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1 Pseudocode of the dense relative localization task

In order to emphasise the simplicity and the ease of reproduction of our proposed method, in Figure 2
we show a PyTorch-like pseudocode of our auxiliary task with the associated Ldrloc loss.

# n : batch size
# m : number of pairs
# k X k : resolution of the embedding grid
# D : dimension of each token embedding
# x : a tensor of n embedding grids, shape=[n, D, k, k]

def position_sampling(k, m, n):
pos_1 = torch.randint(k, size=(n, m, 2))
pos_2 = torch.randint(k, size=(n, m, 2))
return pos_1, pos_2

def collect_samples(x, pos, n):
_, c, h, w = x.size()
x = x.view(n, c, -1).permute(1, 0, 2).reshape(c, -1)
pos = ((torch.arange(n).long().to(pos.device) * h * w).view(n, 1)

+ pos[:, :, 0] * h + pos[:, :, 1]).view(-1)
return (x[:, pos]).view(c, n, -1).permute(1, 0, 2)

def dense_relative_localization_loss(x):
n, D, k, k = x.size()
pos_1, pos_2 = position_sampling(k, m, n)

deltaxy = abs((pos_1 - pos_2).float()) # [n, m, 2]
deltaxy /= k

pts_1 = collect_samples(x, pos_1, n).transpose(1, 2) # [n, m, D]
pts_2 = collect_samples(x, pos_2, n).transpose(1, 2) # [n, m, D]
predxy = MLP(torch.cat([pts_1, pts_2], dim=2))
return L1Loss(predxy, deltaxy)

Figure 2: A PyTorch-like pseudocode of our dense relative localization task and the corresponding
Ldrloc loss.

∗Work done as intern at the Tencent AI Lab.
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2 Loss Variants

In this section, we present different loss function variants associated with our relative localization
task, which are empirically evaluated in Sec. 2.1. The goal is to show that the auxiliary task proposed
in the main paper can be implemented in different ways and to analyze the differences between these
implementations.

The first variant consists in including negative target offsets:

t′u =
i− p
k

, t′v =
j − h
k

, (t′u, t
′
v)

T ∈ [−1, 1]2. (3)

Replacing (tu, tv)
T in Eq. 2 in the main paper with (t′u, t

′
v)

T computed as in Eq. 3, and keeping all
the rest unchanged, we obtain the first variant, which we call L∗drloc.

In the second variant, we transform the regression task in Eq. 2 in the main paper in a classification
task, and we replace the L1 loss with the cross-entropy loss. In more detail, we use as target offsets:

cu = i− p, cv = j − h, (cu, cv)
T ∈ {−k, ..., k}2, (4)

and we associate each of the 2k+1 discrete elements in C = {−k, ..., k} with a "class". Accordingly,
the localization MLP f is modified by replacing the 2 output neurons with 2 different sets of neurons,
one per spatial dimension (u and v). Each set of neurons represents a discrete offset prediction over
the 2k + 1 "classes" in C. Softmax is applied separately to each set of 2k + 1 neurons, and the
output of f is composed of two posterior distributions over C: (pu,pv)

T = f(ei,j , ep,h)
T , where

pu,pv ∈ [0, 1]2k+1. Eq. 2 in the main paper is then replaced by:

Lce
drloc = −

∑
x∈B

E(ei,j ,ep,h)∼Gx
[log(pu[cu]) + log(pv[cv])], (5)

where pu[cu] indicates the cu-th element of pu (and similarly for pv[cv]).

