L
ibrary on [25/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



336 Q. WU

FIGURE 6.3. Marginal densities for time to maturity T − t at 1 year and 5 years. The
upper two figures correspond to T − 1 = 1 year and the lower two figures correspond
to T − 1 = 5 years. Other parameters are f = 100, α = 20%, β = 0.9999, ρ = −0.3,
ν = 10%.

Through Figures 6.1–6.3, our results match very well with Hagan, Lesniewski, and
Woodward (2005) for different values of correlation ρ, volatility-of-volatility ν, and time
to maturity T − t. What is particularly noticeable in Figures 6.1 and 6.2 is that when ρ and
ν change, the drastic changes in the shape of the joint density are not obvious simply by
looking at the changes in the marginal densities. Further, the correlation parameter ρ has
a rotating effect on the joint density while increasing the value of volatility-of-volatility
ν spreads out the joint density. This is an important feature when pricing derivatives
with forward-starting and barrier features. Also for time to maturities as long as T = 5
years, marginal densities generated from both Hagan, Lesniewski, and Woodward (2005)
and our equation (5.9) agree well for reasonable values of model parameters so that the
perturbation parameter ε is smaller than 1.

6.3. Probability Mass

The probability mass of a density approximation is an important measure to gauge
the accuracy of results obtained from expansions. We report total probability mass in the
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SERIES EXPANSION OF THE SABR JOINT DENSITY 337

second-order expansion formula (5.9) as (T − t, f , α, β, ρ, ν) changes. For a comparison
with the marginal formula in Hagan, Lesniewski, and Woodward (2005), we also include
results obtained from equation (90) in Hagan, Lesniewski, and Woodward (2005). In
terms of marginal density, the probability mass is numerically calculated as

∫ ∞

0
pF (T − t, f , α, F) dF ≈

NF∑
n=1

pF (T − t, f , α, Fn)�F

and for joint density, the mass is

∫ ∞

0

∫ ∞

0
p(T − t, f , α, F, A) dF dA ≈

NF∑
i=1

NA∑
j=1

p(T − t, f , α, Fi , Aj )�F�A.

The spatial support for pF (T − t, f , α, F) and p(T − t, f , α, F , A) is R+ and R2
+

respectively, which are truncated for numerical integration such that the absolute values
of densities outside the truncation are smaller than 10−6. As different values of model
parameters will result in drastically different distributions, so are the domains we choose
for truncation to match the precision at the fixed number of grid points at NF = 2001
and NA = 2001.

Results are reported in Tables 6.2–6.4 in which HLW05 refers to results obtained
from Hagan, Lesniewski, and Woodward (2005). Probability mass larger than 105% and
smaller than 95% are shaded. In Table 6.2, we report results when time to maturity T
− t ranges from 1 month to 12 months and volatility-of-volatility ν ranges from 10% to
100%. In Table 6.3, we vary correlation ρ from −0.9 to 0.9 and volatility-of-volatility
ν from 10% to 100%. Finally in Table 6.4, results are reported for different values of
current underlying price f at 0.1, 1, 100 and current volatility α at 0.01, 0.1, 0.2, 0.3, 0.5.

What is remarkable to notice is that results from both Hagan, Lesniewski, and Wood-
ward (2005) and equation (5.9) preserve probability mass very well across the wide ranges
of parameters tested, except at the small forward case which corresponds to the numer-
ical experiments at f = 0.1 for β = 0.5 and β = 0.0001 in Table 6.4 where most of the
shaded values occurred. In the zero forward case we tested, the probability masses are
very concentrated around the current underlying price f for both joint densities and
marginal densities. However, one should note that the densities we tested throughout
Tables 6.1–6.4 for equation (90) in Hagan, Lesniewski, and Woodward (2005) and for
equation (5.9) in this paper are finite order asymptotics under free-boundary conditions,
mass-losing at zero forward is a expected phenomenon. Refer to Hagan, Lesniewski, and
Woodward (2005) for a detailed discussion of how to relate joint densities under various
boundary conditions to the solution from free-boundary condition.

