
Robust Reinforcement Learning using Offline Data

Kishan Panaganti1, Zaiyan Xu1, Dileep Kalathil1, Mohammad Ghavamzadeh2

1Texas A&M University, 2Google Research.
Emails: {kpb, zxu43, dileep.kalathil}@tamu.edu, ghavamza@google.com

Abstract

The goal of robust reinforcement learning (RL) is to learn a policy that is robust
against the uncertainty in model parameters. Parameter uncertainty commonly
occurs in many real-world RL applications due to simulator modeling errors,
changes in the real-world system dynamics over time, and adversarial disturbances.
Robust RL is typically formulated as a max-min problem, where the objective is to
learn the policy that maximizes the value against the worst possible models that lie
in an uncertainty set. In this work, we propose a robust RL algorithm called Robust
Fitted Q-Iteration (RFQI), which uses only an offline dataset to learn the optimal
robust policy. Robust RL with offline data is significantly more challenging than
its non-robust counterpart because of the minimization over all models present
in the robust Bellman operator. This poses challenges in offline data collection,
optimization over the models, and unbiased estimation. In this work, we propose a
systematic approach to overcome these challenges, resulting in our RFQI algorithm.
We prove that RFQI learns a near-optimal robust policy under standard assumptions
and demonstrate its superior performance on standard benchmark problems.

1 Introduction

Reinforcement learning (RL) algorithms often require a large number of data samples to learn
a control policy. As a result, training them directly on the real-world systems is expensive and
potentially dangerous. This problem is typically overcome by training them on a simulator (online
RL) or using a pre-collected offline dataset (offline RL). The offline dataset is usually collected either
from a sophisticated simulator of the real-world system or from the historical measurements. The
trained RL policy is then deployed assuming that the training environment, the simulator or the offline
data, faithfully represents the model of the real-world system. This assumption is often incorrect
due to multiple factors such as the approximation errors incurred while modeling, changes in the
real-world parameters over time and possible adversarial disturbances in the real-world. For example,
the standard simulator settings of the sensor noise, action delay, friction, and mass of a mobile robot
can be different from that of the actual real-world robot, in addition to changes in the terrain, weather
conditions, lighting, and obstacle densities of the testing environment. Unfortunately, the current RL
control policies can fail dramatically when faced with even mild changes in the training and testing
environments (Sünderhauf et al., 2018; Tobin et al., 2017; Peng et al., 2018).

The goal in robust RL is to learn a policy that is robust against the model parameter mismatches
between the training and testing environments. The robust planning problem is formalized using
the framework of Robust Markov Decision Process (RMDP) (Iyengar, 2005; Nilim and El Ghaoui,
2005). Unlike the standard MDP which considers a single model (transition probability function), the
RMDP formulation considers a set of models which is called the uncertainty set. The goal is to find
an optimal robust policy that performs the best under the worst possible model in this uncertainty
set. The minimization over the uncertainty set makes the robust MDP and robust RL problems
significantly more challenging than their non-robust counterparts.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

In this work, we study the problem of developing a robust RL algorithm with provably optimal
performance for an RMDP with arbitrarily large state spaces, using only offline data with function
approximation. Before stating the contributions of our work, we provide a brief overview of the
results in offline and robust RL that are directly related to ours. We leave a more thorough discussion
on related works to Appendix D.

Offline RL: Offline RL considers the problem of learning the optimal policy only using a pre-collected
(offline) dataset. Offline RL problem has been addressed extensively in the literature (Antos et al.,
2008; Bertsekas, 2011; Lange et al., 2012; Chen and Jiang, 2019; Xie and Jiang, 2020; Levine et al.,
2020; Xie et al., 2021). Many recent works develop deep RL algorithms and heuristics for the offline
RL problem, focusing on the algorithmic and empirical aspects (Fujimoto et al., 2019; Kumar et al.,
2019, 2020; Yu et al., 2020; Zhang and Jiang, 2021). A number of theoretical work focus on analyzing
the variations of Fitted Q-Iteration (FQI) algorithm (Gordon, 1995; Ernst et al., 2005), by identifying
the necessary and sufficient conditions for the learned policy to be approximately optimal and char-
acterizing the performance in terms of sample complexity (Munos and Szepesvári, 2008; Farahmand
et al., 2010; Lazaric et al., 2012; Chen and Jiang, 2019; Liu et al., 2020; Xie et al., 2021). All these
works assume that the offline data is generated according to a single model and the goal is to find the
optimal policy for the MDP with the same model. In particular, none of these works consider the offline
robust RL problem where the offline data is generated according to a (training) model which can be
different from the one in testing, and the goal is to learn a policy that is robust w.r.t. an uncertainty set.

Robust RL: The RMDP framework was first introduced in Iyengar (2005); Nilim and El Ghaoui
(2005). The RMDP problem has been analyzed extensively in the literature (Xu and Mannor, 2010;
Wiesemann et al., 2013; Yu and Xu, 2015; Mannor et al., 2016; Russel and Petrik, 2019) providing
computationally efficient algorithms, but these works are limited to the planning problem. Robust
RL algorithms with provable guarantees have also been proposed (Lim et al., 2013; Tamar et al.,
2014; Roy et al., 2017; Panaganti and Kalathil, 2021; Wang and Zou, 2021), but they are limited to
tabular or linear function approximation settings and only provide asymptotic convergence guarantees.
Robust RL problem has also been addressed using deep RL methods (Pinto et al., 2017; Derman
et al., 2018, 2020; Mankowitz et al., 2020; Zhang et al., 2020a). However, these works do not provide
any theoretical guarantees on the performance of the learned policies.

The works that are closest to ours are by Zhou et al. (2021); Yang et al. (2021); Panaganti and
Kalathil (2022) that address the robust RL problem in a tabular setting under the generative model
assumption. Due to the generative model assumption, the offline data has the same uniform number
of samples corresponding to each and every state-action pair, and tabular setting allows the estimation
of the uncertainty set followed by solving the planning problem. Our work is significantly different
from these in the following way: (i) we consider a robust RL problem with arbitrary large state
space, instead of the small tabular setting, (ii) we consider a true offline RL setting where the
state-action pairs are sampled according to an arbitrary distribution, instead of using the generative
model assumption, (iii) we focus on a function approximation approach where the goal is to directly
learn optimal robust value/policy using function approximation techniques, instead of solving the
tabular planning problem with the estimated model. To the best of our knowledge, this is the first
work that addresses the offline robust RL problem with arbitrary large state space using function
approximation, with provable guarantees on the performance of the learned policy.

Offline Robust RL: Challenges and Our Contributions: Offline robust RL is significantly more
challenging than its non-robust counterpart mainly because of the following key difficulties.
(i) Data generation: The optimal robust policy is computed by taking the infimum over all models in
the uncertainty set P . However, generating data according to all models in P is clearly infeasible. It
may only be possible to get the data from a nominal (training) model P o. How do we use the data
from a nominal model to account for the behavior of all the models in the uncertainty set P?
(ii) Optimization over the uncertainty set P: The robust Bellman operator (defined in (3)) involves a
minimization over P , which is a significant computational challenge. Moreover, the uncertainty set
P itself is unknown in the RL setting. How do we solve the optimization over P?
(iii) Function approximation: Approximation of the robust Bellman update requires a modified target
function which also depends on the approximate solution of the optimization over the uncertainty set.
How do we perform the offline RL update accounting for both approximations?

As the key technical contributions of this work, we first derive a dual reformulation of the robust
Bellman operator which replaces the expectation w.r.t. all models in the uncertainty set P with an ex-

2

pectation only w.r.t. the nominal (training) model P o. This enables using the offline data generated by
P o for learning, without relying on high variance importance sampling techniques to account for all
models in P . Following the same reformulation, we then show that the optimization problem over P
can be further reformulated as functional optimization. We solve this functional optimization problem
using empirical risk minimization and obtain performance guarantees using the Rademacher complex-
ity based bounds. We then use the approximate solution obtained from the empirical risk minimization
to generate modified target samples that are then used to approximate robust Bellman update through
a generalized least squares approach with provably bounded errors. Performing these operations
iteratively results in our proposed Robust Fitted Q-Iteration (RFQI) algorithm, for which we prove
that its learned policy achieves non-asymptotic and approximately optimal performance guarantees.

Notations: For a set X , we denote its cardinality as jX j. The set of probability distribution over X is
denoted as �(X), and its power set sigma algebra as �(X). For any x 2 R, we denote maxfx; 0g as
(x)+. For any function f : S � A ! R, state-action distribution � 2 �(S �A), and real number
p � 1, the �-weighted p-norm of f is defined as kfkp;� = Es;a�� [jf(s; a)jp]1=p.

2 Preliminaries

A Markov Decision Process (MDP) is a tuple (S;A; r; P;
; d0), where S is the state space, A is the
action space, r : S �A ! R is the reward function,
 2 (0; 1) is the discount factor, and d0 2 �(S)
is the initial state distribution. The transition probability function Ps;a(s0) is the probability of
transitioning to state s0 when action a is taken at state s. In the literature, P is also called the model
of the MDP. We consider a setting where jSj and jAj are finite but can be arbitrarily large. We
will also assume that r(s; a) 2 [0; 1], for all (s; a) 2 S � A, without loss of generality. A policy
� : S ! �(A) is a conditional distribution over actions given a state. The value function V�;P and
the state-action value function Q�;P of a policy � for an MDP with model P are defined as

V�;P (s) = E�;P [

1X
t=0

tr(st; at) j s0 = s]; Q�;P (s; a) = E�;P [

1X
t=0

tr(st; at) j s0 = s; a0 = a];

where the expectation is over the randomness induced by the policy � and model P . The optimal value
function V �P and the optimal policy ��P of an MDP with the model P are defined as V �P = max� V�;P
and ��P = arg max� V�;P . The optimal state-action value function is given by Q�P = max� Q�;P .
The optimal policy can be obtained as ��P (s) = arg maxaQ

�
P (s; a). The discounted state-action

occupancy of a policy � for an MDP with model P , denoted as d�;P 2 �(S �A), is defined as
d�;P (s; a) = (1�
)E�;P [

P1
t=0

t
1(st = s; at = a)].

Robust Markov Decision Process (RMDP): Unlike the standard MDP which considers a single
model (transition probability function), the RMDP formulation considers a set of models. We refer
to this set as the uncertainty set and denote it as P . We consider P that satisfies the standard (s; a)-
rectangularity condition (Iyengar, 2005). We note that a similar uncertainty set can be considered
for the reward function at the expense of additional notations. However, since the analysis will be
similar and the sample complexity guarantee will be identical up to a constant factor, without loss of
generality, we assume that the reward function is known and deterministic.

We specify an RMDP as M = (S;A; r;P;
; d0), where the uncertainty set P is typically defined as

P =
(s;a)2S�A Ps;a; where Ps;a = fPs;a 2 �(S) : D(Ps;a; P
o
s;a) � �g; (1)

P o = (P os;a; (s; a) 2 S�A) is the nominal model,D(�; �) is a distance metric between two probability
distributions, and � > 0 is the radius of the uncertainty set that indicates the level of robustness. The
nominal model P o can be thought as the model of the training environment. It is either the model
of the simulator on which the (online) RL algorithm is trained, or in our setting, it is the model
according to which the offline data is generated. The uncertainty set P (1) is the set of all valid
transition probability functions (valid testing models) in the neighborhood of the nominal model P o,
which by definition satisfies (s; a)-rectangularity condition (Iyengar, 2005), where the neighborhood
is defined using the distance metric D(�; �) and radius �. In this work, we consider the Total Variation
(TV) uncertainty set defined using the TV distance, i.e., D(Ps;a; P

o
s;a) = (1=2)kPs;a � P os;ak1.

The RMDP problem is to find the optimal robust policy which maximizes the value against the worst
possible model in the uncertainty set P . The robust value function V � corresponding to a policy �

3

and the optimal robust value function V � are defined as (Iyengar, 2005; Nilim and El Ghaoui, 2005)

V � = inf
P2P

V�;P ; V � = sup
�

inf
P2P

V�;P : (2)

The optimal robust policy �� is such that the robust value function corresponding to it matches the
optimal robust value function, i.e., V �

�
= V �. It is known that there exists a deterministic optimal

policy (Iyengar, 2005) for the RMDP. The robust Bellman operator is defined as (Iyengar, 2005)

(TQ)(s; a) = r(s; a) +
 inf
Ps;a2Ps;a

Es0�Ps;a [max
b
Q(s0; b)]: (3)

It is known that T is a contraction mapping in the infinity norm and hence it has a unique fixed
point Q� with V �(s) = maxaQ

�(s; a) and ��(s) = arg maxaQ
�(s; a) (Iyengar, 2005). The

Robust Q-Iteration (RQI) can now be defined using the robust Bellman operator as Qk+1 = TQk.
Since T is a contraction, it follows that Qk ! Q�. So, RQI can be used to compute (solving the
planning problem) Q� and �� in the tabular setting with a known P . Due to the optimization over the
uncertainty set Ps;a for each (s; a) pair, solving the planning problem in RMDP using RQI is much
more computationally intensive than solving it in MDP using Q-Iteration.

