Robust Reinforcement Learning using Offline Data

Kishan Panaganti', Zaiyan Xu', Dileep Kalathil', Mohammad Ghavamzadeh?
1Texas A&M University, 2Google Research.
Emails: {kpb, zxu43, dileep.kalathil}@tamu.edu, ghavamza@google.com

Abstract

The goal of robust reinforcement learning (RL) is to learn a policy that is robust
against the uncertainty in model parameters. Parameter uncertainty commonly
occurs in many real-world RL applications due to simulator modeling errors,
changes in the real-world system dynamics over time, and adversarial disturbances.
Robust RL is typically formulated as a max-min problem, where the objective is to
learn the policy that maximizes the value against the worst possible models that lie
in an uncertainty set. In this work, we propose a robust RL algorithm called Robust
Fitted Q-Iteration (RFQI), which uses only an offline dataset to learn the optimal
robust policy. Robust RL with offline data is significantly more challenging than
its non-robust counterpart because of the minimization over all models present
in the robust Bellman operator. This poses challenges in offline data collection,
optimization over the models, and unbiased estimation. In this work, we propose a
systematic approach to overcome these challenges, resulting in our RFQI algorithm.
We prove that RFQI learns a near-optimal robust policy under standard assumptions
and demonstrate its superior performance on standard benchmark problems.

1 Introduction

Reinforcement learning (RL) algorithms often require a large number of data samples to learn
a control policy. As a result, training them directly on the real-world systems is expensive and
potentially dangerous. This problem is typically overcome by training them on a simulator (online
RL) or using a pre-collected offline dataset (offline RL). The offline dataset is usually collected either
from a sophisticated simulator of the real-world system or from the historical measurements. The
trained RL policy is then deployed assuming that the training environment, the simulator or the offline
data, faithfully represents the model of the real-world system. This assumption is often incorrect
due to multiple factors such as the approximation errors incurred while modeling, changes in the
real-world parameters over time and possible adversarial disturbances in the real-world. For example,
the standard simulator settings of the sensor noise, action delay, friction, and mass of a mobile robot
can be different from that of the actual real-world robot, in addition to changes in the terrain, weather
conditions, lighting, and obstacle densities of the testing environment. Unfortunately, the current RL
control policies can fail dramatically when faced with even mild changes in the training and testing
environments (Siinderhauf et al., 2018; Tobin et al., 2017; Peng et al., 2018).

The goal in robust RL is to learn a policy that is robust against the model parameter mismatches
between the training and testing environments. The robust planning problem is formalized using
the framework of Robust Markov Decision Process (RMDP) (Iyengar, 2005; Nilim and El Ghaoui,
2005). Unlike the standard MDP which considers a single model (transition probability function), the
RMDP formulation considers a set of models which is called the uncertainty set. The goal is to find
an optimal robust policy that performs the best under the worst possible model in this uncertainty
set. The minimization over the uncertainty set makes the robust MDP and robust RL problems
significantly more challenging than their non-robust counterparts.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

In this work, we study the problem of developing a robust RL algorithm with provably optimal
performance for an RMDP with arbitrarily large state spaces, using only offline data with function
approximation. Before stating the contributions of our work, we provide a brief overview of the
results in offline and robust RL that are directly related to ours. We leave a more thorough discussion
on related works to Appendix D.

Offline RL: Offline RL considers the problem of learning the optimal policy only using a pre-collected
(offline) dataset. Offline RL problem has been addressed extensively in the literature (Antos et al.,
2008; Bertsekas, 2011; Lange et al., 2012; Chen and Jiang, 2019; Xie and Jiang, 2020; Levine et al.,
2020; Xie et al., 2021). Many recent works develop deep RL algorithms and heuristics for the offline
RL problem, focusing on the algorithmic and empirical aspects (Fujimoto et al., 2019; Kumar et al.,
2019, 2020; Yu et al., 2020; Zhang and Jiang, 2021). A number of theoretical work focus on analyzing
the variations of Fitted Q-Iteration (FQI) algorithm (Gordon, 1995; Ernst et al., 2005), by identifying
the necessary and sufficient conditions for the learned policy to be approximately optimal and char-
acterizing the performance in terms of sample complexity (Munos and Szepesvéri, 2008; Farahmand
et al., 2010; Lazaric et al., 2012; Chen and Jiang, 2019; Liu et al., 2020; Xie et al., 2021). All these
works assume that the offline data is generated according to a single model and the goal is to find the
optimal policy for the MDP with the same model. In particular, none of these works consider the offline
robust RL problem where the offline data is generated according to a (training) model which can be
different from the one in testing, and the goal is to learn a policy that is robust w.r.t. an uncertainty set.