Note that, using the cross-entropy loss in Eq. 5, corresponds to considering C an unordered set of
"categories". This implies that prediction errors in pu (and pv) are independent of the "distance" with
respect to the ground-truth cu (respectively, cv). In order to alleviate this problem, and inspired by
[5], in the third variant we propose, we impose a Gaussian prior on pu and pv , and we minimize the
normalized squared distance between the expectation of pu and the ground-truth cu (respectively, pv

and cv). In more detail, let µu =
∑

c∈C pu[c] ∗ c and σ2
u =

∑
c∈C pu[c] ∗ (c− µu)

2 (and similarly
for µv and σ2

v). Then, Eq. 5 is replaced by:

Lreg
drloc =

∑
x∈B

E(ei,j ,ep,h)∼Gx

[
(cu − µu)

2

σ2
u

+ αlog(σu) +
(cv − µv)

2

σ2
v

+ αlog(σv)

]
, (6)

where the terms log(σu) and log(σv) are used for variance regularization and α weights the impor-
tance of the Gaussian prior [5]. In preliminary experiments in which we tuned the α parameter using
Swin, we found that the default value of α = 0.001, as suggested in [5], works well in our scenario,
thus we adopted it for all the experiments involving Lreg

drloc.

The fourth variant we propose is based on a "very-dense" localization loss, where Ldrloc is computed
for every transformer block of VT. Specifically, let Gl

x be the kl × kl grid of token embeddings
produced by the l-th block of the VT, and let L be the total number of these blocks. Then, Eq. 2 in
the main paper is replaced by:

Lall
drloc =

∑
x∈B

L∑
l=1

E(ei,j ,ep,h)∼Gl
x
[|(tlu, tlv)T − (dlu, d

l
v)

T |1], (7)

where (tlu, t
l
v)

T and (dlu, d
l
v)

T are, respectively, the target (see main paper Eq. 1) and the prediction
offsets computed at block l using the randomly sampled pair (ei,j , ep,h) ∈ Gl

x. For each block, we
use a block-specific MLP f l to compute (dlu, d

l
v)

T . Note that, using Eq. 7, the initial layers of VT
receive more "signal", because each block l accumulates the gradients produced by all the blocks
l′ ≥ l.
Apart from Lall

drloc, all the other proposed variants are very computationally efficient, because they
involve only one forward and one backward pass per image, and m forward passes through f .
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2.1 Empirical comparison of the loss variants

In Tab. 6, we compare the loss variants with each other, where the baseline model is Swin [8] (row
(A)). For these experiments, we use IN-100, we train all the models for 100 epochs, and, as usual, we
show the top-1 classification accuracy on the test set.

When we plug Ldrloc on top of Swin (main paper, Sec. 4), the final accuracy increases by 1.26 points
(B). All the other dense localization loss variants underperform Ldrloc (C-F). A bit surprisingly,
the very-dense localization loss Lall

drloc is significantly outperformed by the much simpler (and
computationally more efficient) Ldrloc. Moreover, Lall

drloc is the only variant which underperforms
the baseline. We presume that this is due to the fact that most of the Swin intermediate blocks
have resolution grids Gl

x finer than the last grid GL
x (l < L, kl > kL, Sec. 2), and this makes the

localization task harder, slowing down the convergence of f l, and likely providing noisy gradients to
the VT (see the discussion in the main paper, Sec. 4.1). In all the other experiments (both in the main
paper and in this Supplementary Material), we always use Ldrloc as the relative localization loss.

Table 6: IN-100, 100 epoch training: a comparison between different loss variants.
Model Top-1 Acc.

A: Swin-T 82.76
B: A + Ldrloc 84.02 (+1.26)
C: A + L∗

drloc 83.14 (+0.38)
D: A + Lce

drloc 83.86 (+1.10)
E: A + Lreg

drloc 83.24 (+0.48)

F: A + Lall
drloc 81.88 (-0.88)

2.2 Relative positional embedding

All the loss variants presented in this section have been plugged on Swin, in which relative positional
embedding is used (see the main paper, Sec. 3 and Sec. 4.1). However, the results reported in Tab. 6
show that almost all of these losses can boost the accuracy of the Swin baseline. Below, we intuitively
explain why the relative positional embedding is not sufficient to allow the network to solve our
localization task.