6.4. Implied Volatility

As the SABR model is widely used to fit implied volatility curves in interest rate
derivative market, we report results on two typical cases: futures options on Libor rate
where the underlying is the forward Libor rate quoted on 100(1 − rLibor) and European
swaptions with the underlying quoted on rLibor. Technically, futures options correspond
to a large forward level case and and European swaptions correspond to a small forward
case.
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338 Q. WU

TABLE 6.2
Probability Mass of Second-Order Expansion in Equation (5.9) (Left Column) and

Hagan, Lesniewski, and Woodward (2005) (Right Column) and When Time to
Maturity T − t and Volatility-of-Volatility ν Changes

Other Parameters: f = 100, α = 0.1, ρ = 0

β = 0.9999 β = 0.9999
Equation (5.9) HLW05
T − t\ν 10% 20% 40% 80% 100% T − t\ν 10% 20% 40% 80% 100%

1 month 1.00 1.00 1.00 1.00 1.00 1 month 1.00 1.00 1.00 1.00 1.00
6 months 1.00 1.00 1.00 1.00 1.00 6 months 1.00 1.00 1.00 1.00 1.00
12 months 1.00 1.00 1.00 1.00 1.01 12 months 1.00 1.00 1.00 1.01 1.01

Other Parameters: f = 100, α = 0.1, ρ = 0

β = 0.5 β = 0.5
Equation (5.9) HLW05
T − t\ν 10% 20% 40% 80% 100% T − t\ν 10% 20% 40% 80% 100%

1 month 1.00 1.00 1.00 1.00 1.00 1 month 0.99 0.99 0.99 0.99 0.99
6 months 1.00 1.00 1.00 1.00 1.00 6 months 0.99 0.99 0.99 0.99 0.99
12 months 1.00 1.00 1.00 1.00 1.01 12 months 1.00 0.99 0.99 1.00 1.00

Other Parameters: f = 100, α = 0.1, ρ = 0

β = 0.0001 β = 0.0001
Equation (5.9) HLW05
T − t\ν 10% 20% 40% 80% 100% T − t\ν 10% 20% 40% 80% 100%

1 month 1.00 1.00 1.00 1.00 1.00 1 month 0.99 0.99 0.99 0.99 0.97
6 months 1.00 1.00 1.00 1.00 1.00 6 months 0.99 0.99 0.99 0.98 0.99
12 months 1.00 1.00 1.00 1.00 1.01 12 months 1.00 0.99 0.99 0.99 0.99

Comparisons from Monte Carlo simulation, Hagan et al. (2002), and equation (5.9)
are plotted in Figure 6.4 in which HKLW02 refers to results from Hagan et al. (2002).
The left figure corresponds to the swaption case with f = 8%, α = 20%, β = 0.9999,
ρ = 0, ν = 20%, T − t = 1 year. The right figure corresponds to the option case where
we set f = 95, α = 80%, β = 0.5, ρ = 0, ν = 30%, T − t = 1 year. For Monte Carlo
simulation, we generate one million SABR paths with 100 time steps per day using Eurler
discretization. To use our expansion result, we first obtain option prices by numerically
integrating the second-order joint density (5.9) against the payoff of a European call on
a truncated domain with 2001 × 2001 spacial grids and then invert the resulting option
prices to implied volatilities. For large forward case f = 95, α = 80%, the truncated
domain for integration is (F , A) ∈ [0.0001 f , 2 f ] × [0.0001α, 4α]. For small forward case
f = 8%, α = 20%, it is (F , A) ∈ [0.001 f , 3 f ] × [0.001α, 3α]. And finally to compare with
Hagan et al. (2002), we take the implied volatility formula directly and plot the results
against those obtained from Monte Carlo simulation and equation (5.9).