Robust RL: The RMDP framework was first introduced in Iyengar (2005); Nilim and El Ghaoui
(2005). The RMDP problem has been analyzed extensively in the literature (Xu and Mannor, 2010;
Wiesemann et al., 2013; Yu and Xu, 2015; Mannor et al., 2016; Russel and Petrik, 2019) providing
computationally efficient algorithms, but these works are limited to the planning problem. Robust
RL algorithms with provable guarantees have also been proposed (Lim et al., 2013; Tamar et al.,
2014; Roy et al., 2017; Panaganti and Kalathil, 2021; Wang and Zou, 2021), but they are limited to
tabular or linear function approximation settings and only provide asymptotic convergence guarantees.
Robust RL problem has also been addressed using deep RL methods (Pinto et al., 2017; Derman
et al., 2018, 2020; Mankowitz et al., 2020; Zhang et al., 2020a). However, these works do not provide
any theoretical guarantees on the performance of the learned policies.

The works that are closest to ours are by Zhou et al. (2021); Yang et al. (2021); Panaganti and
Kalathil (2022) that address the robust RL problem in a tabular setting under the generative model
assumption. Due to the generative model assumption, the offline data has the same uniform number
of samples corresponding to each and every state-action pair, and tabular setting allows the estimation
of the uncertainty set followed by solving the planning problem. Our work is significantly different
from these in the following way: (i) we consider a robust RL problem with arbitrary large state
space, instead of the small tabular setting, (ii) we consider a true offline RL setting where the
state-action pairs are sampled according to an arbitrary distribution, instead of using the generative
model assumption, (iil) we focus on a function approximation approach where the goal is to directly
learn optimal robust value/policy using function approximation techniques, instead of solving the
tabular planning problem with the estimated model. 7o the best of our knowledge, this is the first
work that addresses the offline robust RL problem with arbitrary large state space using function
approximation, with provable guarantees on the performance of the learned policy.

Offline Robust RL: Challenges and Our Contributions: Offline robust RL is significantly more
challenging than its non-robust counterpart mainly because of the following key difficulties.

(i) Data generation: The optimal robust policy is computed by taking the infimum over all models in
the uncertainty set P. However, generating data according to all models in P is clearly infeasible. It
may only be possible to get the data from a nominal (training) model P°. How do we use the data
from a nominal model to account for the behavior of all the models in the uncertainty set P ?

(ii) Optimization over the uncertainty set P: The robust Bellman operator (defined in (3)) involves a
minimization over P, which is a significant computational challenge. Moreover, the uncertainty set
P itself is unknown in the RL setting. How do we solve the optimization over P ?

(iii) Function approximation: Approximation of the robust Bellman update requires a modified target
function which also depends on the approximate solution of the optimization over the uncertainty set.
How do we perform the offline RL update accounting for both approximations?

As the key technical contributions of this work, we first derive a dual reformulation of the robust
Bellman operator which replaces the expectation w.r.t. all models in the uncertainty set P with an ex-

pectation only w.r.t. the nominal (training) model P °. This enables using the offline data generated by
P © for learning, without relying on high variance importance sampling techniques to account for all
models in P. Following the same reformulation, we then show that the optimization problem over P
can be further reformulated as functional optimization. We solve this functional optimization problem
using empirical risk minimization and obtain performance guarantees using the Rademacher complex-
ity based bounds. We then use the approximate solution obtained from the empirical risk minimization
to generate modified target samples that are then used to approximate robust Bellman update through
a generalized least squares approach with provably bounded errors. Performing these operations
iteratively results in our proposed Robust Fitted Q-Iteration (RFQI) algorithm, for which we prove
that its learned policy achieves non-asymptotic and approximately optimal performance guarantees.