The relative positional embedding (called B in [8]) used in Swin, is added to the query/key product
before the softmax operation (Eq. 4 in [8]). The result of this softmax is then used to weight
the importance of each "value", and the new embedding representation of each query (i.e., ei,j , in
our terminology) is given by this weighted sum of values. Thus, the content of B is not directly
represented in ei,j , but only used to weight the values forming ei,j (note that there is also a skip
connection). For this reason, B may be useful for the task for which it is designed, i.e., computing
the importance (attention) of each key with respect to the current query. However, in order to
solve our auxiliary task (i.e., to predict tu and tv in Eq. 1 in the main paper), the VT should be
able to recover and extract from a given embedding pair (ei,j , ep,h) the specific offset information
originally contained in B(i,j),(p,h) and then blended in the value weights. Probably this is a task
(much) harder than exploiting appearance information contained in (ei,j , ep,h). This is somehow
in line with different previous work showing the marginal importance of positional embedding in
VTs. For instance, Naseer et al. [10] show that the (absolute) positional embedding used in ViT [4]
is not necessary for the transformer to solve very challenging occlusion or patch permutation tasks,
and they conclude that these tasks are solved by ViT thank to its “dynamic receptive field” (i.e., the
context represented in each individual token embedding).

3 Experiments with a larger training budget

Although the focus of this work is on increasing the VT training efficiency in a scenario with a
limited training budget, in this section we instead investigate the effect of using our auxiliary task on
scenarios with a larger training budget. Specifically, we test Ldrloc with a larger number of training
epochs, using higher-capacity VT models and training the VTs on ImageNet-1K.

In Tab. 7 we train both Swin and T2T on ImageNet-1K following the standard protocol (e.g., 300
epochs) and using the publicly available code of each VT baseline. When we use Ldrloc, we get a
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slight improvement with both the baselines, which shows that our loss is beneficial also with larger
datasets and longer training schedules (although the margin is smaller with respect to IN-100, see
Tab. 3).

Table 7: Top-1 accuracy on ImageNet-1K. (*) Results obtained in our run of the publicly available
code with the default hyperparameters of each corresponding VT baseline.

Model Top-1 Acc.

Swin Swin-T 81.2 (*)
Swin-T+Ldrloc 81.33 (+0.13)

T2T T2T-ViT-14 80.7 (*)
T2T-ViT-14+Ldrloc 80.85 (+0.15)

In Tab. 8, we use the Infograph dataset and we train all the networks for 300 epochs. The results
confirm that Ldrloc can improve the final accuracy even when a longer training schedule is adopted.
For instance, comparing the results of T2T in Tab. 8 with the T2T results in Tab. 4 (100 epochs), the
relative margin has significantly increased (+8.06 versus +2.62).

Table 8: Infograph, training from scratch with 300 epochs.
Model Top-1 Acc.

CvT-13 29.76
CvT-13 + Ldrloc 30.31 (+0.55)

Swin-T 17.17
Swin-T + Ldrloc 20.72 (+3.55)

T2T-ViT-14 12.62
T2T-ViT-14 + Ldrloc 20.68 (+8.06)

ResNet-50 29.34
ResNet-50 + Ldrloc 30.00 (+0.66)

Finally, in Tab. 9, we use three datasets and we train from scratch ViT-B/16 [4], which has 86.4
million parameters (about 4× the number of parameters of the other tested VTs and ResNets). Note
that "16" in ViT-B/16 stands for 16× 16 resolution patches, used as input without patch overlapping.
For a fair comparison, we used for ViT-B/16 the same image resolution (224× 224) adopted for all
the other VTs (see Sec. 6), thus we get a final ViT-B/16 embedding grid of 14× 14, which is pooled
to get our 7× 7 grid as explained in the main paper (Sec. 3). For ViT-B/16, we use λ = 0.01. Tab. 9
shows that our loss is effective also with VT models bigger than the three baselines used in the rest of
the paper.