It should be stressed that the implied volatilities HKLW02 are provided by a closed-
form expression, whereas our results require numerical integration and inversion of the
Black formula. This is an important advantage of Hagan et al. (2002) and a reason for the
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SERIES EXPANSION OF THE SABR JOINT DENSITY 339

TABLE 6.3
Probability Mass of Second-Order Expansion in Equation (5.9) (Left Column) and

Hagan, Lesniewski, and Woodward (2005) (Right Column) and When Correlation ρ

and Volatility-of-Volatility ν Changes

Other Parameters: f = 100, α = 0.1, T − t = 0.5 year

β = 0.9999 β = 0.9999
Equation (5.9) HLW05
ρ\ν 10% 20% 40% 80% 100% ρ\ν 10% 20% 40% 80% 100%

−0.9 1.00 1.00 1.00 1.00 0.99 −0.9 1.00 1.00 1.00 1.00 1.00
−0.3 1.00 1.00 1.00 1.00 0.99 −0.3 1.00 1.00 1.00 1.00 1.00

0.0 1.00 1.00 1.00 1.00 0.99 0.0 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 0.99 0.3 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 0.99 0.9 1.00 1.00 1.00 1.00 1.00

Other Parameters: f = 100, α = 0.1, T − t = 0.5 year

β = 0.5 β = 0.5
Equation (5.9) HLW05
ρ\ν 10% 20% 40% 80% 100% ρ\ν 10% 20% 40% 80% 100%

−0.9 1.00 1.00 1.00 1.00 1.00 −0.9 1.00 1.00 1.00 1.00 1.00
−0.3 1.00 1.00 1.00 1.00 1.00 −0.3 1.00 1.00 1.00 1.00 1.00

0.0 1.00 1.00 1.00 1.00 1.00 0.0 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 0.3 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 0.9 1.00 1.00 1.00 1.00 1.00

Other Parameters: f = 100, α = 0.1, T − t = 0.5 year

β = 0.0001 β = 0.0001
Equation (5.9) HLW05
ρ\ν 10% 20% 40% 80% 100% ρ\ν 10% 20% 40% 80% 100%

−0.9 1.00 1.00 1.00 1.00 1.00 −0.9 1.00 1.00 1.00 1.00 1.00
−0.3 1.00 1.00 1.00 1.00 1.00 −0.3 1.00 1.00 1.00 1.00 1.00

0.0 1.00 1.00 1.00 1.00 1.00 0.0 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 0.3 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 0.9 1.00 1.00 1.00 1.00 1.00

success of the SABR formula. It is also the reason why we choose it as the benchmark.
One could, in principle, apply numerical integration to either the joint density expression
(equation (83)) or the marginal density expression (equation (90)) in Hagan, Lesniewski,
and Woodward (2005) to calculate option prices and implied volatilities. We perceive the
advantage of our joint density representation as more amenable to numerical integration
in the sense that it is explicitly expressed in terms of current state variables f , α, future
state variables F , A, and model parameters β, ρ, ν as well as the time-to-maturity T − t.

In both cases, equation (5.9) agrees well with Monte Carlo simulation and Hagan et al.
(2002) across strikes around at-the-money region. Given the fact that implied volatility
is a sensitive measure of both option strikes and model parameters, this is remarkable
given the fact that both the joint density result in equation (5.9) and the implied volatility
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340 Q. WU

TABLE 6.4
Probability Mass of Second-Order Expansion in Equation (5.9) (Left Column) and

Hagan, Lesniewski, and Woodward (2005) (Right Column) and When Current
Forward Level f and Current Volatility α Changes. Numbers Greater Than 105%

and Smaller Than 95% Probability Mass are Shaded

Other Parameters: ρ = 0, ν = 0.1, T − t = 1 year

β = 0.9999 β = 0.9999
Equation (5.9) HLW05
f \α 0.01 0.1 0.2 0.3 0.5 f \α 0.01 0.1 0.2 0.3 0.5

0.1 1.00 1.00 1.00 1.00 1.00 0.1 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 100 0.99 1.00 1.00 1.00 1.00