Notations: For a set X, we denote its cardinality as jXj. The set of probability distribution over X is
denoted as (X)), and its power set sigma algebra as (X). For any X 2 R, we denote maxfx; 0g as
(X)4. For any function f : S A ¥ R, state-action distribution 2 (S A), and real number
p 1, the -weighted p-norm of f is defined as kfk,, = Es.a [(s;a)jP]*™P.

2 Preliminaries

A Markov Decision Process (MDP) is a tuple (S; A; r;P; ;dg), where S is the state space, A is the
action space, r : S A ¥ Ris the reward function, 2 (0;1) is the discount factor, and dg 2 (S)
is the initial state distribution. The transition probability function Ps.5(s") is the probability of
transitioning to state s” when action a is taken at state S. In the literature, P is also called the model
of the MDP. We consider a setting where jSj and jAj are finite but can be arbitrarily large. We
will also assume that r(s;a) 2 [0;1], for all (s;a) 2 S A, without loss of generality. A policy

:S T (A) is aconditional distribution over actions given a state. The value function V .p and
the state-action value function Q .p of a policy for an MDP with model P are defined as

X _ X)
Vip(s)=E p['r(ssadjso=sl; Q p(s;a)=E p['r(star)jso=s;a =al;
t=0 t=0

where the expectation is over the randomness induced by the policy and model P. The optimal value
function Vp and the optimal policy p of an MDP with the model P are defined as Vp = max V .p
and p =argmax V .p. The optimal state-action value function is given by Qp = max Q ;p.
The optimal policy can be obtained as (S) = argmax, Qp (s; a). The discounted state-action
occupancy of a policy fqbail MDP with model P, denoted asd .p 2 (S A), is defined as
dpa)=0)Ep[o ' (e=Sa=a)l

Robust Markov Decision Process (RMDP): Unlike the standard MDP which considers a single
model (transition probability function), the RMDP formulation considers a set of models. We refer
to this set as the uncertainty set and denote it as P. We consider P that satisfies the standard (s; a)-
rectangularity condition (Iyengar, 2005). We note that a similar uncertainty set can be considered
for the reward function at the expense of additional notations. However, since the analysis will be
similar and the sample complexity guarantee will be identical up to a constant factor, without loss of
generality, we assume that the reward function is known and deterministic.

We specify an RMDP as M = (S; A;r; P; ;dg), where the uncertainty set P is typically defined as
P = (s;a)2S A Psia; where Psa = fPs;a 2 (S) 1 D(Ps;a; Pso;a) g (D

°=(Pgai(s;@) 2S A)is the nominal model, D(;) is a distance metric between two probability
distributions, and > 0 is the radius of the uncertainty set that indicates the level of robustness. The
nominal model P° can be thought as the model of the training environment. It is either the model
of the simulator on which the (online) RL algorithm is trained, or in our setting, it is the model
according to which the offline data is generated. The uncertainty set P (1) is the set of all valid
transition probability functions (valid testing models) in the neighborhood of the nominal model P°,
which by definition satisfies (S; a)-rectangularity condition (Iyengar, 2005), where the neighborhood
is defined using the distance metric D(;) and radius . In this work, we consider the Total Variation
(TV) uncertainty set defined using the TV distance, i.e., D(Ps;a; Pgq) = (1=2)kPs;a Pg Ks.

The RMDP problem is to find the optimal robust policy which maximizes the value against the worst
possible model in the uncertainty set P. The robust value function V. corresponding to a policy

and the optimal robust value function V are defined as (Iyengar, 2005; Nilim and EI Ghaoui, 2005)
Vo o=inf Vop; Vo =supinf Ve 2)

The optimal robust policy is such that the robust value function corresponding to it matches the
optimal robust value function, i.e., V.~ =V . It is known that there exists a deterministic optimal
policy (Iyengar, 2005) for the RMDP. The robust Bellman operator is defined as (Iyengar, 2005)

(TQ)s;a) =r(s;a)+ | inf Es pg,[max Q(s'; b)I: 3)
It is known that T is a contraction mapping in the infinity norm and hence it has a unique fixed
point Q with V (s) = maxaQ (s;a) and (s) = argmax, Q (s;a) (Iyengar, 2005). The
Robust Q-Iteration (RQI) can now be defined using the robust Bellman operator as Qx1 = T Q.
Since T is a contraction, it follows that Qx ¥ Q . So, RQI can be used to compute (solving the
planning problem) Q and in the tabular setting with a known P. Due to the optimization over the
uncertainty set Pg.4 for each (S; &) pair, solving the planning problem in RMDP using RQI is much
more computationally intensive than solving it in MDP using Q-Iteration.