Offline RL: Offline RL considers the problem of learning the optimal policy of an MDP when the
algorithm does not have direct access to the environment and cannot generate data samples in an
online manner. For learning the optimal policy ��P of an MDP with model P , the algorithm will only
have access to an offline dataset DP = f(si; ai; ri; s0i)gNi=1, where (si; ai) � �, � 2 �(S � A) is
some distribution, and s0i � Psi;ai . Fitted Q-Iteration (FQI) is a popular offline RL approach which
is amenable to theoretical analysis while achieving impressive empirical performance. In addition
to the dataset DP , FQI uses a function class F = ff : S � A ! [0; 1=(1 �
)]g to approximate
Q�P . The typical FQI update is given by fk+1 = arg minf2F

PN
i=1(r(si; ai) +
maxb fk(s0i; b)�

f(si; ai))
2, which aims to approximate the non-robust Bellman update using offline data with function

approximation. Under suitable assumptions, it is possible to obtain provable performance guarantees
for FQI (Szepesvári and Munos, 2005; Chen and Jiang, 2019; Liu et al., 2020).

3 Offline Robust Reinforcement Learning

The goal of an offline robust RL algorithm is to learn the optimal robust policy �� using a pre-collected
offline dataset D. The data is typically generated according to a nominal (training) model P o, i.e.,
D = f(si; ai; ri; s0i)gNi=1, where (si; ai) � �; � 2 �(S � A) is some data generating distribution,
and s0i � P osi;ai . The uncertainty set P is defined around this nominal model P o as given in (1)
w.r.t. the total variation distance metric. We emphasize that the learning algorithm does not know
the nominal model P o as it has only access to D, and hence it also does not know P . Moreover, the
learning algorithm does not have data generated according to any other models in P and has to rely
only on D to account for the behavior w.r.t. all models in P .

Learning policies for RL problems with large state-action spaces is computationally intractable. RL
algorithms typically overcome this issue by using function approximation. In this paper, we consider
two function classes F = ff : S �A ! [0; 1=(1�
)]g and G = fg : S �A ! [0; 2=(�(1�
))]g.
We use F to approximate Q� and G to approximate the dual variable functions which we will
introduce in the next section. For simplicity, we will first assume that these function classes are
finite but exponentially large, and we will use the standard log-cardinality to characterize the sample
complexity results, as given in Theorem 1. We note that, at the cost of additional notations and
analysis, infinite function classes can also be considered where the log-cardinalities are replaced by
the appropriate notions of covering number.

Similar to the non-robust offline RL, we make the following standard assumptions about the data
generating distribution � and the representation power of F .
Assumption 1 (Concentratability). There exists a finite constant C > 0 such that for any � 2
fd�;P o j any policy �g � �(S �A), we have k�=�k1 �

p
C.

Assumption 1 states that the ratio of the distribution � and the data generating distribution �,
�(s; a)=�(s; a), is uniformly bounded. This assumption is widely used in the offline RL literature
(Munos, 2003; Agarwal et al., 2019; Chen and Jiang, 2019; Wang et al., 2021; Xie et al., 2021) in
many different forms. We borrow this assumption from Chen and Jiang (2019), where they used it for

4

non-robust offline RL. In particular, we note that the distribution � is in the collection of discounted
state-action occupancies on model P o alone for the robust RL.
Assumption 2 (Approximate completeness). Let � 2 �(S � A) be the data distribution. Then,
supf2F inff 02F kf 0 � Tfk22;� � "c:

Assumption 2 states that the function class F is approximately closed under the robust Bellman
operator T . This assumption has also been widely used in the offline RL literature (Agarwal et al.,
2019; Chen and Jiang, 2019; Wang et al., 2021; Xie et al., 2021).

One of the most important properties that the function class F should have is that there must exist a
function f 0 2 F which well-approximatesQ�. This assumption is typically called approximate realiz-
ability in the offline RL literature. This is typically formalized by assuming inff2F kf � Tfk22;� � "r
(Chen and Jiang, 2019). It is known that the approximate completeness assumption and the concen-
tratability assumption imply the realizability assumption (Chen and Jiang, 2019; Xie et al., 2021).

4 Robust Fitted Q-Iteration: Algorithm and Main Results

In this section, we give a step-by-step approach to overcome the challenges of the offline robust
RL outlined in Section 1. We then combine these intermediate steps to obtain our proposed RFQI
algorithm. We then present our main result about the performance guarantee of the RFQI algorithm,
followed by a brief description about the proof approach.

4.1 Dual Reformulation of Robust Bellman Operator

One key challenge in directly using the standard definition of the optimal robust value function
given in (2) or of the robust Bellman operator given in (3) for developing and analyzing robust RL
algorithms is that both involve computing an expectation w.r.t. each model P 2 P . Given that the
data is generated only according to the nominal model P o, estimating these expectation values is
really challenging. We show that we can overcome this difficulty through the dual reformulation of
the robust Bellman operator, as given below.
Proposition 1. Let M be an RMDP with the uncertainty set P specified by (1) using the total
variation distance D(Ps;a; P

o
s;a) = (1=2)kPs;a�P os;ak1. Then, for any Q : S �A ! [0; 1=(1�
)],

the robust Bellman operator T given in (3) can be equivalently written as

(TQ)(s; a) = r(s; a)�
 inf
�2[0; 2

�(1�
)
]
(Es0�P os;a [(� � V (s0))+]� � + �(� � inf

s00
V (s00))+); (4)

where V (s) = maxa2AQ(s; a). Moreover, the inner optimization problem in (4) is convex in �.

This result mainly relies on Shapiro (2017, Section 3.2) and Duchi and Namkoong (2018, Proposition
1). Note that in (4), the expectation is now only w.r.t. the nominal model P o, which opens up the
possibility of using empirical estimates obtained from the data generated according to P o. This
avoids the need to use importance sampling based techniques to account for all models in P , which
often have high variance, and thus, are not desirable.

While (4) provides a form that is amenable to estimation using offline data, it involves finding
infs00 V (s00). Though this computation is straightforward in a tabular setting, it is infeasible in a
function approximation setting. In order to overcome this issue, we make the following assumption.
Assumption 3 (Fail-state). The RMDP M has a ‘fail-state’ sf , such that r(sf ; a) = 0 and
Psf ;a(sf) = 1; 8a 2 A; 8P 2 P .

We note that this is not a very restrictive assumption because such a ‘fail-state’ is quite natural in
most simulated or real-world systems. For example, a state where a robot collapses and is not able to
get up, either in a simulation environment like MuJoCo or in real-world setting, is such a fail state.

Assumption 3 immediately implies that V�;P (sf) = 0; 8P 2 P , and hence V �(sf) = 0 and
Q�(sf ; a) = 0; 8a 2 A. It is also straightforward to see that Qk+1(sf ; a) = 0; 8a 2 A, where
Qk’s are the RQI iterates given by the robust Bellman update Qk+1 = TQk with the initialization
Q0 = 0. By the contraction property of T , we have Qk ! Q�. So, under Assumption 3, without loss
of generality, we can always keep Qk(sf ; a) = 0; 8a 2 A and for all k in RQI (and later in RFQI).

5

So, in the light of the above description, for the rest of the paper we will use the robust Bellman
operator T by setting infs00 V (s00) = 0. In particular, for any function f : S � A ! [0; 1=(1�
)]
with f(sf ; a) = 0, the robust Bellman operator T is now given by

(Tf)(s; a) = r(s; a)�
 inf
�2[0; 2

(�(1�
))
]

(Es0�P os;a [(� �max
a0

f(s0; a0))+]� (1� �)�): (5)

4.2 Approximately Solving the Dual Optimization using Empirical Risk Minimization

Another key challenge in directly using the standard definition of the optimal robust value function
given in (2) or of the robust Bellman operator given in (3) for developing and analyzing robust
RL algorithms is that both involve an optimization over P . The dual reformulation given in (5)
partially overcomes this challenge also, as the optimization over P is now replaced by a convex
optimization over a scalar � 2 [0; 2=(�(1�
))]. However, this still requires solving an optimization
for each (s; a) 2 S � A, which is clearly infeasible even for moderately sized state-action spaces,
not to mention the function approximation setting. Our key idea to overcome this difficulty is
to reformulate this as a functional optimization problem instead of solving it as multiple scalar
optimization problems. This functional optimization method will make it amenable to approximately
solving the dual problem using an empirical risk minimization approach with offline data.

Consider the probability (measure) space (S �A;�(S �A); �) and let L1(S �A;�(S �A); �) be
the set of all absolutely integrable functions defined on this space.1 In other words, L1 is the set of all
functions g : S � A ! C � R, such that kgk1;� is finite. We set C = [0; 2=�(1�
)], anticipating
the solution of the dual optimization problem (5). We also note � is the data generating distribution
which is a �-finite measure.

For any given function f : S �A ! [0; 1=(1�
)], we define the loss function Ldual(�; f) as

Ldual(g; f) = Es;a��[Es0�P os;a [(g(s; a)�max
a0

f(s0; a0))+]� (1� �)g(s; a)]; 8g 2 L1: (6)

In the following lemma, we show that the scalar optimization over � for each (s; a) pair in (5) can be
replaced by a single functional optimization w.r.t. the loss function Ldual.
Lemma 1. Let Ldual be the loss function defined in (6). Then, for any function f : S � A !
[0; 1=(1�
)], we have

inf
g2L1

Ldual(g; f) = Es;a��
h

inf
�2[0; 2

(�(1�
))
]

�
Es0�P os;a

��
� �max

a0
f(s0; a0)

�
+

�
� (1� �)�

�i
: (7)

Note that the RHS of (7) has minimization over � for each (s; a) pair and minimization is inside the
expectation Es;a��[�]. However, the LHS of (7) has a single functional minimization over g 2 L1

and this minimization is outside the expectation. For interchanging the expectation and minimization,
and for moving from point-wise optimization to functional optimization, we use the result from
Rockafellar and Wets (2009, Theorem 14.60), along with the fact that L1 is a decomposable space. We
also note that this result has been used in many recent works on distributionally robust optimization
(Shapiro, 2017; Duchi and Namkoong, 2018) (see Appendix A for more details).

We can now define the empirical loss function bLdual corresponding to the true loss Ldual as

bLdual(g; f) =
1

N

NX
i=1

(g(si; ai)�max
a0

f(s0i; a
0))+ � (1� �)g(si; ai): (8)

Now, for any given f , we can find an approximately optimal dual function through the empirical risk
minimization approach as infg2L1 bLdual(g; f).

As we mentioned in Section 3, our offline robust RL algorithm is given an input function class
G = fg : S � A ! [0; 2=(�(1 �
))]g to approximate the dual variable functions. So, in the
empirical risk minimization, instead of taking the infimum over all the functions in L1, we can only
take the infimum over all the functions in G. For this to be meaningful, G should have sufficient
representation power. In particular, the result in Lemma 1 should hold approximately even if we
replace the infimum over L1 with infimum over G. One can see that this is similar to the realizability
requirement for the function class F as described in Section 3. We formalize the representation power
of G in the following assumption.

1In the following, we will simply denote L1(S ×A,Σ(S ×A), µ) as L1 for conciseness.

6

Assumption 4 (Approximate dual realizability). For all f 2 F , there exists a uniform constant "dual
such that infg2G Ldual(g; f)� infg2L1 Ldual(g; f) � "dual

Using the above assumption, for any given f 2 F , we can find an approximately optimal dual
function bgf 2 G through the empirical risk minimization approach as bgf = arg ming2G bLdual(g; f).

In order to characterize the performance of this approach, consider the operator Tg for any g 2 G as

(Tgf)(s; a) = r(s; a)�
(Es0�P os;a [(g(s; a)�max
a0

f(s0; a0))+]� (1� �)g(s; a)); (9)

for all f 2 F and (s; a) 2 S � A. We will show in Lemma 6 in Appendix C that the error
supf2F kTf � Tbgf fk1;� is O(log(jFj=�)=

p
N) with probability at least 1� �.

4.3 Robust Fitted Q-iteration

The intuitive idea behind our robust fitted Q-iteration (RFQI) algorithm is to approximate the exact
RQI update step Qk+1 = TQk with function approximation using offline data. The exact RQI step
requires updating each (s; a)-pair separately, which is not scalable to large state-action spaces. So,
this is replaced by the function approximation as Qk+1 = arg minf2F kTQk � fk

2
2;�. It is still

infeasible to perform this update as it requires to exactly compute the expectation (w.r.t. P o and �)
and to solve the dual problem accurately. We overcome these issues by replacing both these exact
computations with empirical estimates using the offline data. We note that this intuitive idea is similar
to that of the FQI algorithm in the non-robust case. However, RFQI has unique challenges due to the
nature of the robust Bellman operator T and the presence of the dual optimization problem within T .