Other Parameters: ρ = 0, ν = 0.1, T − t = 1 year

β = 0.5 β = 0.5
Equation (5.9) HLW05
f \α 0.01 0.1 0.2 0.3 0.5 f \α 0.01 0.1 0.2 0.3 0.5

0.1 1.00 1.00 0.96 0.72 0.51 0.1 1.00 1.00 0.99 0.96 0.70
1 1.00 1.00 1.00 1.00 0.99 1 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 0.99 0.99 0.99

Other Parameters: ρ = 0, ν = 0.1, T − t = 1 year

β = 0.0001 β = 0.0001
Equation (5.9) HLW05
f \α 0.01 0.1 0.2 0.3 0.5 f \α 0.01 0.1 0.2 0.3 0.5

0.1 1.00 0.84 0.69 0.63 0.57 0.1 1.00 0.84 0.63 0.63 0.58
1 1.00 1.00 1.00 1.00 0.98 1 1.00 1.00 1.00 1.00 0.98
100 1.00 1.00 1.00 1.00 1.00 100 1.00 0.99 0.99 0.99 1.00

formula in Hagan et al. (2002) are obtained from small-time asymptotics which often fail
in the tails of a model’s probability distribution with finite-order terms. For the two sets of
parameters reported, it is also interesting to notice that at small strikes, implied volatilities
obtained from equation (5.9) agree well with those from Monte Carlo simulation while at
large strikes, implied volatilities from Hagan et al. (2002) agree well with those from with
Monte Carlo simulation. Work on the extreme strike behavior under the SABR model
can be found in Morini and Mercurio (2006) and Obloj (2007). For general results of
implied volatility at extreme strikes, please refer to Lee (2004) and Benaim, Friz, and Lee
(2008).

7. CONCLUDING REMARKS

In conclusion, we have constructed a converging expansion series for the joint transition
density of the SABR model and derived explicit results up to the first three orders. An
existence result is then established to characterize the size of a finite order approximation.
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SERIES EXPANSION OF THE SABR JOINT DENSITY 341

FIGURE 6.4. Implied volatilities. The left figure corresponds to European swaption on
3 month Libor rate quoted on 100(1 − rLibor) with f = 8%, α = 20%, β = 0.9999, ρ =
0, ν = 20%, T − t = 1 year. The right figure corresponds to future option on 3 month
Libor rate quoted on rLibor with f = 95, α = 80%, β = 0.5, ρ = 0, ν = 30%, T − t =
1 year.

We finally test the accuracy of our results in terms of joint transition density, marginal
transition density, probability mass, and implied volatility for European call options.

APPENDIX

In the following, we precise the difference between the notion of “standardization” and
“decoupling” for general multidimensional diffusion process driven by Brownian motion
and use only Itô’s lemma to show why the two-dimensional SABR process can neither
be standardized or decoupled.

Standardization versus Decoupling. Consider a driftless vector process X1
t , . . . , Xn

t
driven by n-dimensional Brownian motion W1

t , . . . , Wn
t with each of the component

process given in terms of SDE as

dXi
t = fi

(
Xi

t , . . . , Xn
t

)
dWi

t, i = 1, 2, . . . , n,

then we find a set of change of variables ψi (X1
t , . . . , Xn

t ) for every component i such that
the resulting process Yi

t := ψi (X1
t , . . . , Xn

t ) has constant diffusion coefficient

dYi
t = μi (t, Yi

t

)
dt +

n∑
j=1

ci j dWi
t, i = 1, . . . , n,

where {ci j }n
j=1 are real-valued constants and μi (t, Yi

t ) is the resulting drift term from the
transform ψi (X1

t , . . . , Xn
t ). We call this operator a transformation to near Gaussian in

the sense that with this set of change of variables, if they exist and further are invertible,
the original process is transformed into one that is composed of linear combination of
the driving Brownian motions. The term “near” is to emphasis the fact that the resulting
drift term may be nontrivial.