Table 9: Training from scratch ViT-B/16 with 100 epochs.
Model CIFAR-10 CIFAR-100 Infograph

ViT-B/16 71.70 59.67 11.79
ViT-B/16 + Ldrloc 73.91 (+2.21) 61.42 (+1.75) 12.22 (+0.43)

4 Transfer to object detection and image segmentation tasks

In this section, we provide additional fine-tuning experiments using tasks different from classification
(i.e., object detection, instance segmentation and semantic segmentation). Moreover, we use a
different training protocol from the one used in the main paper (Sec. 5.3). Specifically, the fine-
tuning stage is standard (without our loss), while in the pre-training stage we either use the standard
cross-entropy (only), or we pre-train the VT jointly using the cross-entropy and Ldrloc. We adopt the
framework proposed in [8], where a pre-trained Swin VT is used as the backbone for detection and
segmentation tasks. In fact, note that Swin is based on a hierarchy of embedding grids, which can be
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used by the specific object detection/image segmentation architectures as they were convolutional
feature maps [8].

The pre-training dataset is either ImageNet-1K or IN-100, and in both cases we pre-train Swin using
300 epochs. Hence, in case of ImageNet-1K pre-training, the baseline model is fine-tuned starting
from the Swin-T model corresponding to Tab. 7 (final accuracy : 81.2), while Swin-T + Ldrloc refers
to the model trained with our loss in the same table (final accuracy: 81.33). Similarly, in case of
IN-100 pre-training, the baseline model is fine-tuned starting from the Swin-T model corresponding
to Tab. 3 (final accuracy : 89.68), while Swin-T + Ldrloc refers to the model trained with our loss in
the same table (final accuracy: 90.32).

The goal of these experiments is to show that the image representation obtained using Ldrloc for
pre-training, can be usefully transferred to other tasks without modifying the task-specific architecture
or the fine-tuning protocol.

4.1 Object detection and instance segmentation

Setup. We strictly follow the experimental settings used in Swin [8]. Specifically, we use COCO
2017 [7], which contains 118K training, 5K validation and 20K test-dev images. We use two
popular object detection architectures: Cascade Mask R-CNN [1] and Mask R-CNN [6], in which
the backbone is replaced with the pre-trained Swin model. Moreover, we use the standard mmcv [3]
framework to train and evaluate the models. We adopt multi-scale training [2, 11] (i.e., we resize the
input image such that the shortest side is between 480 and 800 pixels, while the longest side is at most
1333 pixels), the AdamW [9] optimizer (initial learning rate 0.0001, weight decay 0.05, and batch
size 16), and a 1x schedule (12 epochs with the learning rate decayed by 0.1 at epochs 8 and 11).

Results. Tab. 10 shows that Swin-T, pre-trained on ImageNet-1K with our Ldrloc loss, achieves
both a higher detection and a higher instance segmentation accuracy with respect to the baselines.
Specifically, with both Mask RCNN and Cascade Mask RCNN, our pre-trained model outperforms
the baselines with respect to nearly all detection/segmentation metrics. When pre-training with a
smaller dataset (IN-100), the relative improvement is even higher (Tab. 11).

Table 10: ImageNet-1K pre-training. Results on the COCO object detection and instance segmentation
tasks. APbox

x and APmask
x are the standard object detection and segmentation Average Precision metrics,

respectively [7].
Architecture Pre-trained backbone APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

Mask RCNN
Swin-T 43.4 66.2 47.4 39.6 63.0 42.6

43.8 66.5 48.0 39.7 63.1 42.5Swin-T + Ldrloc
(+0.4) (+0.3) (+0.6) (+0.1) (+0.1) (-0.1)

Cascade Mask RCNN
Swin-T 48.0 67.1 51.7 41.5 64.3 44.8

48.2 67.4 52.1 41.7 64.7 44.8Swin-T + Ldrloc
(+0.2) (+0.3) (+0.4) (+0.2) (+0.4) (+0.0)

Table 11: IN-100 pre-training. Results on the COCO object detection and instance segmentation
tasks.