Given a dataset D, we also follow the standard non-robust offline RL choice of least-squares residual
minimization (Chen and Jiang, 2019; Xie et al., 2021; Wang et al., 2021). Define the empirical loss
of f given f 0 (which represents the Q-function from the last iteration) and dual variable function g as

bLRFQI(f ; f 0; g) =
1

N

NX
i=1

�
r(si; ai) +

�
� (g(si; ai)�maxa0 f

0(s0i; a
0))+

+ (1� �)g(si; ai)
�
� f(si; ai)

�2

: (10)

The correct dual variable function to be used in (10) is the optimal dual variable g�f 0 =

arg ming2G Ldual(g; f 0) corresponding to the last iterate f 0, which we will approximate it bybgf 0 = arg ming2G bLdual(g; f 0). The RFQI update is then obtained as arg minf2F bLRFQI(f ; f 0; bgf 0).

Summarizing the individual steps described above, we formally give our RFQI algorithm below.

Algorithm 1 Robust Fitted Q-Iteration (RFQI) Algorithm

1: Input: Offline dataset D = (si; ai; ri; s
0
i)
N
i=1, function classes F and G.

2: Initialize: Q0 � 0 2 F .
3: for k = 0; � � � ;K � 1 do
4: Dual variable function optimization: Compute the dual variable function corresponding to

Qk through empirical risk minimization as gk = bgQk = arg ming2G bLdual(g;Qk) (see (8)).
5: Robust Q-update: Compute the next iterate Qk+1 through least-squares regression as

Qk+1 = arg minQ2F bLRFQI(Q;Qk; gk) (see (10)).
6: end for
7: Output: �K = arg maxaQK(s; a)

Now we state our main theoretical result on the performance of the RFQI algorithm.

Theorem 1. Let Assumptions 1-4 hold. Let �K be the output of the RFQI algorithm afterK iterations.
Denote J� = Es�d0

[V �(s)] where d0 is initial state distribution. Then, for any � 2 (0; 1), with
probability at least 1� 2�, we have

J�
�
� J�K �
K

(1�
)2
+

p
C(
p

6"c +
"dual)

(1�
)2
+

16

�(1�
)3

r
18C log(2jFjjGj=�)

N
:

7

Remark1. Theorem 1 states that the RFQI algorithm can achieve approximate optimality. To see
this, note that withK � O (1

log(1 =
) log(1
" (1 �
))) , and neglecting the second term corresponding to

(inevitable) approximation errors" c and"dual, we getJ � �
� J � K � "=(1 �
) with probability greater

than1 � 2� for any"; � 2 (0; 1), as long as the number of samplesN � O (1
(�")2 (1 �
)4 log jF jjGj

�).
So, the above theorem can also be interpreted as asample complexityresult.

Remark2. The known sample complexity of robust-RL in the tabular setting iseO(jSj 2 jAj
(�")2 (1 �
)4) (Yang

et al., 2021; Panaganti and Kalathil, 2022). ConsideringeO(log(jFjjGj)) to be eO(jSjjAj), we can
recover the same bound as in the tabular setting (we savejSj due to the use of Bernstein inequality).
Remark3. Under similar Bellman completeness and concentratability assumptions, RFQI sample
complexity is comparable to that of a non-robust of�ine RL algorithm, i.e.,O(1

" 2 (1 �
)4 log jF j
�) (Chen

and Jiang, 2019). As a consequence of robustness, we have� � 2 andlog(jGj) factors in our bound.

4.4 Proof Sketch

Here we brie�y explain the key ideas used in the analysis of RFQI for obtaining the optimality gap
bound in Theorem 1. The complete proof is provided in Appendix C.

Step 1:To boundJ � �
� J � K , we connect it to the errorkQ� �

� QK k1;� for any state-action distribution
� . While the similar step follows almost immediately using the well-known performance lemma in the
analysis of non-robust FQI, such a result is not known in the robust RL setting. So, we derive the basic
inequalities to get a recursive form and to obtain the boundJ � �

� J � K � 2kQ� �
� QK k1;� =(1 �
)

(see (22) and the steps before in Appendix C).
Step 2:To boundkQ� �

� QK k1;� for any state-action distribution� such thatk�=� k1 �
p

C, we
decompose it to get a recursion, with approximation terms based on the least-squares regression and
empirical risk minimization. Recall thatbgf is the dual variable function from the algorithm for state-
action value functionf 2 F . Denotebf g as the least squares solution from the algorithm for the state-
action value functionf 2 F and dual variable functiong 2 G, i.e., bf g = arg min Q2F

bL RFQI (Q; f; g).
By recursive use of the obtained inequality(23) (see Appendix C) and using uniform bound, we get

kQ� �
� QK k1;� �

 K

1 �

+

p
C

1 �

sup
f 2F

kT f � Tbgf f k1;� +

p
C

1 �

sup
f 2F

sup
g2G

kTgf � bf gk2;� :

Step 3:We recognize thatsupf 2F kT f � Tbgf f k1;� is an empirical risk minimization error term. Using
Rademacher complexity based bounds, we show in Lemma 6 that this error isO(log(jFj =�)=

p
N)

with high probability.
Step 4:Similarly, we also recognize thatsupf 2F supg2G kTgf � bf gk2;� is a least-squares regression
error term. We also show that this error isO(log(jFjjGj =�)=

p
N) with high probability. We adapt

the generalized least squares regression result to accommodate the modi�ed target functions resulting
from the robust Bellman operator to obtain this bound (see Lemma 7).
The proof is complete after combining steps 1-4 above.

5 Experiments

Figure 1: CartPole Figure 2: CartPole Figure 3: Hopper

Here, we demonstrate the robust performance of our RFQI algorithm by evaluating it onCartpoleand
Hopperenvironments in OpenAI Gym (Brockman et al., 2016). In all the �gures shown, the quantity

8

in the vertical axis is averaged over20different seeded runs depicted by the thick line and the band
around it is the� 0:5 standard deviation.A more detailed description of the experiments, and results on
additional experiments, are deferred to Appendix E.We provide our code ingithub webpagehttps:
//github.com/zaiyan-x/RFQI containing instructions to reproduce all results in this paper.

For theCartpole, we compare RFQI algorithm against the non-robust RL algorithms FQI and DQN,
and the soft-robust RL algorithm proposed in Derman et al. (2018). We test the robustness of the
algorithms by changing the parameterforce_mag(to model external force disturbance), and also by
introducing action perturbations (to model actuator noise). Fig. 1 and Fig. 2 shows superior robust per-
formance of RFQI compared to the non-robust FQI and DQN. The RFQI performance is similar to that
of soft-robust DQN. We note that soft-robust RL algorithm (here soft-robust DQN) is an online deep
RL algorithm (and not an of�ine RL algorithm) and has no provable performance guarantee. More-
over, soft-robust RL algorithm requires generating online data according a number of models in the
uncertainty set, whereas RFQI only requires of�ine data according to a single nominal training model.

For theHopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and TD3
(Fujimoto et al., 2018), and the soft-robust RL (here soft-robust DDPG) algorithm proposed in Derman
et al. (2018). We test the robustness of the algorithms by changing the parameterleg_joint_stiffness.
Fig. 3 shows the superior performance of our RFQI algorithm against the non-robust algorithms and
soft-robust DDPG algorithm. The average episodic reward of RFQI remains almost the same initially,
and later decays much less and gracefully when compared to the non-robust FQI and TD3.

6 Conclusion

In this work, we presented a novel robust RL algorithm called Robust Fitted Q-Iteration algorithm
with provably optimal performance for an RMDP with arbitrarily large state space, using only of�ine
data with function approximation. We also demonstrated the superior performance of the proposed
algorithm on standard benchmark problems.

One limitation of our present work is that, we considered only the uncertainty set de�ned with respect
to the total variation distance. In future work, we will consider uncertainty sets de�ned with respect to
otherf -divergences such as KL-divergence and Chi-square divergence. Finding a lower bound for the
sample complexity and relaxing the assumptions used are also important and challenging problems.

7 Acknowledgements

This work was supported in part by the National Science Foundation (NSF) grants NSF-CAREER-
EPCN-2045783 and NSF ECCS 2038963. Any opinions, �ndings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily re�ect the views of the
sponsoring agencies.

References

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. (2019). Reinforcement learning: Theory and
algorithms.CSDept.,UW Seattle,Seattle,WA, USA, Tech.Rep. 4, 5, 19, 21

Agarwal, A., Kakade, S., and Yang, L. F. (2020). Model-based reinforcement learning with a
generative model is minimax optimal. InConferenceonLearningTheory, pages 67–83. 23

Antos, A., Szepesvári, C., and Munos, R. (2008). Learning near-optimal policies with Bellman-
residual minimization based �tted policy iteration and a single sample path.MachineLearning,
71(1):89–129. 2, 23

Azar, M. G., Munos, R., and Kappen, H. J. (2013). Minimax PAC bounds on the sample complexity
of reinforcement learning with a generative model.Mach.Learn., 91(3):325–349. 23

Bertsekas, D. P. (2011). Approximate policy iteration: A survey and some new methods.Journalof
ControlTheoryandApplications, 9(3):310–335. 2, 23

Borkar, V. S. (2002). Q-learning for risk-sensitive control.Mathematicsof operationsresearch,
27(2):294–311. 23

9

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym.arXiv preprintarXiv:1606.01540. 8, 24, 27

Chen, J. and Jiang, N. (2019). Information-theoretic considerations in batch reinforcement learning.
In InternationalConferenceonMachineLearning, pages 1042–1051. 2, 4, 5, 7, 8, 23

Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect
observation.studiascientiarumMathematicarumHungarica, 2:229–318. 16

Derman, E., Mankowitz, D., Mann, T., and Mannor, S. (2020). A bayesian approach to robust
reinforcement learning. InUncertaintyin Arti�cial Intelligence, pages 648–658. 2

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor, S. (2018). Soft-robust actor-critic policy-
gradient. InAUAI pressfor Associationfor Uncertaintyin Arti�cial Intelligence, pages 208–218.
2, 9, 23, 26

Duchi, J. and Namkoong, H. (2018). Learning models with uniform performance via distributionally
robust optimization.arXiv preprintarXiv:1810.08750. 5, 6, 16

Dullerud, G. E. and Paganini, F. (2013).A coursein robustcontrol theory: a convexapproach,
volume 36. Springer Science & Business Media. 23

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement learning.
Journalof MachineLearningResearch, 6:503–556. 2, 23

Farahmand, A.-m., Szepesvári, C., and Munos, R. (2010). Error propagation for approximate policy
and value iteration.Advancesin NeuralInformationProcessingSystems, 23. 2, 23

Fei, Y., Yang, Z., Chen, Y., and Wang, Z. (2021). Exponential bellman equation and improved regret
bounds for risk-sensitive reinforcement learning. InAnnualConferenceon NeuralInformation
ProcessingSystems2021, pages 20436–20446. 23

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning. 26, 27, 28

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-critic
methods. InInternationalConferenceonMachineLearning, pages 1582–1591. 9, 27

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning without
exploration. InInternationalConferenceon MachineLearning, pages 2052–2062. 2, 23, 24, 25,
27

Gordon, G. J. (1995). Stable function approximation in dynamic programming. InMachinelearning
proceedings1995, pages 261–268. 2, 23

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. InInternationalconferenceon
machinelearning, pages 1861–1870. 25, 26

Haskell, W. B., Jain, R., and Kalathil, D. (2016). Empirical dynamic programming.Mathematicsof
OperationsResearch, 41(2):402–429. 23

Huang, P., Xu, M., Fang, F., and Zhao, D. (2022). Robust reinforcement learning as a stackelberg
game via adaptively-regularized adversarial training.arXiv preprintarXiv:2202.09514. 23

Iyengar, G. N. (2005). Robust dynamic programming.Mathematicsof OperationsResearch,
30(2):257–280. 1, 2, 3, 4, 21, 23

Kalathil, D., Borkar, V. S., and Jain, R. (2021). Empirical Q-Value Iteration.StochasticSystems,
11(1):1–18. 23

Kaufman, D. L. and Schaefer, A. J. (2013). Robust modi�ed policy iteration.INFORMSJournalon
Computing, 25(3):396–410. 23

10

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization.arXiv preprint
arXiv:1412.6980. 24

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.arXiv preprint
arXiv:1312.6114. 24

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy q-learning
via bootstrapping error reduction. InAdvancesin NeuralInformationProcessingSystems, pages
11784–11794. 2, 23

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative q-learning for of�ine
reinforcement learning.Advancesin NeuralInformationProcessingSystems, 33:1179–1191. 2,
23

Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch reinforcement learning. InReinforcement
learning, pages 45–73. Springer. 2, 23

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2012). Finite-sample analysis of least-squares policy
iteration.Journalof MachineLearningResearch, 13:3041–3074. 2, 23