We did not use the more common terms “standardization” and “decoupling” because
there are subtle differences between them. More importantly, the SABR process cannot
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342 Q. WU

be either standardized or decoupled which we will see later. A strict “standardization” is
to seek the change of variables ψ i so that

dYi
t =

n∑
i=1

ci dWi
t

while a strict “decoupling” means we would like Yi
t to be only function of Wi

t , i.e.,

dYi
t = μi

(
t, Yi

t

) + fi
(
Yi

t

)
dWi

t.

The term “decoupling” emphasizes the fact that individual component process, after
change of variables, does not enter into other dimensions while “standardization” em-
phasizes that the resulting component process is a linear combination of Brownian mo-
tions. However, as we will see later, neither of the above transformations can be obtained
for the SABR process, which then motivates us to see a weaker form of transformation
as in our notion of “near Gaussian deformation.”

If both standardization and decoupling can be achieved for the two-dimensional cou-
pled SABR process F̂ t, α̂t in the SABR model

d F̂ t = α̂t F̂β
t dW 1

t ; dα̂t = να̂t dW 2
t , F̂0, α̂0, ν > 0

then the change of variables φ(F̂ t, α̂t) and ψ(F̂ t, α̂t) that we are seeking will result in the
processes Ut := φ(F̂ t, α̂t) and Vt := ψ(F̂ t, α̂t) of the form

dUt = cu dW 1
t ; dVt = cv dW 2

t , cu, cv ∈ R.

To answer the question that whether invertible functions φ(·), ψ(·) exist or not and
further, if they exist, what is their explicit form, we use Itô’s lemma to derive a system of
equations that φ(·) and ψ(·) should satisfy.

Assume that φ(·), ψ(·) satisfy the required regularity conditions, by Itô’s lemma,

dφ(F̂ t, α̂t) = ∂φ

∂ F̂ t
d F̂ t + ∂φ

∂α̂t
dα̂t + 1

2

(
∂2φ

∂ F̂2
t

d F̂2
t + 2

∂2φ

∂ F̂ t∂α̂t
d F̂ tdα̂t + ∂2φ

∂α̂2
t

dα̂2
t

)

= 1
2

[
a(F̂ t, α̂t)

∂2φ

∂ F̂2
t

+ 2b(F̂ t, α̂t)
∂2φ

∂ F̂ tα̂t
+ c(F̂ t, α̂t)

∂2φ

∂α̂2
t

]
dt

+
[

a(F̂ t, α̂t)
1
2

∂φ

∂ F̂ t

]
dW 1

t +
[

c(F̂ t, α̂t)
1
2

∂φ

∂α̂t

]
dW 2

t ,

where a(F̂ t, α̂t), b(F̂ t, α̂t), c(F̂ t, α̂t) are entries of diffusion matrix of original SABR
process as given by

a(F̂ t, α̂t) = α̂2
t F̂ t

2β
, b(F̂ t, α̂t) = ρνα̂2

t F̂ t
β
, c(F̂ t, α̂t) = ν2α̂2

t

and ψ(·) has the same form as that of φ(·)

dψ(F̂ t, α̂t) = 1
2

[
a(F̂ t, α̂t)

∂2ψ

∂ F̂2
t

+ 2b(F̂ t, α̂t)
∂2ψ

∂ F̂ tα̂t
+ c(F̂ t, α̂t)

∂2ψ

∂α̂2
t

]
dt

+
[

a(F̂ t, α̂t)
1
2

∂ψ

∂ F̂ t

]
dW 1

t +
[

c(F̂ t, α̂t)
1
2
∂ψ

∂α̂t

]
dW 2

t .
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SERIES EXPANSION OF THE SABR JOINT DENSITY 343

To transform F̂ t, α̂t into Ut, Vt, it is to require that φ(·), ψ(·) satisfy (written as functions
for change of variables φ(x, y), ψ(x, y))

yxβ
∂φ

∂x
= cu, νy

∂φ

∂y
= 0, x2β y2 ∂2φ

∂x2
+ 2ρνxβ y2 ∂2φ

∂x∂y
+ ν2 y2 ∂2φ

∂y2
= 0

yxβ
∂ψ

∂x
= 0, νy

∂ψ

∂y
= cv , x2β y2 ∂2ψ

∂x2
+ 2ρνxβ y2 ∂2ψ

∂x∂y
+ ν2 y2 ∂2ψ

∂y2
= 0.