Architecture Pre-trained backbone APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Mask RCNN
Swin-T 41.8 60.3 45.1 36.7 57.4 39.4

42.7 61.3 45.9 37.2 58.4 40.0Swin-T + Ldrloc
(+0.9) (+1.0) (+0.8) (+1.0) (+1.0) (+0.6)

Cascade Mask RCNN
Swin-T 36.0 58.2 38.6 33.8 55.2 35.9

37.2 59.4 40.3 34.5 56.2 36.6Swin-T + Ldrloc
(+1.2) (+1.2) (+1.7) (+0.7) (+1.0) (+0.7)
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4.2 Semantic segmentation

Setup. We again follow the experimental settings adopted in Swin [8]. Specifically, for the semantic
segmentation experiments, we use the ADE20K dataset [15], which is composed of 150 semantic
categories, and contains 20K training, 2K validation and 3K testing images. Following [8], we use
the popular UperNet [13] architecture with a Swin backbone pre-trained either on ImageNet-1K or
on IN-100 (see above). We use the implementation released by mmcv [3] to train and evaluate all the
models.

When fine-tuning, we used the AdamW [9] optimizer with an initial learning rate of 6 × 10−5, a
weight decay of 0.01, a scheduler with linear learning-rate decay, and a linear warmup of 1,500
iterations. We fine-tuned all the models on 8 Nvidia V100 32GB GPUs with 2 images per GPU for
160K iterations. We adopt the default data augumentation techniques used for segmentation, namely
random horizontal flipping, random re-scaling with a [0.5, 2.0] ratio range and random photometric
distortion. We use stochastic depth with ratio 0.2 for all the models, which are trained with an input
of 512×512 pixels. At inference time, we use a multi-scale testing, with image resolutions which are
{0.5, 0.75, 1.0, 1.25, 1.5, 1.75}× of the training resolution.

Results. The results reported in Tab. 12 show that the models pre-trained on ImageNet-1K with the
proposed loss always outperform the baselines with respect to all the segmentation metrics. Similarly
to Sec. 4.1, when a smaller dataset is used for pre-training (IN-100), the observed relative boost is
even higher (Tab. 13).

Table 12: ImageNet-1K pre-training. Semantic segmentation on the ADE20K dataset (testing on
the validation set). mIoU and mAcc refer to the mean Intersection over Union and the mean class
Accuracy, respectively. The base architecture is UperNet [13].

Pre-trained backbone mIoU mAcc

Swin-T 43.87 55.22
44.33 55.74Swin-T + Ldrloc
(+0.46) (+0.52)

Table 13: IN-100 pre-training. Semantic segmentation on the ADE20K dataset (testing on the
validation set) with a UperNet architecture [13].

Pre-trained backbone mIoU mAcc

Swin-T 36.93 47.76
37.83 48.69Swin-T + Ldrloc
(+0.90) (+0.93)

5 Training efficiency

In Fig. 3 we show the training curves corresponding to the top-1 accuracy of CvT, Swin and T2T,
trained from scratch on CIFAR-100, with or without our loss. These graphs show that our auxiliary
task is beneficial over the whole training stage, and it can speed-up the overall training. For instance,
in case of Swin, after 60 training epochs, or method is already significantly better than the baseline
full-trained with 100 epochs (55.01 versus 53.28).

Finally, we compute the overhead of Ldrloc at training time. The results reported in Tab. 14 refer to
seconds per batch (with a batch size equal to 1024), and show that, overall, the overhead due to our
auxiliary task is negligible with respect to the whole training time.

6 Implementation details and an additional ablation study on the
localization MLP

Our localization MLP (f ) is a simple feed-forward network composed of three fully connected layers.
The first layer projects the concatenation of the two input token embeddings ei,j and ep,h into a
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Figure 3: CIFAR-100, training from scratch, top-1 accuracy measured every 10 epochs.

Table 14: Training time comparison on CIFAR-100. The values are averaged over all training batches
and jointly reported the corresponding standard deviations.