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Of�ine reinforcement learning: Tutorial, review,
and perspectives on open problems.arXiv preprintarXiv:2005.01643. 2, 23, 26, 27, 28

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2020). Breaking the sample size barrier in model-based
reinforcement learning with a generative model. InAdvancesin NeuralInformationProcessing
Systems, volume 33, pages 12861–12872. 23

Lim, S. H. and Autef, A. (2019). Kernel-based reinforcement learning in robust Markov decision
processes. InInternationalConferenceonMachineLearning, pages 3973–3981. 23

Lim, S. H., Xu, H., and Mannor, S. (2013). Reinforcement learning in robust Markov decision
processes. InAdvancesin NeuralInformationProcessingSystems, pages 701–709. 2

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. (2020). Provably good batch off-policy
reinforcement learning without great exploration. InNeuralInformationProcessingSystems. 2,
4, 23, 24, 25, 26, 27, 28

Mankowitz, D. J., Levine, N., Jeong, R., Abdolmaleki, A., Springenberg, J. T., Shi, Y., Kay, J., Hester,
T., Mann, T., and Riedmiller, M. (2020). Robust reinforcement learning for continuous control
with model misspeci�cation. InInternationalConferenceonLearningRepresentations. 2, 23

Mannor, S., Mebel, O., and Xu, H. (2016). Robust mdps with k-rectangular uncertainty.Mathematics
of OperationsResearch, 41(4):1484–1509. 2

Moses, A. K. and Sundaresan, R. (2011). Further results on geometric properties of a family of
relative entropies. In2011IEEE InternationalSymposiumon InformationTheoryProceedings,
pages 1940–1944. 16

Munos, R. (2003). Error bounds for approximate policy iteration. InICML, volume 3, pages 560–567.
4

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for �tted value iteration.Journalof
MachineLearningResearch, 9(27):815–857. 2, 23

Nilim, A. and El Ghaoui, L. (2005). Robust control of Markov decision processes with uncertain
transition matrices.OperationsResearch, 53(5):780–798. 1, 2, 4, 23

Panaganti, K. and Kalathil, D. (2021). Robust reinforcement learning using least squares policy itera-
tion with provable performance guarantees. InProceedingsof the38thInternationalConference
onMachineLearning, pages 511–520. 2, 23

Panaganti, K. and Kalathil, D. (2022). Sample complexity of robust reinforcement learning with a
generative model. InProceedingsof The25thInternationalConferenceonArti�cial Intelligence
andStatistics, pages 9582–9602. 2, 8, 24

11

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Sim-to-real transfer of robotic
control with dynamics randomization. In2018IEEE internationalconferenceon roboticsand
automation(ICRA), pages 3803–3810. IEEE. 1

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. (2017). Robust adversarial reinforcement
learning. InInternationalConferenceonMachineLearning, pages 2817–2826. 2, 23

Prashanth, L. A. and Ghavamzadeh, M. (2016). Variance-constrained actor-critic algorithms for
discounted and average reward mdps.Mach.Learn., 105(3):367–417. 23

Raf�n, A. (2020). Rl baselines3 zoo.https://github.com/DLR-RM/rl-baselines3-zoo . 25

Rockafellar, R. T. and Wets, R. J.-B. (2009).Variationalanalysis, volume 317. Springer Science &
Business Media. 6, 15, 16

Roy, A., Xu, H., and Pokutta, S. (2017). Reinforcement learning under model mismatch. InAdvances
in NeuralInformationProcessingSystems, pages 3043–3052. 2, 23

Russel, R. H. and Petrik, M. (2019). Beyond con�dence regions: Tight bayesian ambiguity sets for
robust mdps.Advancesin NeuralInformationProcessingSystems. 2

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms.arXiv preprintarXiv:1707.06347. 25

Shalev-Shwartz, S. and Ben-David, S. (2014).Understandingmachinelearning: From theoryto
algorithms. Cambridge university press. 15

Shapiro, A. (2017). Distributionally robust stochastic programming.SIAM JournalonOptimization,
27(4):2258–2275. 5, 6, 16

Sidford, A., Wang, M., Wu, X., Yang, L. F., and Ye, Y. (2018). Near-optimal time and sample
complexities for solving markov decision processes with a generative model. InProceedingsof the
32ndInternationalConferenceonNeuralInformationProcessingSystems, pages 5192–5202. 23

Singh, S. P. and Yee, R. C. (1994). An upper bound on the loss from approximate optimal-value
functions.MachineLearning, 16(3):227–233. 23

Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P.,
Burgard, W., Milford, M., et al. (2018). The limits and potentials of deep learning for robotics.
TheInternationaljournalof roboticsresearch, 37(4-5):405–420. 1

Szepesvári, C. and Munos, R. (2005). Finite time bounds for sampling based �tted value iteration. In
Proceedingsof the22ndinternationalconferenceonMachinelearning, pages 880–887. 4

Tamar, A., Mannor, S., and Xu, H. (2014). Scaling up robust mdps using function approximation. In
InternationalConferenceonMachineLearning, pages 181–189. 2, 23

Tessler, C., Efroni, Y., and Mannor, S. (2019). Action robust reinforcement learning and applications
in continuous control. InInternationalConferenceonMachineLearning, pages 6215–6224. 23

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain randomization
for transferring deep neural networks from simulation to the real world. In2017 IEEE/RSJ
internationalconferenceon intelligentrobotsandsystems(IROS), pages 23–30. 1

Vershynin, R. (2018).High-DimensionalProbability: An Introductionwith Applicationsin Data
Science, volume 47. Cambridge University press. 15

Wang, R., Foster, D., and Kakade, S. M. (2021). What are the statistical limits of of�ine {rl} with
linear function approximation? InInternationalConferenceonLearningRepresentations. 4, 5, 7

Wang, Y. and Zou, S. (2021). Online robust reinforcement learning with model uncertainty.Advances
in NeuralInformationProcessingSystems, 34. 2

Wiesemann, W., Kuhn, D., and Rustem, B. (2013). Robust Markov decision processes.Mathematics
of OperationsResearch, 38(1):153–183. 2, 23

12

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. (2021). Bellman-consistent pessimism
for of�ine reinforcement learning.Advancesin neuralinformationprocessingsystems, 34. 2, 4,
5, 7, 23

Xie, T. and Jiang, N. (2020). Q* approximation schemes for batch reinforcement learning: A
theoretical comparison. InConferenceon Uncertaintyin Arti�cial Intelligence, pages 550–559.
2, 23

Xu, H. and Mannor, S. (2010). Distributionally robust Markov decision processes. InAdvancesin
NeuralInformationProcessingSystems, pages 2505–2513. 2, 23

Yang, W., Zhang, L., and Zhang, Z. (2021). Towards theoretical understandings of robust markov
decision processes: Sample complexity and asymptotics.arXiv preprintarXiv:2105.03863. 2, 8,
24

Yu, P. and Xu, H. (2015). Distributionally robust counterpart in Markov decision processes.IEEE
TransactionsonAutomaticControl, 61(9):2538–2543. 2

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. (2020). Mopo:
Model-based of�ine policy optimization. InAdvancesin NeuralInformationProcessingSystems.
2, 23

Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning, D., and Hsieh, C.-J. (2020a). Robust deep
reinforcement learning against adversarial perturbations on state observations.Advancesin Neural
InformationProcessingSystems, 33:21024–21037. 2

Zhang, K., Hu, B., and Basar, T. (2020b). Policy optimization for H2 linear control with H1
robustness guarantee: Implicit regularization and global convergence. InProceedingsof the2nd
AnnualConferenceonLearningfor DynamicsandControl, volume 120, pages 179–190. 23

Zhang, S. and Jiang, N. (2021). Towards hyperparameter-free policy selection for of�ine reinforce-
ment learning. InAdvancesin NeuralInformationProcessingSystems, pages 12864–12875. 2,
23

Zhang, X., Chen, Y., Zhu, X., and Sun, W. (2022). Corruption-robust of�ine reinforcement learning.
In InternationalConferenceonArti�cial IntelligenceandStatistics, pages 5757–5773. PMLR. 23

Zhang, Y., Yang, Z., and Wang, Z. (2021). Provably ef�cient actor-critic for risk-sensitive and robust
adversarial rl: A linear-quadratic case. InInternationalConferenceonArti�cial Intelligenceand
Statistics, pages 2764–2772. 23

Zhou, K., Doyle, J. C., Glover, K., et al. (1996).Robustandoptimalcontrol, volume 40. Prentice
hall New Jersey. 23

Zhou, Z., Bai, Q., Zhou, Z., Qiu, L., Blanchet, J., and Glynn, P. (2021). Finite-sample regret bound
for distributionally robust of�ine tabular reinforcement learning. InInternationalConferenceon
Arti�cial IntelligenceandStatistics, pages 3331–3339. 2, 24

13

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper's
contributions and scope? [Yes] Seecontributions in the Introduction.

(b) Did you describe the limitations of your work? [Yes] The discussions on the assump-
tions describes the limitations.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sections
3-4.3

(b) Did you include complete proofs of all theoretical results? [Yes] We provide proof
sketch 4.4 in main paper and the complete proof in Appendix with self-contained
material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Described in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Described in the main paper and the Appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Mentioned in the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identi�able
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Appendix

A Useful Technical Results

In this section, we state some existing results from concentration inequalities, generalization bounds,
and optimization theory that we will use later in our analysis. We �rst state the Berstein's inequality
that utilizes second-moment to get a tighter concentration inequality.

Lemma 2(Bernstein's inequality(Vershynin, 2018, Theorem 2.8.4)). LetX 1; � � � ; X T be indepen-
dent random variables. Assume thatjX t � E[X t]j � M , for all t. Then, for any" > 0, we
have

P

 �
�
�

1
T

TX

t =1

(X t � E[X t])
�
�
� � "

!

� 2 exp

�
T2"2

2� 2 + 2MT "
3

!

;

where� 2 =
P T

t =1 E[X 2
t]. Furthermore, ifX 1; � � � ; X T are independent and identically distributed

random variables, then for any� 2 (0; 1), we have

�
�
�E[X 1] �

1
T

TX

t =1

X t

�
�
� �

r
2E[X 2

1] log(2=�)
T

+
M log(2=�)

3T
;

with probability at least1 � � .

We now state a result for the generalization bounds on empirical risk minimization (ERM) problems.
This result is adapted from Shalev-Shwartz and Ben-David (2014, Theorem 26.5, Lemma 26.8,
Lemma 26.9).

Lemma 3(ERM generalization bound). LetP be the data generating distribution on the spaceX
and letH be a given hypothesis class of functions. Assume that for allx 2 X andh 2 H we have
that jl (h; x)j � c1 for some positive constantc1 > 0. Given a datasetD = f X i gN

i =1 , generated
independently fromP, denotêh as the ERM solution, i.e.̂h = arg min h2H (1=N)

P N
i =1 l (h; X i).

For any �xed� 2 (0; 1) andh� 2 arg minh2H EX � P [l (h; X)], we have

EX � P [l (ĥ; X)] � EX � P [l (h� ; X)] � 2R(l � H � D) + 5 c1

r
2 log(8=�)

N
; (11)

with probability at least1 � � , whereR(�) is the Rademacher complexity ofl � H given by

R(l � H � D) =
1
N

Ef � i gN
i =1

sup
g 2 l �H

NX

i =1

� i g(X i)

!

;

in which� i 's are independent fromX i 's and are independently and identically distributed according
to the Rademacher random variable� , i.e. P(� = 1) = 0 :5 = P(� = � 1).

Furthermore, ifH is a �nite hypothesis class, i.e.jHj < 1 , with jh � xj � c2 for all h 2 H and
x 2 X , andl(h; x) is c3-Lipschitz inh, then we have

EX � P [l (ĥ; X)] � EX � P [l (h� ; X)] � 2c2c3

r
2 log(jHj)

N
+ 5c1

r
2 log(8=�)

N
; (12)

with probability at least1 � � .

We now mention two important concepts from variational analysis (Rockafellar and Wets, 2009)
literature that is useful to relate minimization of integrals and the integrals of pointwise minimization
under special class of functions.

De�nition 1 (Decomposable spaces and Normal integrands
(Rockafellar and Wets, 2009, De�nition 14.59, Example 14.29)). A space X of measurable
functions is a decomposable space relative to an underlying measure space(
 ; A ; �), if for every
function x0 2 X , every setA 2 A with � (A) < 1 , and any bounded measurable function
x1 : A ! R, the functionx(!) = x0(!)1(! =2 A) + x1(!)1(! 2 A) belongs toX . A function
f :
 � R ! R (�nite-valued) is a normal integrand, if and only iff (!; x) is A -measurable in! for
eachx and is continuous inx for each! .

15

Remark4. A few examples of decomposable spaces areL p(S � A ; �(S � A); �) for anyp � 1 and
M (S � A ; �(S � A)) , the space of all�(S � A)-measurable functions.