If the above six equality constraints satisfy simultaneously, we will have F̂ t, α̂t trans-
formed into Ut, Vt. However, we will see in the following this is not possible.

Transformation of α̂ t. νy ∂ψ

∂y = cv , we have the general form of solution to ψ(x, y),up
to a constant, as

ψ(x, y) = cv

ν
ln y + Cψ g(x),

where Cψ is a arbitrary constant and g(x) is an arbitrary function of x only. We then
have ∂ψ

∂x = Cψ g′(x). Now consider yxβ ∂ψ

∂x = 0, then following equality needs to be valid
for all x, y

yxβCψ g′(x) = 0, ∀ x, y

which means g′(x) ≡ 0, hence g(x) is constant. Now ψ(x, y) has the form of

ψ(x, y) = cv

ν
ln y + C′

ψ,

where C′
ψ is another constant. Then immediately, we can verify

x2β y2 ∂2ψ

∂x2
+ 2ρνxβ y2 ∂2ψ

∂x∂y
+ ν2 y2 ∂2ψ

∂y2
= 0

will not be valid if cv is nonzero. This means it is not possible to find a change of variable
ψ(.) such that the component process α̂t can be “standardized” into W2

t . There will be
a nonzero drift term after the change of variable ψ(F̂ t, α̂t) = cv

ν
ln αt + C′

ψ . Hence, we
could only arrive at

dUt = μ(t, Ut) dt + cv dW 2
t .

Transformation of F̂ t. From yxβ ∂φ

∂x = cu , we have

φ(x, y) = cu

1 − β

x1−β

y
+ Cφ f (y),

where Cφ is an arbitrary constant and f (y) is an arbitrary function of y only. Plugging
it into the second equation νy ∂φ

∂y = 0, we need the following equation to be valid for all
x, y

νy
[

cu x1−β

1 − β

−1
y−2

+ Cφ f ′(y)
]

= 0, ∀ x, y,
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344 Q. WU

thus, we need

f ′(y) ≡ 0 and cu ≡ 0.

This means it is not possible to find a change of variable φ(F̂ t, α̂t) to “decouple” the
component process F̂ t into one that is driven only by one Brownian motion, either W1

t
or W2

t . Then

yxβ ∂φ

∂x
= cu, νy

∂φ

∂y
= 0

cannot be satisfied simultaneously. The best we will be able to do is to “standardize” the
coefficient in front of dW 1

t and the resulting Vt will be

dVt = μ(t, Ut, Vt) dt + cu dW 1
t + σ (t, Ut, Vt) dW 2

t .

There will be nonzero drift term μ(.) and nonzero diffusion coefficientσ (.) for dW 2
t .

Not only we cannot decouple F̂ t, but also we cannot completely standardize it.
Based on the above analysis, our choice is the following that we seek change of variables

φ(.), ψ(.) such that the resulting process Ut has constant diffusion coefficient in W1
t and

Vt has constant diffusion coefficient in W2
t . As the resulting process Ut, Vt is neither

strictly standardized nor decoupled with this choice, we will show in the following that
only in the limit of ε↓ we will have a standardized process which is a bivariate Brownian
motion. Precisely, we will show that transition probability density function p̃ε(τ, x, y) of
scaled SABR process F̂ ε

τ , α̂
ε
τ converges to a bivariate normal distribution as ε ↓ 0 and

further F̂ ε
τ , α̂

ε
τ converges in distribution to a bivariate Brownian motion.
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