Model Seconds per batch

CvT-13 0.6037 ± 0.0040
CvT-13 + Ldrloc 0.6184 ± 0.0070 (+2.43%)

Swin-T 0.6684 ± 0.0031
Swin-T + Ldrloc 0.6842 ± 0.0033 (+2.36%)

T2T-ViT-14 0.5941 ± 0.0053
T2T-ViT-14 + Ldrloc 0.6046 ± 0.0058 (+1.77%)

512-dimensional vector and then it applies a Relu activation. Next, we use a linear layer of dimension
512 followed by a Relu activation. Finally, we use a linear layer dedicated to the prediction, which
depends on the specific loss variant, see Sec. 2. For instance, in Ldrloc, the last layer is composed of
two neurons which predict du and dv. The details of the MLP head are shown in Tab. 15, while in
Tab. 16 we show the influence of the number of neurons in the hidden layers of f .

Table 15: The details of the localization MLP head. d is the dimension of a token embedding. The
number of outputs o and the final nonlinearity (if used) depend on the specific loss. In Ldrloc, L∗drloc
and Lall

drloc, we use o = 2 without any nonlinearity. Converesely, in both Lce
drloc and Lreg

drloc, the last
layer is split in two branches of 2k + 1 neurons each, and, on each branch, we separately apply a
SoftMax layer.

Layer Activation Output dimension
Input - d * 2

Linear ReLU 512
Linear ReLU 512
Linear - / SoftMax o

In our experiments, we used the officially released framework of Swin [8]2, which also provides all
the necessary code to train and test VT networks (including the object detection and segmentation
tasks of Sec. 4). For a fair comparison, we use the official code of T2T-ViT [14]3 and a publicly
released code of CvT [12]4 and we insert them in the training framework released by the authors

2https://github.com/microsoft/Swin-Transformer
3https://github.com/yitu-opensource/T2T-ViT
4https://github.com/lucidrains/vit-pytorch
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Table 16: CIFAR-100, 100 epochs, training from scratch: the influence of the number of neurons
used in each of the two hidden layers of the localization MLP.

Model Number of neurons

256 512 1024

CvT-13 + Ldrloc 74.19 74.51 73.80

Swin-T + Ldrloc 65.06 66.23 64.33

T2T-ViT-14 + Ldrloc 66.49 68.03 67.83

of Swin. At submission time of this paper, the official code of CvT [12] was not publicly available.
Finally, the ViT-B/16 model used in Sec. 3 is based on a public code4.

When we train the networks from scratch (100 epochs), we use the AdamW [9] optimizer with a
cosine decay learning-rate scheduler and 20 epochs of linear warm-up. We use a batch size of 1024,
an initial learning rate of 0.001, and a weight decay of 0.05. When we fine-tune the networks (100
epochs), we use the AdamW [9] optimizer with a cosine decay learning-rate scheduler and 10 epochs
of linear warm-up. We use a batch size of 1024, an initial learning rate of 0.0005, and a weight decay
of 0.05. In all the experiments, the images of all the datasets are resized to the same fixed resolution
(224× 224).

7 NeurIPS checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We described the main limitations
of our proposal in §6.

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not
think there are direct negative societal impacts from our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We released the
code and the instructions to run all the experiments as a Supplementary Material to this
paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specified the training protocol in §5 and more in detail in the
Supplementary Material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We could not run multiple times our experiments due to
computational constraints.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We specified the resources we used
in §5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the authors

of the datasets and the code of the models in §5.
(b) Did you mention the license of the assets? [Yes] We described, in the Supplementary

Material, the license for each dataset we used.
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(c) Did you include any new assets either in the Supplemental Material or as a URL? [Yes]
We provided the code and the pre-trained models as supplementary material of this
paper.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] The datasets are publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We use standard datasets, which are well known
in literature, and there are no personally identifiable information or offensive content at
the best of the community knowledge.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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