Lemma 4 (Rockafellar and Wets, 2009, Theorem 14.60). Let X be a space of measurable functions
from
 to R that is decomposable relative to a� -�nite measure� on the� -algebraA . Let f :

 � R ! R (�nite-valued) be a normal integrand. Then, we have

inf
x 2X

Z

! 2

f (!; x (!)) � (d !) =

Z

! 2

�
inf
x 2 R

f (!; x)
�

� (d !):

Moreover, as long as the above in�mum is not�1 , we have that

x0 2 arg min
x 2X

Z

! 2

f (!; x (!)) � (d !);

if and only if x0(!) 2 arg minx 2 R f (!; x) � � almost surely.

We now give one result from distributioanlly robust optimization. Thef -divergence between the
distributionsP andPo is de�ned as

D f (PkPo) =
Z

f (
d P
d Po)d Po; (13)

wheref is a convex function (Csiszár, 1967; Moses and Sundaresan, 2011). We obtain different
divergences for different forms of the functionf , including some well-known divergences. For
example,f (t) = jt � 1j=2 gives Total Variation (TV),f (t) = t log t gives Kullback-Liebler (KL),
f (t) = (t � 1)2 gives Chi-square, andf (t) = (

p
t � 1)2 gives squared Hellinger divergences.

Let Po be a distribution on the spaceX and letl : X ! R be a loss function. We have the following
result from thedistributionally robust optimizationliterature, see e.g., Shapiro (2017, Section 3.2)
and Duchi and Namkoong (2018, Proposition 1).

Proposition 2. LetD f be thef -divergence as de�ned in(13). Then,

sup
D f (P kP o) � �

EP [l (X)] = inf
�> 0;� 2 R

EP o

�
�f �

�
l (X) � �

�

��
+ �� + �; (14)

wheref � (s) = sup t � 0f st � f (t)g is the Fenchel conjugate.

Note that on the right hand side of(14), the expectation is taken only with respect toPo. We will use
the above result to derive the dual reformulation of the robust Bellman operator.

B Proof of the Proposition 1

As the �rst step, we adapt the result given in Proposition 2 in two ways:(i) Since Proposition 1
considers the TV uncertainty set, we will derive the speci�c form of this result for the TV uncertainty
set,(ii) Since Proposition 1 considers the minimization problem instead of the maximization problem,
unlike in Proposition 2, we will derive the speci�c form of this result for minimization.

Lemma 5. LetD f be as de�ned in(13)with f (t) = jt � 1j=2 corresponding to the TV uncertainty
set. Then,

inf
D f (P kP o) � �

EP [l (X)] = � inf
� 2 R

EP o [(� � l (X))+] + (� � inf
x 2X

l (x))+ � � � �;

Proof. First, we will compute the Fenchel conjugate off (t) = jt � 1j=2. We have

f � (s) = sup
t � 0

f st �
1
2

jt � 1jg = max
�

sup
t 2 [0;1]

f (s +
1
2

)t �
1
2

g ; sup
t> 1

f (s �
1
2

)t +
1
2

g
	

:

It is easy to see that fors > 1=2, we havef � (s) = + 1 , and fors � � 1=2, we havef � (s) = � 1=2.
Fors 2 [� 1=2; 1=2], we have

f � (s) = max
�

sup
t 2 [0;1]

f (s +
1
2

)t �
1
2

g ; sup
t> 1

(f (s �
1
2

)t +
1
2

g
	

16

= max
�

((s +
1
2

) � 1 �
1
2

); ((s �
1
2

) � 1 +
1
2

)
	

= s:

Thus, we have

f � (s) =

8
<

:

� 1
2 s � � 1

2 ;
s s 2 [� 1

2 ; 1
2]

+ 1 s > 1
2 :

:

From Proposition 2, we obtain

sup
D f (P kP o) � �

EP [l (X)] = inf
�> 0;� 2 R

EP o [�f � (
l (X) � �

�
)] + �� + �

= inf
�;� :�> 0;� 2 R;

sup x 2X l (x) � �
� � 1

2

EP o [� maxf
l(X) � �

�
; �

1
2

g] + �� + �

= inf
�;� :�> 0;� 2 R;

sup x 2X l (x) � �
� � 1

2

EP o [maxf l(X) � �; � �= 2g] + �� + �

= inf
�;� :�> 0;� 2 R;

sup x 2X l (x) � �
� � 1

2

EP o [(l (X) � � + �= 2)+] � �= 2 + �� + �

= inf
�;� 0:�> 0;� 02 R;

sup x 2X l (x) � � 0

� � 1

EP o [(l (X) � � 0)+] + �� + � 0:

The second equality follows sincef � (l (X) � �
�) = + 1 wheneverl (X) � �

� > 1
2 , which can be ignored

as we are minimizing over� and� . The fourth equality follows form the fact thatmaxf x; yg =
(x � y)+ + y for any x; y 2 R. Finally, the last equality follows by making the substitution
� 0 = � � �= 2. Taking the optimal value of� , i.e.,� = (sup x 2X l (x) � � 0)+ , we get

sup
D f (P kP o) � �

EP [l (X)] = inf
� 2 R

EP o [(l (X) � �)+] + (sup
x 2X

l (x) � �)+ � + �:

Now,

inf
D f (P kP o) � �

EP [l (X)] = � sup
D f (P kP o) � �

EP [� l (X)]

= � inf
� 2 R

EP o [(� l (X) � �)+] + (sup
x 2X

� l (x) � �)+ � + �

= � inf
� 02 R

EP o [(� 0 � l (X))+] + (� 0 � inf
x 2X

l (x))+ � � � 0;

which completes the proof.

We are now ready to prove Proposition 1.

Proof of Proposition 1. For each (s; a), the optimization problem in(3) is given by
minPs;a 2P s;a Es0� Ps;a [V (s0)], and our focus is on the setting wherePs;a is given by the TV uncer-
tainty set. So,Ps;a can be equivalently de�ned using thef -divergence withf (t) = jt � 1j=2 as
Ps;a = f Ps;a : D f (Ps;a jjPo

s;a) � � g. We can now use the result of Lemma 5 to get

inf
Ps;a 2P s;a

Es0� Ps;a [V (s0)] = � inf
� 2 R

Es0� P o
s;a

[(� � V (s0))+] + (� � inf
s002S

V(s00))+ � � �:

From Proposition 2, the functionh(�) = Es0� P o
s;a

[(� � V (s0))+] + � (� � inf s00 V(s00))+ � � is
convex in� . SinceV(s0) � 0; h(�) = � � � 0 when� � 0. So,inf � 2 (�1 ;0] h(�), achieved at
� = 0 . Also, sinceV (s) � 1=(1 �
), we have

h(
2

� (1 �
)
) = Es0� P o

s;a
[

2
� (1 �
)

� V (s0)] + � (
2

� (1 �
)
� inf

s00
V(s00)) �

2
� (1 �
)

� �
1

(1 �
)
+ � (

2
� (1 �
)

�
1

(1 �
)
) =

2
(1 �
)

�
(1 + �)
(1 �
)

� 0:

So, it is suf�cient to consider� 2 [0; 2
� (1 �
)] for the above optimization problem.

17

Using these, we get

(TQ)(s; a) = r (s; a) +
 inf
Ps;a 2P s;a

Es0� Ps;a [V (s0)]

= r (s; a) +
 � � 1 � inf
� 2 [0; 2

� (1 �
)]
Es0� P o

s;a
[(� � V (s0))+] + (� � inf

s002S
V(s00))+ � � �:

This completes the proof of Proposition 1.

C Proof of Theorem 1

We start by proving Lemma 1 which mainly follows from Lemma 4 in Appendix A.

Proof of Lemma 1.Let h((s; a); �) = Es0� P o
s;a

((� � maxa0 f (s0; a0))+ � (1 � �)�). We note that
h((s; a); �) is �(S � A)-measurable in(s; a) 2 S � A for each� 2 [0; 1=(� (1 �
))] and is
continuous in� for each(s; a) 2 S � A . Now it follows thath((s; a); �) is a normal integrand (see
De�nition 1 in Appendix A). We now note thatL 1(S � A ; �(S � A); �) is a decomposable space
(Remark 4 in Appendix A). Thus, this lemma now directly follows from Lemma 4.

Now we state a result and provide its proof for the empirical risk minimization on the dual parameter.

Lemma 6 (Dual Optimization Error Bound). Let bgf be the dual optimization parameter from the
algorithm (Step 4) for the state-action value functionf and letTg be as de�ned in(9). With probability
at least1 � � , we have

sup
f 2F

kT f � Tbgf f k1;� �
4
 (2 � �)
� (1 �
)

r
2 log(jGj)

N
+

25

� (1 �
)

r
2 log(8jFj =�)

N
+
" dual:

Proof. Fix anf 2 F . We will also invoke union bound for the supremum here. We recall from(8)
thatbgf = arg min g2G

bL dual (g; f). From the robust Bellman equation, we directly obtain

kTbgf f � T f k1;� =
 (Es;a � � jEs0� P o
s;a

((bgf (s; a) � max
a0

f (s0; a0))+ � (1 � �)bgf (s; a))

� inf
� 2 [0;2=(� (1 �
))]

Es0� P o
s;a

((� � max
a0

f (s0; a0))+ � (1 � �)�)j)

(a)
=
 (Es;a � � Es0� P o

s;a
((bgf (s; a) � max

a0
f (s0; a0))+ � (1 � �)bgf (s; a))

� Es;a � � [inf
� 2 [0;2=(� (1 �
))]

Es0� P o
s;a

((� � max
a0

f (s0; a0))+ � (1 � �)�)])

(b)
=
 (Es;a � �;s 0� P o

s;a
((bgf (s; a) � max

a0
f (s0; a0))+ � (1 � �)bgf (s; a))

� inf
g2 L 1

Es;a � �;s 0� P o
s;a

((g(s; a) � max
a0

f (s0; a0))+ � (1 � �)g(s; a)))

=
 (Es;a � �;s 0� P o
s;a

((bgf (s; a) � max
a0

f (s0; a0))+ � (1 � �)bgf (s; a))

� inf
g2G

Es;a � �;s 0� P o
s;a

((g(s; a) � max
a0

f (s0; a0))+ � (1 � �)g(s; a)))

+
 (inf
g2G

Es;a � �;s 0� P o
s;a

((g(s; a) � max
a0

f (s0; a0))+ � (1 � �)g(s; a))

� inf
g2 L 1

Es;a � �;s 0� P o
s;a

((g(s; a) � max
a0

f (s0; a0))+ � (1 � �)g(s; a)))

(c)
�
 (Es;a � �;s 0� P o

s;a
((bgf (s; a) � max

a0
f (s0; a0))+ � (1 � �)bgf (s; a))

� inf
g2G

Es;a � �;s 0� P o
s;a

((g(s; a) � max
a0

f (s0; a0))+ � (1 � �)g(s; a))) +
" dual

(d)
� 2
R (l � G � D) +

25

� (1 �
)

r
2 log(8=�)

N
+
" dual

(e)
�

4
 (2 � �)
� (1 �
)

r
2 log(jGj)

N
+

25

� (1 �
)

r
2 log(8=�)

N
+
" dual:

18

(a) follows sinceinf g h(g) � h(bgf). (b) follows from Lemma 1.(c) follows from the approximate
dual realizability assumption (Assumption 4).

For (d), we consider the loss functionl(g;(s; a; s0)) = (g(s; a) � maxa0 f (s0; a0))+ � (1 � �)g(s; a)
and datasetD = f si ; ai ; s0

i g
N
i =1 . Note thatjl (g;(s; a; s0)) j � 5=(� (1 �
)) (sincef 2 F andg 2 G).

Now, we can apply the empirical risk minimization result(11) in Lemma 3 to get(d), whereR(�) is
the Rademacher complexity.

Finally, (e) follows from (12) in Lemma 3 when combined with the facts thatl(g;(s; a; s0)) is
(2 � �)-Lipschitz ing andg(s; a) � 2=(� (1 �
)) , sinceg 2 G.

With union bound, with probability at least1 � � , we �nally get

sup
f 2F

kT f � Tbgf f k1;� �
4
 (2 � �)
� (1 �
)

r
2 log(jGj)

N
+

25

� (1 �
)

r
2 log(8jFj =�)

N
+
" dual;

which concludes the proof.

We next prove the least-squares generalization bound for the RFQI algorithm.