Offline RL: Offline RL considers the problem of learning the optimal policy of an MDP when the
algorithm does not have direct access to the environment and cannot generate data samples in an
online manner. For learning the optimal policy p of an MDP with model P, the algorithm will only
have access to an offline dataset Dp = f(sj; a;; ri; s})gl,, where (si; aj) , 2 (S Ais
some distribution, and ! Ps;.a,. Fitted Q-Iteration (FQI) is a popular offline RL approach which
is amenable to theoretical analysis while achieving impressive empirical performance. In addition
to the dataset Dp, FQI uses a function class F = ff ;| S 'IQ—" T [0;1=(1)]g to approximate
Qp - The typical FQI update is given by fx1 = argming>g :\‘:1("(3i? aj) + max fie(s); b)

f(si; aj))?, which aims to approximate the non-robust Bellman update using offline data with function

approximation. Under suitable assumptions, it is possible to obtain provable performance guarantees
for FQI (Szepesvari and Munos, 2005; Chen and Jiang, 2019; Liu et al., 2020).

3 Offline Robust Reinforcement Learning

The goal of an offline robust RL algorithm is to learn the optimal robust policy =~ using a pre-collected
offline dataset D. The data is typically generated according to a nominal (training) model P, i.e.,
D = f(si; ai; ri; sHgN. ., where (Si; ai) ;2 (S A)issome data generating distribution,
and s! Ps.a;- The uncertainty set P is defined around this nominal model P° as given in (1)
w.r.t. the total variation distance metric. We emphasize that the learning algorithm does not know
the nominal model P ° as it has only access to D, and hence it also does not know P. Moreover, the
learning algorithm does not have data generated according to any other models in P and has to rely
only on D to account for the behavior w.r.t. all models in P.

Learning policies for RL problems with large state-action spaces is computationally intractable. RL
algorithms typically overcome this issue by using function approximation. In this paper, we consider
two function classes F = ff : S A ¥ [0;1=(1)ljgandG=fg:S A ¥ [0;2=((1)]o.
We use F to approximate Q and G to approximate the dual variable functions which we will
introduce in the next section. For simplicity, we will first assume that these function classes are
finite but exponentially large, and we will use the standard log-cardinality to characterize the sample
complexity results, as given in Theorem 1. We note that, at the cost of additional notations and
analysis, infinite function classes can also be considered where the log-cardinalities are replaced by
the appropriate notions of covering number.

Similar to the non-robust offline RL, we make the following standard assumptions about the data
generating distribution and the representation power of F.

Assumption 1 (Concentratability). There exists a finite ?Snjmnt C > 0 such that for any 2
fd .po j any policy ¢ (8 A), wehavek = kg C.

Assumption 1 states that the ratio of the distribution and the data generating distribution

(s;a)= (s;a), is uniformly bounded. This assumption is widely used in the offline RL literature
(Munos, 2003; Agarwal et al., 2019; Chen and Jiang, 2019; Wang et al., 2021; Xie et al., 2021) in
many different forms. We borrow this assumption from Chen and Jiang (2019), where they used it for

non-robust offline RL. In particular, we note that the distribution is in the collection of discounted
state-action occupancies on model P © alone for the robust RL.

Assumption 2 (Approximate completeness). Ler 2 (S A) be the data distribution. Then,
SUPfoE inff02|: kf? Tfk%’ Yo

Assumption 2 states that the function class F is approximately closed under the robust Bellman
operator T. This assumption has also been widely used in the offline RL literature (Agarwal et al.,
2019; Chen and Jiang, 2019; Wang et al., 2021; Xie et al., 2021).