Lemma 7 (Least squares generalization bound). Let bf g be the least-squares solution from the
algorithm (Step 5) for the state-action value functionf and dual variable functiong. LetTg be as
de�ned in(9). Then, with probability at least1 � � , we have

sup
f 2F

sup
g2G

kTgf � bf gk2;� �
p

6" c +
16

� (1 �
)

r
18 log(2jFjjGj =�)

N
:

Proof. We adapt the least-squares generalization bound given in Agarwal et al. (2019, Lemma A.11)
to our setting. We recall from(10) that bf g = arg min Q2F

bL RFQI (Q; f; g). We �rst �x functions

f 2 F andg 2 G. For any functionf 0 2 F , we de�ne random variableszf 0

i as

zf 0

i = (f 0(si ; ai) � yi)
2 � ((Tgf)(si ; ai) � yi)

2 ;

where yi = r i �
 (g(si ; ai) � maxa0 f (s0
i ; a0))+ +
 (1 � �)g(si ; ai), and (si ; ai ; s0

i) 2 D
with (si ; ai) � �; s 0

i � Po
si ;a i

. It is straightforward to note that for a given(si ; ai), we have
Es0

i � P o
s i ;a i

[yi] = (Tgf)(si ; ai).

Also, sinceg(si ; ai) � 2=(� (1 �
)) (becauseg 2 G) andf (si ; ai); f 0(si ; ai) � 1=(1 �
) (because
f; f 0 2 F), we have(Tgf)(si ; ai) � 5=(� (1 �
)) . This also gives us thatyi � 5=(� (1 �
)) .

Using this, we obtain the �rst moment and an upper-bound for the second moment ofzf 0

i as follows:

Es0
i � P o

s i ;a i
[zf 0

i] = Es0
i � P o

s i ;a i
[(f 0(si ; ai) � (Tgf)(si ; ai)) � (f 0(si ; ai) + (Tgf)(si ; ai) � 2yi)]

= (f 0(si ; ai) � (Tgf)(si ; ai))2;

Es0
i � P o

s i ;a i
[(zf 0

i)2] = Es0
i � P o

s i ;a i
[(f 0(si ; ai) � (Tgf)(si ; ai))2 � (f 0(si ; ai) + (Tgf)(si ; ai) � 2yi)2]

= (f 0(si ; ai) � (Tgf)(si ; ai))2 � Es0
i � P o

s i ;a i
[(f 0(si ; ai) + (Tgf)(si ; ai) � 2yi)2]

� C1(f 0(si ; ai) � (Tgf)(si ; ai))2;

whereC1 = 162=(� 2(1 �
)2). This immediately implies that

Esi ;a i � �;s 0
i � P o

s i ;a i
[zf 0

i] = kTgf � f 0k2
2;� ;

Esi ;a i � �;s 0
i � P o

s i ;a i
[(zf 0

i)2] � C1 kTgf � f 0k2
2;� :

From these calculations, it is also straightforward to see thatjzf 0

i � Esi ;a i � �;s 0
i � P o

s i ;a i
[zf 0

i]j � 2C1

almost surely.

Now, using the Bernstein's inequality (Lemma 2), together with a union bound over allf 0 2 F , with
probability at least1 � � , we have

jkTgf � f 0k2
2;� �

1
N

NX

i =1

zf 0

i j �

s
2C1kTgf � f 0k2

2;� log(2jFj =�)

N
+

2C1 log(2jFj =�)
3N

; (15)

19

for all f 0 2 F . Settingf 0 = bf g, with probability at least1 � �=2, we have

kTgf � bf gk2
2;� �

1
N

NX

i =1

z
bf g
i +

s
2C1kTgf � bf gk2

2;� log(4jFj =�)

N
+

2C1 log(4jFj =�)
3N

: (16)

Now we upper-bound(1=N)
P N

i =1 z
bf g
i in the following. Consider a functionef 2 arg minh2F kh �

Tgf k2
2;� . Note thatef is independent of the dataset. We note that our earlier �rst and second moment

calculations hold true foref , replacingf 0, as well. Now, from(15) settingf 0 = ef , with probability at
least1 � �=2 we have

1
N

NX

i =1

z
ef
i � k Tgf � ef k2

2;� �

s
2C1kTgf � ef k2

2;� log(4jFj =�)

N
+

2C1 log(4jFj =�)
3N

: (17)

Suppose(1=N)
P N

i =1 z
ef
i � 2C1 log(4jFj =�)=N holds, then from (17) we get

1
N

NX

i =1

z
ef
i � k Tgf � ef k2

2;� �

vu
u
t kTgf � ef k2

2;� �
1
N

NX

i =1

z
ef
i +

2C1 log(4jFj =�)
N

: (18)

We note the following algebra fact: Supposex2 � ax + b � 0 with b > 0 anda2 � 4b, then we have

x � a. Takingx = (1 =N)
P N

i =1 z
ef
i in this fact, from (18) we get

1
N

NX

i =1

z
ef
i � 3kTgf � ef k2

2;� +
4C1 log(4jFj =�)

3N
� 3kTgf � ef k2

2;� +
2C1 log(4jFj =�)

N
: (19)

Now suppose(1=N)
P N

i =1 z
ef
i � 2C1 log(4jFj =�)=N, then(19) holds immediately. Thus,(19)

always holds with probability at least1 � �=2. Furthermore, recallef 2 arg minh2F kh � Tgf k2
2;� ,

we have

1
N

NX

i =1

z
ef
i � 3kTgf � ef k2

2;� +
2C1 log(4jFj =�)

N

= 3 min
h2F

kh � Tgf k2
2;� +

2C1 log(4jFj =�)
N

� 3" c +
2C1 log(4jFj =�)

N
; (20)

where the last inequality follows from the approximate robust Bellman completion assumption
(Assumption 2).

We note that sincebf g is the least-squares regression solution, we know that(1=N)
P N

i =1 z
bf g
i �

(1=N)
P N

i =1 z
ef
i . With this note in (20), from (16), with probability at least1 � � , we have

kTgf � bf gk2
2;� � 3" c +

2C1 log(4jFj =�)
N

+

s
2C1kTgf � bf gk2

2;� log(4jFj =�)

N
+

2C1 log(4jFj =�)
3N

� 3" c +
3C1 log(4jFj =�)

N
+

s
3C1kTgf � bf gk2

2;� log(4jFj =�)

N
:

From the earlier algebra fact, takingx = kTgf � bf gk2
2;� , with probability at least1 � � , we have

kTgf � bf gk2
2;� � 6" c +

9C1 log(4jFj =�)
N

:

From the fact
p

x + y �
p

x +
p

y, with probability at least1 � � , we get

kTgf � bf gk2;� �
p

6" c +

r
9C1 log(4jFj =�)

N
:

20

Using union bound forf 2 F andg 2 G, with probability at least1 � � , we �nally obtain

sup
f 2F

sup
g2G

kTgf � bf gk2;� �
p

6" c +

r
18C1 log(2jFjjGj =�)

N
;

which completes the least-squares generalization bound analysis.

We are now ready to prove the main theorem.

Proof of Theorem 1. We letVk (s) = Qk (s; � k (s)) for everys 2 S. Since� k is the greedy policy
w.r.t Qk , we also haveVk (s) = Qk (s; � k (s)) = max a Qk (s; a). We recall thatV � = V � �

and
Q� = Q� �

. We also recall from Section 2 thatQ� �
is a �xed-point of the robust Bellman operator

T de�ned in (3). We also note that the same holds true for any stationary deterministic policy�
from Iyengar (2005) thatQ� satis�esQ� (s; a) = r (s; a) +
 minPs;a 2P s;a Es0� Ps;a [V � (s0)]: We
can now further use the dual form(5) under Assumption 3. We �rst characterize the performance
decomposition betweenV � �

andV � K . For a givens0 2 S, we observe that

V � �
(s0) � V � K (s0) = (V � �

(s0) � VK (s0)) � (V � K (s0) � VK (s0))

= (Q� �
(s0; � � (s0)) � QK (s0; � K (s0))) � (Q� K (s0; � K (s0)) � QK (s0; � K (s0)))

(a)
� Q� �

(s0; � � (s0)) � QK (s0; � � (s0)) + QK (s0; � K (s0)) � Q� K (s0; � K (s0))

= Q� �
(s0; � � (s0)) � QK (s0; � � (s0)) + QK (s0; � K (s0)) � Q� �

(s0; � K (s0))

+ Q� �
(s0; � K (s0)) � Q� K (s0; � K (s0))

(b)
� Q� �

(s0; � � (s0)) � QK (s0; � � (s0)) + QK (s0; � K (s0)) � Q� �
(s0; � K (s0))

+
 sup
�

(Es1 � P o
s 0 ;� K (s 0)

((� � V � K (s1))+ � (� � V � �
(s1))+))

(c)
� j Q� �

(s0; � � (s0)) � QK (s0; � � (s0)) j + jQ� �
(s0; � K (s0)) � QK (s0; � K (s0)) j

+
 Es1 � P o
s 0 ;� K (s 0)

(jV � �
(s1) � V � K (s1)j):

(a) follows from the fact that� K is the greedy policy with respect toQK . (b) follows from the
Bellman optimality equations and the factj supx f (x) � supx g(x)j � supx jf (x) � g(x)j. Finally,
(c) follows from the facts(x)+ � (y)+ � (x � y)+ and(x)+ � j xj for anyx; y 2 R.

We now recall the initial state distributiond0. Thus, we have

Es0 � d0 [V � �
] � Es0 � d0 [V � K] �

Es0 � d0

�
jQ� �

(s0; � � (s0)) � QK (s0; � � (s0)) j + jQ� �
(s0; � K (s0)) � QK (s0; � K (s0)) j

+
 Es1 � P o
s 0 ;� K (s 0)

(jV � �
(s1) � V � K (s1)j)

�
:

SinceV � �
(s) � V � K (s) for anys 2 S, by telescoping we get

Es0 � d0 [V � �
] � Es0 � d0 [V � K] �

1X

h=0

 h �

�
Es� dh;� K

[jQ� �
(s; � � (s)) � QK (s; � � (s)) j + jQ� �

(s; � K (s)) � QK (s; � K (s)) j]
�

; (21)

wheredh;� K 2 �(S) for all natural numbersh � 0 is de�ned as

dh;� K =

(
d0 if h = 0 ;
Po

s0;� K (s0) otherwise, withs0 � dh� 1;� K :

We emphasize that the state distributiondh;� K 's are different from the discounted state-action
occupancy distributions. We note that a similar state distribution proof idea is used in Agarwal et al.
(2019).

21

Recallkf k2
p;� = (Es;a � � jf (s; a)jp)1=p, where� 2 �(S � A). With this we have

Es0 � d0 [V � �
] � Es0 � d0 [V � K] �

1X

h=0

 h
�

kQ� �
� QK k1;dh;� K � � � + kQ� �

� QK k1;dh;� K � � K

�
;

(22)
where the state-action distributionsdh;� K � � � (s; a) / dh;� K (s)1f a = � � (s)g and dh;� K �
� K (s; a) / dh;� K (s)1f a = � K (s)g directly follows by comparing with (21).

We now bound one of the RHS terms above by bounding for any state-action distribution� satisfying
Assumption 1 (in particular the following bound is true fordh;� K � � � or dh;� K � � K in (21)):

kQ� �
� QK k1;� � k Q� �

� TQK � 1k1;� + kTQK � 1 � QK k1;�

(a)
� k Q� �

� TQK � 1k1;� +
p

CkTQK � 1 � QK k1;�

= (Es;a � � jQ� �
(s; a) � TQK � 1(s; a)j) +

p
CkTQK � 1 � QK k1;�

(b)
� (Es;a � �
 sup

�
jEs0� P o

s;a
((� � max

a0
QK � 1(s0; a0))+ � (� � max

a0
Q� �

(s0; a0))+)j)

+
p

CkTQK � 1 � QK k1;�

(c)
� (Es;a � � jEs0� P o

s;a
(max

a0
Q� �

(s0; a0) � max
a0

QK � 1(s0; a0))+ j) +
p

CkTQK � 1 � QK k1;�

(d)
�
 (Es;a � � Es0� P o

s;a
max

a0
jQ� �

(s0; a0) � QK � 1(s0; a0)j) +
p

CkTQK � 1 � QK k1;�

(e)
�
 kQ� �

� QK � 1k1;� 0 +
p

CkTQK � 1 � QK k1;�

(f)
�
 kQ� �

� QK � 1k1;� 0 +
p

CkTgK � 1 QK � 1 � QK k2;� +
p

CkTQK � 1 � TgK � 1 QK � 1k1;� ;
(23)

where(a) follows by the concentratability assumption (Assumption 1),(b) from Bellman equation,
operatorT, and the factj supx p(x) � supx q(x)j � supx jp(x) � q(x)j, (c) from the factj(x)+ �
(y)+ j � j (x � y)+ j for anyx; y 2 R, (d) follows by Jensen's inequality and by the factsj supx p(x) �
supx q(x)j � supx jp(x)� q(x)j and(x)+ � j xj for anyx; y 2 R, and(e) by de�ning the distribution
� 0 as� 0(s0; a0) =

P
s;a � (s; a)Po

s;a (s0)1f a0 = arg maxb jQ� �
(s0; b) � QK � 1(s0; b)jg, and(f) using

the fact thatk � k1;� � k � k 2;� .

Now, by recursion until iteration 0, we get

kQ� �
� QK k1;� �
 K sup

��
kQ� �

� Q0k1; �� +
p

C
K � 1X

t =0

 t kTQK � 1� t � TgK � 1 � t QK � 1� t k1;�

+
p

C
K � 1X

t =0

 t kTgK � 1 � t QK � 1� t � QK � t k2;�

(a)
�

 K

1 �

+

p
C

K � 1X

t =0

 t kTQK � 1� t � TgK � 1 � t QK � 1� t k1;�

+
p

C
K � 1X

t =0

 t kTgK � 1 � t QK � 1� t � QK � t k2;�

(b)
�

 K

1 �

+

p
C

1 �

sup
f 2F

kT f � Tbgf f k1;� +

p
C

1 �

sup
f 2F

kTbgf f � bf bgf k2;�

�

 K

1 �

+

p
C

1 �

sup
f 2F

kT f � Tbgf f k1;� +

p
C

1 �

sup
f 2F

sup
g2G

kTgf � bf gk2;� : (24)

where(a) follows sincejQ� �
(s; a)j � 1=(1 �
); Q0(s; a) = 0 , and(b) follows sincebgf is the dual

variable function from the algorithm for the state-action value functionf and bf g as the least squares
solution from the algorithm for the state-action value functionf and dual variable functiong pair.

22

The proof is now complete combining (22) and (24) with Lemma 6 and Lemma 7.

D Related Works

Here we provide a more detailed description of the related work to complement what we listed in the
introduction (Section 1).

Of�ine RL: The problem of learning the optimal policy only using an of�ine dataset is �rst addressed
under the generative model assumption (Singh and Yee, 1994; Azar et al., 2013; Haskell et al., 2016;
Sidford et al., 2018; Agarwal et al., 2020; Li et al., 2020; Kalathil et al., 2021). This assumption
requires generating the same uniform number of next-state samples for each and every state-action
pairs. To account for large state spaces, there are number of works (Antos et al., 2008; Bertsekas,
2011; Lange et al., 2012; Chen and Jiang, 2019; Xie and Jiang, 2020; Levine et al., 2020; Xie et al.,
2021) that utilize function approximation under similar assumption, concentratability assumption
(Chen and Jiang, 2019) in which the data distribution� suf�ciently covers the discounted state-action
occupancy. There is rich literature (Munos and Szepesvári, 2008; Farahmand et al., 2010; Lazaric
et al., 2012; Chen and Jiang, 2019; Liu et al., 2020; Xie et al., 2021) in the conquest of identifying
and improving these necessary and suf�cient assumptions for of�ine RL that use variations of Fitted
Q-Iteration (FQI) algorithm (Gordon, 1995; Ernst et al., 2005). There is also rich literature (Fujimoto
et al., 2019; Kumar et al., 2019, 2020; Yu et al., 2020; Zhang and Jiang, 2021) that develop of�ine
deep RL algorithms focusing on the algorithmic and empirical aspects and propose multitude heuristic
approaches to advance the �eld. All these results assume that the of�ine data is generated according
to a single model and the goal is to �nd the optimal policy for the MDP with the same model. In
particular, none of these works consider theof�ine robust RL problemwhere the of�ine data is
generated according to a (training) model which can be different from the one in testing, and the goal
is to learn a policy that is robust w.r.t. an uncertainty set.

Robust RL: To address the parameter uncertainty problem, Iyengar (2005) and Nilim and El Ghaoui
(2005) introduced the RMDP framework. Iyengar (2005) showed that the optimal robust value
function and policy can be computed using the robust counterparts of the standard value iteration and
policy iteration algorithms. To tackle the parameter uncertainty problem, other works considered
distributionally robust setting (Xu and Mannor, 2010), modi�ed policy iteration (Kaufman and
Schaefer, 2013), and more general uncertainty set (Wiesemann et al., 2013). These initial works
mainly focused on the planning problem (known transition probability dynamics) in the tabular
setting. Tamar et al. (2014) proposed linear function approximation method to solve large RMDPs.
Though this work suggests a sampling based approach, a general model-free learning algorithm and
analysis was not included. Roy et al. (2017) proposed the robust versions of the classical model-free
reinforcement learning algorithms, such as Q-learning, SARSA, and TD-learning in the tabular setting.
They also proposed function approximation based algorithms for the policy evaluation. However,
this work does not have a policy iteration algorithm with provable guarantees for learning the
optimal robust policy. Derman et al. (2018) introduced soft-robust actor-critic algorithms using neural
networks, but does not provide any global convergence guarantees for the learned policy. Tessler et al.
(2019) proposed a min-max game framework to address the robust learning problem focusing on the
tabular setting. Lim and Autef (2019) proposed a kernel-based RL algorithm for �nding the robust
value function in a batch learning setting. Mankowitz et al. (2020) employed an entropy-regularized
policy optimization algorithm for continuous control using neural network, but does not provide any
provable guarantees for the learned policy. Panaganti and Kalathil (2021) proposed least-squares
policy iteration method to handle large state-action space in robust RL, but only provide asymptotic
policy evaluation convergence guarantees whereas Panaganti and Kalathil (2021) provide �nite time
convergence for the policy iteration to optimal robust value.

Other robust RL related works: Robust control is a well-studied area in the classical control
theory (Zhou et al., 1996; Dullerud and Paganini, 2013). Recently, there are some interesting works
that address the robust RL problem using this framework, especially focusing on the linear quadratic
regulator setting (Zhang et al., 2020b). Risk sensitive RL algorithms (Borkar, 2002; Prashanth and
Ghavamzadeh, 2016; Fei et al., 2021) and adversarial RL algorithms (Pinto et al., 2017; Zhang et al.,
2021; Huang et al., 2022) also address the robustness problem implicitly under different frameworks
which are independent from RMDPs. (Zhang et al., 2022) addresses the problem ofcorruption-robust
of�ine RL problem, where an adversary is allowed to change a fraction of the samples of an of�ine
RL dataset and the goal is to �nd the optimal policy for the nominal linear MDP model (according to

23

which the of�ine data is generated). Our framework and approach of robust MDP is signi�cantly
different from these line of works.

This work: The works that are closest to ours are by Zhou et al. (2021); Yang et al. (2021); Panaganti
and Kalathil (2022) that address the robust RL problem in a tabular setting under the generative
model assumption. Due to the generative model assumption, the of�ine data has the same uniform
number of samples corresponding to each and every state-action pair, and tabular setting allows the
estimation of the uncertainty set followed by solving the planning problem. Our work is signi�cantly
different from these in the following way:(i) we consider a robust RL problem with arbitrary large
state space, instead of the small tabular setting,(ii) we consider a true of�ine RL setting where the
state-action pairs are sampled according to an arbitrary distribution, instead of using the generative
model assumption,(iii) we focus on a function approximation approach where the goal is to directly
learn optimal robust value/policy using function approximation techniques, instead of solving the
tabular planning problem with the estimated model.To the best of our knowledge, this is the �rst
work that addresses the of�ine robust RL problem with arbitrary large state space using function
approximation, with provable guarantees on the performance of the learned policy.

E Experiment Details

We provide more detailed and practical version of our RFQI algorithm (Algorithm 1) in this section.
We also provide more experimental results evaluated onCartpole, Hopper, andHalf-CheetahOpenAI
Gym Mujoco (Brockman et al., 2016) environments.

We provide our code ingithub webpagehttps://github.com/zaiyan-x/RFQI containing in-
structions to reproduce all results in this paper. We implemented our RFQI algorithm based on the
architecture of Batch Constrained deep Q-learning (BCQ) algorithm (Fujimoto et al., 2019)2 and
Pessimistic Q-learning (PQL) algorithm (Liu et al., 2020)3. We note that PQL algorithm (with
b = 0 �ltration thresholding (Liu et al., 2020)) and BCQ algorithm are the practical versions of FQI
algorithm with neural network architecture.

E.1 RFQI Practical Algorithm

We provide the practical version of our RFQI algorithm in Algorithm 2 and highlight the difference
with BCQ and PQL algorithms in blue (steps 8 and 9).

RFQI algorithm implementation details: The Variational Auto-Encoder (VAE)Ga
! (Kingma and

Welling, 2013) is de�ned by two networks, an encoderE ! 1 (s; a) and decoderD ! 2 (s; z), where
! = f ! 1; ! 2g. The encoder outputs mean and standard deviation,(�; �) = E ! 1 (s; a), of a normal
distribution. A latent vectorz is sampled from the standard normal distribution and for a states,
the decoder maps them to an actionD ! 2 : (s; z) 7! ~a. Then the evidence lower bound (ELBO) of
VAE is given byELBO (B ; Ga

!) =
P

B (a � ~a)2 + DKL (N (�; �); N (0; 1)); whereN is the normal
distribution with mean and standard deviation parameters. We refer to (Fujimoto et al., 2019) for
more details on VAE. We also use the default VAE architecture from BCQ algorithm (Fujimoto et al.,
2019) and PQL algorithm (Liu et al., 2020) in our RFQI algorithm.

We now focus on the additions described in blue (steps 8 and 9) in Algorithm 2. For all the other
networks we use default architecture from BCQ algorithm (Fujimoto et al., 2019) and PQL algorithm
(Liu et al., 2020) in our RFQI algorithm.
(1) In each iterationk, we solve the dual variable functiong� optimization problem (step 4 in
Algorithm 1, step 8 in Algorithm 2) implemented by ADAM (Kingma and Ba, 2014) on the minibatch
B with the learning ratel1 mentioned in Table 1.
(2) Our state-action value target function corresponds to the robust state-action value target function
described in(10). This is re�ected in step 9 of Algorithm 2. The state-action value functionQ�
optimization problem (step 5 in Algorithm 1, step 9 in Algorithm 2) is implemented by ADAM
(Kingma and Ba, 2014) on the minibatchB with the learning ratel2 mentioned in Table 1.

2Available athttps://github.com/sfujim/BCQ
3Available athttps://github.com/yaoliucs/PQL

24

Algorithm 2 RFQI Practical Algorithm

1: Input: Of�ine datasetD, radius of robustness� , maximum perturbation� , target update rate� ,
mini-batch sizeN , maximum number of iterationsK , number of actionsu.

2: Initialize: Two state-action neural networksQ� 1 andQ� 2 , one dual neural networkg� 3

policy (perturbation) model:� ' 2 [� � ; �]) ; and action VAEGa
! , with random parameters� 1,

� 2, ' , ! , and target networksQ� 0
1
; Q� 0

2
, � ' 0 with � 0

1 � 1; � 0
2 � 2, ' 0 ' .

3: for k = 1 ; � � � ; K do
4: Sample a minibatchB with N samples fromD.
5: Train ! arg min! ELBO (B ; Ga

!): Sampleu actionsa0
i from Ga

! (s0) for eachs0.
6: Perturbu actionsa0

i = a0
i + � ' (s0; a0

i).
7: Compute next-state value target for eachs0 in B :

Vt = max
a0

i

(0:75� minf Q� 0
1
; Q� 0

2
g + 0 :25� maxf Q� 0

1
; Q� 0

2
g):

8: � 3 arg min�
P

[maxf g� (s; a) � Vt (s0); 0g � (1 � �)g� (s; a)]:
9: Compute next-state Q target for each(s; a; r; s0) pair inB :

Qt (s; a) = r �
 � maxf g� 3 (s; a) � Vt (s0); 0g +
 (1 � �)g� 3 (s; a):

10: � arg min�
P

(Qt (s; a) � Q� (s; a))2:
11: Sampleu actionsai from Ga

! (s) for eachs.
12: ' arg max'

P
maxa i Q� 1 (s; ai + � ' (s; ai)) .

13: Update target network:� 0 = (1 � �)� 0+ � �; ' 0 = (1 � �)' 0+ � ' .
14: end for
15: Output policy: Given s, sample u actions ai from Ga

! (s). Select actiona =
arg maxa i

Q� 1 (s; ai + � ' (s; ai)) .

Environment Discount Learning rates Q Neural nets Dual Neural nets

 [l1; l2] � 1 = � 2 = [h1; h2] � 3 = [h1; h2]

CartPole 0:99 [10� 3; 10� 3] [400; 300] [64; 64]
Hopper 0:99 [10� 3; 8 � 10� 4] [400; 300] [64; 64]

[3 � 10� 4; 6 � 10� 4]
Half-Cheetah 0:99 [10� 3; 8 � 10� 4] [400; 300] [64; 64]

[3 � 10� 4; 6 � 10� 4]

Table 1: Details of hyper-parameters in FQI and RFQI algorithms experiments.

Hyper-parameters details: We now give the description of hyper-parameters used in our codebase
in Table 1. We use same hyper-parameters across different algorithms. Across all learning algorithms
we use� = 0 :005 for the target network update,K = 5 � 105 for the maximum iterations,
jDj = 106 for the of�ine dataset,jB j = 1000 for the minibatch size. We used grid-search for� in
f 0:2; 0:3; � � � ; 0:6g. We also picked best of the two sets of learning rates mentioned in Table 1. For
all the other hyper-parameters we use default values from BCQ algorithm (Fujimoto et al., 2019) and
PQL algorithm (Liu et al., 2020) in our RFQI algorithm that can be found in our code.

Of�ine datasets: Now we discuss the of�ine dataset used in the our training of FQI and RFQI
algorithms. For the fair comparison in every plot, we train both FQI and RFQI algorithms on same
of�ine datasets.

Cartpole datasetDc: We �rst train proximal policy optimization (PPO) (Schulman et al., 2017)
algorithm, under default RL baseline zoo (Raf�n, 2020) parameters. We then generate the Cartpole
datasetDc with 105 samples using an"-greedy (" = 0 :3) version of this PPO trained policy. We
note that this of�ine dataset contains non-expert behavior meeting the richness of the data-generating
distribution assumption in practice.

Mixed datasetDm: For the MuJoCo environments,Hopper andHalf-Cheetah, we increase the
richness of the dataset since these are high dimensional problems. We �rst train soft actor-critic (SAC)
(Haarnoja et al., 2018) algorithm, under default RL baseline zoo (Raf�n, 2020) parameters, with replay

25

buffer updated by a �xed"-greedy (" = 0 :1) policy with the model parameteractuator_ctrlrange
set to[� 0:85; 0:85]. We then generate the mixed datasetDm with 106 samples from this" -greedy
(" = 0 :3) SAC trained policy. We note that such a dataset generation gives more diverse set of
observations than the process ofDc generation for fair comparison between FQI and RFQI algorithms.

D4RL datasetDd: We consider thehopper-mediumandhalfcheetah-mediumof�ine datasets in (Fu
et al., 2020) which are benchmark datasets in of�ine RL literature (Fu et al., 2020; Levine et al., 2020;
Liu et al., 2020). These `medium' datasets are generated by �rst training a policy online using Soft
Actor-Critic (Haarnoja et al., 2018), early-stopping the training, and collecting106 samples from this
partially-trained policy. We refer to (Fu et al., 2020) for more details.

We end this section by mentioning the software and hardware con�gurations used. The training
and evaluation is done using three computers with the following con�guration. Operating system
is Ubuntu 18.04 and Lambda Stack; main softwares are PyTorch, Caffe, CUDA, cuDNN, Numpy,
Matplotlib; processor is AMD Threadripper 3960X (24 Cores, 3.80 GHz); GPUs are 2x RTX 2080
Ti; memory is 128GB RAM; Operating System Drive is 1 TB SSD (NVMe); and Data Drive is 4TB
HDD.

E.2 More Experimental Results

Figure 4:Cartpole simulation results on of�ine datasetDc. Average cumulative reward in20episodes
versus different model parameter perturbations mentioned in the respective titles.

Figure 5:Hopper simulation results on of�ine datasetDm. Average cumulative reward in20episodes
versus different model parameter perturbations mentioned in the respective titles.

Here we provide more experimental results and details in addition to Fig. 1-3 in Section 5.

For theCartpole, we compare RFQI algorithm against the non-robust RL algorithms FQI and DQN,
and the soft-robust RL algorithm proposed in Derman et al. (2018). We trained FQI and RFQI
algorithms on the datasetDc (a detailed description of data set is provided in Appendix E.1). We
test the robustness of the algorithms by changing the parametersforce_mag(to model external force
disturbance),length(to model change in pole length), and also by introducing action perturbations
(to model actuator noise). The nominal value offorce_magandlengthparameters are10 and0:5
respectively. Fig. 4 shows superior robust performance of RFQI compared to the non-robust FQI and
DQN. For example, consider the action perturbation performance plot in Fig. 4 where RFQI algorithm
improves by75%compared to FQI algorithm in average cumulative reward for a40%chance of
action perturbation. We note that we found� = 0 :5 is the best from grid-search for RFQI algorithm.
The RFQI performance is similar to that of soft-robust DQN. We note that soft-robust DQN algorithm
is an online deep RL algorithm (and not an of�ine RL algorithm) and has no provable performance
guarantee. Moreover, soft-robust DQN algorithm requires generating online data according a number
of models in the uncertainty set, whereas RFQI only requires of�ine data according to a single
nominal training model.

26

Before we proceed to describe our results on the OpenAI Gym MuJoCo (Brockman et al., 2016) envi-
ronmentsHopperandHalf-Cheetah, we �rst mention their model parameters and its corresponding
nominal values in Table 2. The model parameter names are self-explanatory, for example, stiffness
control on the leg joint is theleg_joint_stiffness, range of actuator values is theactuator_ctrlrange.
The front and back parameters in Half-Cheetah are for the front and back legs. We refer to the
perturbed environments provided in our code and thehopper.xml, halfcheetah.xml�les in the environ-
ment assets of OpenAI Gym MuJoCo (Brockman et al., 2016) for more information regarding these
model parameters.

Environment Model parameter Nominal range/value
Hopper actuator_ctrlrange [� 1; 1]

foot_joint_stiffness 0
leg_joint_stiffness 0

thigh_joint_stiffness 0
joint_damping 1

joint_frictionloss 0
joint_frictionloss 0

Half-Cheetah front actuator_ctrlrange [� 1; 1]
backactuator_ctrlrange [� 1; 1]

front joint_stiffness= (thigh_joint_stiffness,
shin_joint_stiffness, foot_joint_stiffness) (180; 120; 60)

backjoint_stiffness= (thigh_joint_stiffness,
shin_joint_stiffness, foot_joint_stiffness) (240; 180; 120)

front joint_damping= (thigh_joint_damping,
shin_joint_damping, foot_joint_damping) (4:5; 3:0; 1:5)

backjoint_damping= (thigh_joint_damping,
shin_joint_damping, foot_joint_damping) (6:0; 4:5; 3:0)

Table 2: Details of model parameters forHopperandHalf-Cheetahenvironments.

For theHopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and TD3
(Fujimoto et al., 2018). We trained FQI and RFQI algorithms on the mixed datasetDm (a detailed
description of dataset provided in Appendix E.1). We note that we do not compare with soft robust
RL algorithms because of its poor performance on MuJoCo environments in the rest of our �gures.
We test the robustness of the algorithm by introducing action perturbations, and by changing the
model parametersactuator_ctrlrange, foot_joint_stiffness, andleg_joint_stiffness. Fig. 3 and Fig. 5
shows RFQI algorithm is consistently robust compared to the non-robust algorithms. We note that
we found� = 0 :5 is the best from grid-search for RFQI algorithm. The average episodic reward of
RFQI remains almost the same initially, and later decays much less and gracefully when compared
to FQI and TD3 algorithms. For example, in plot 3 in Fig. 5, at thefoot_joint_stiffnessparameter
value15, the episodic reward of FQI is only around1400whereas RFQI achieves an episodic reward
of 3200. Similar robust performance of RFQI can be seen in other plots as well. We also note that
TD3 (Fujimoto et al., 2019) is a powerful off-policy policy gradient algorithm that relies on large106

replay buffer of online data collection, unsurprisingly performs well initially with less perturbation
near the nominal models.

In order to verify the effectiveness and consistency of our algorithm across different of�ine dataset,
we repeat the above experiments, on additional OpenAI Gym MuJoCo (Brockman et al., 2016)
environmentHalf-Cheetah, using D4RL datasetDd (a detailed description of dataset provided in
Appendix E.1) which are benchmark in of�ine RL literature (Fu et al., 2020; Levine et al., 2020;
Liu et al., 2020) than our mixed datasetDm . Since D4RL dataset is a benchmark dataset for of�ine
RL algorithms, here we focus only on the comparison between the two of�ine RL algorithms we
consider, our RFQI algorithm and its non-robust counterpart FQI algorithm. We now showcase the
results onHopperandHalf-Cheetahfor this setting.

For theHopper, we test the robustness by changing the model parametersgravity, joint_damping, and
joint_frictionloss. Fig. 6 shows RFQI algorithm is consistently robust compared to the non-robust
FQI algorithm. We note that we found� = 0 :5 is the best from grid-search for RFQI algorithm.
The average episodic reward of RFQI remains almost the same initially, and later decays much less
and gracefully when compared to FQI algorithm. For example, in plot 2 in Fig. 6, for the30%

27

50 40 30 20 10

Percentage change in 'gravity'

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

Perturbed "gravity"
RFQI

FQI

0 10 20 30 40 50 60 70

Percentage change in 'joint_damping'

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

"joint_damping" perturbation
RFQI

FQI

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

"joint_frictionloss" values (default=0.0)

1000

1500

2000

2500

3000

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

"joint_frictionloss" perturbation
RFQI

FQI

Figure 6: Hopper evaluation simulation results on offline dataset Dd. Average cumulative reward in
20 episodes versus different model parameter perturbations mentioned in the respective titles.

0 10 20 30 40 50 60

Percentage change in front "joint_stiffness"

3000

3500

4000

4500

5000

5500

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

Front "joint_stiffness" perturbation

RFQI

FQI

0 10 20 30 40 50 60

Percentage change in back "joint_stiffness"

4200

4400

4600

4800

5000

5200

5400

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

Back "joint_stiffness" perturbation
RFQI

FQI

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bound on back actuator (controller) range

2000

3000

4000

5000

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

Back "actuator_ctrlrange" perturbation
RFQI

FQI

Figure 7: Half-Cheetah evaluation simulation results on offline dataset Dd. Average cumulative
reward in 20 episodes versus different model parameter perturbations mentioned in the respective
titles.

change in joint_damping parameter, the episodic reward of FQI is only around 1400 whereas RFQI
achieves an episodic reward of 3000 which is almost the same as for unperturbed model. Similar
robust performance of RFQI can be seen in other plots as well.

For the Half-Cheetah, we test the robustness by changing the model parameters joint_stiffness of front
and back joints, and actuator_ctrlrange of back joint. Fig. 7 shows RFQI algorithm is consistently
robust compared to the non-robust FQI algorithm. We note that we found � = 0:3 is the best from
grid-search for RFQI algorithm. For example, in plot 1 in Fig. 7, RFQI episodic reward stays at
around 5500 whereas FQI drops faster to 4300 for more than 50% change in the nominal value.
Similar robust performance of RFQI can be seen in other plots as well.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

"thigh_joint_stiffness" values (default=0.0)

2600

2800

3000

3200

3400

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

"thigh_joint_stiffness" perturbation
RFQI

FQI

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Bound on actuator (controller) range

1000

1500

2000

2500

3000

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

"actuator_ctrlrange" perturbation
RFQI

FQI

Figure 8: Similar performance of RFQI and
FQI in Hopper on dataset Dd w.r.t. parameters
actuator_ctrlrange and thigh_joint_stiffness.

50 40 30 20 10 0

Percentage change in 'joint_damping'

2000

3000

4000

5000

6000

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

"joint_damping" perturbation
RFQI

FQI

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

"joint_frictionloss" values (default=0.0)

4800

5000

5200

5400

5600

5800

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

in
 2

0
ga

m
es

"joint_frictionloss" perturbation
RFQI

FQI

Figure 9: Similar performance of RFQI and FQI
in Half-Cheetah on dataset Dd w.r.t. parameters
joint_damping and joint_frictionloss.

As part of discussing the limitations of our work, we also provide two instances where RFQI and
FQI algorithm behave similarly. RFQI and FQI algorithms trained on the D4RL dataset Dd per-
form similarly under the perturbations of the Hopper model parameters actuator_ctrlrange and
thigh_joint_stiffness as shown in Fig. 8. We also make similar observations under the perturba-
tions of the Half-Cheetah model parameters joint_damping (both front joint_damping and back
joint_damping) and joint_frictionloss as shown in Fig. 9. We observed that the robustness perfor-
mance can depend on the offline data available, which was also observed for non-robust offline RL
algorithms (Liu et al., 2020; Fu et al., 2020; Levine et al., 2020). Also, perturbing some parameters
may make the problem really hard especially if the data is not representative with respect to that
parameter. We believe that this is the reason for the similar performance of RFQI and FQI w.r.t. some
parameters. We believe that this opens up an exciting area of research on developing online policy
gradient algorithms for robust RL, which may be able to overcome the restriction and challenges due
to offline data. We plan to pursue this goal in our future work.

28

	Introduction
	Preliminaries
	Offline Robust Reinforcement Learning
	Robust Fitted Q-Iteration: Algorithm and Main Results
	Dual Reformulation of Robust Bellman Operator
	Approximately Solving the Dual Optimization using Empirical Risk Minimization
	Robust Fitted Q-iteration
	Proof Sketch

	Experiments
	Conclusion
	Acknowledgements
	Useful Technical Results
	Proof of the Proposition 1
	Proof of Theorem 1
	Related Works
	Experiment Details
	RFQI Practical Algorithm
	More Experimental Results