One of the most important properties that the function class F should have is that there must exist a
function ¥ 2 F which well-approximates Q . This assumption is typically called approximate realiz-

ability in the offline RL literature. This is typically formalized by assuming infgo KF TF kg; "
(Chen and Jiang, 2019). It is known that the approximate completeness assumption and the concen-

tratability assumption imply the realizability assumption (Chen and Jiang, 2019; Xie et al., 2021).

4 Robust Fitted Q-Iteration: Algorithm and Main Results

In this section, we give a step-by-step approach to overcome the challenges of the offline robust
RL outlined in Section 1. We then combine these intermediate steps to obtain our proposed RFQI
algorithm. We then present our main result about the performance guarantee of the RFQI algorithm,
followed by a brief description about the proof approach.

4.1 Dual Reformulation of Robust Bellman Operator

One key challenge in directly using the standard definition of the optimal robust value function
given in (2) or of the robust Bellman operator given in (3) for developing and analyzing robust RL
algorithms is that both involve computing an expectation w.r.t. each model P 2 P. Given that the
data is generated only according to the nominal model P°, estimating these expectation values is
really challenging. We show that we can overcome this difficulty through the dual reformulation of
the robust Bellman operator, as given below.

Proposition 1. Let M be an RMDP with the uncertainty set P specified by (1) using the total
variation distance D(Ps;a; Pg.y) = (1=2)kPs;a PSoKi. Then, foranyQ:S A ¥ [0;1=(1)],

the robust Bellman operator T given in (3) can be equivalently written as

(TQ)(s;a) =r(s;a) inf (Es pel(VEN + (isngV(SOO))+); (4)
@

where V (S) = maXaoa Q(S; a). Moreover, the inner optimization problem in (4) is convex in .

This result mainly relies on Shapiro (2017, Section 3.2) and Duchi and Namkoong (2018, Proposition
1). Note that in (4), the expectation is now only w.r.t. the nominal model P °, which opens up the
possibility of using empirical estimates obtained from the data generated according to P°. This
avoids the need to use importance sampling based techniques to account for all models in P, which
often have high variance, and thus, are not desirable.

While (4) provides a form that is amenable to estimation using offline data, it involves finding
infso V (™). Though this computation is straightforward in a tabular setting, it is infeasible in a
function approximation setting. In order to overcome this issue, we make the following assumption.

Assumption 3 (Fail-state). The RMDP M has a ‘fail-state’ S¢, such that r(sg;a) = 0 and
Psf;a(sf) =1:82A; 8P 2P.

We note that this is not a very restrictive assumption because such a ‘fail-state’ is quite natural in
most simulated or real-world systems. For example, a state where a robot collapses and is not able to
get up, either in a simulation environment like MuJoCo or in real-world setting, is such a fail state.

Assumption 3 immediately implies that V .p(S¢) = 0; 8P 2 P, and hence V (Sf) = 0 and
Q (sf;a) = 0; 8a 2 A. It is also straightforward to see that Qi 1(S¢; @) = 0; 8a 2 A, where
Qx’s are the RQI iterates given by the robust Bellman update Qi1 = T Qg with the initialization
Qo = 0. By the contraction property of T, we have Qx ¥ Q . So, under Assumption 3, without loss
of generality, we can always keep Q(Sf;a) = 0; 8a 2 A and for all k in RQI (and later in RFQI).

So, in the light of the above description, for the rest of the paper we will use the robust Bellman
operator T by setting infso V (s¥) = 0. In particular, for any functionf : S A ¥ [0;1=(1)]
with F(S¢; @) = 0, the robust Bellman operator T is now given by

(THsa) =r(sa) inf, (Es pe,l(maxf(sha))] (@)) ©®
0@y a

4.2 Approximately Solving the Dual Optimization using Empirical Risk Minimization

Another key challenge in directly using the standard definition of the optimal robust value function
given in (2) or of the robust Bellman operator given in (3) for developing and analyzing robust
RL algorithms is that both involve an optimization over P. The dual reformulation given in (5)
partially overcomes this challenge also, as the optimization over P is now replaced by a convex
optimization over a scalar 2 [0;2=((1))]. However, this still requires solving an optimization
foreach (s;a) 2 S A, which is clearly infeasible even for moderately sized state-action spaces,
not to mention the function approximation setting. Our key idea to overcome this difficulty is
to reformulate this as a functional optimization problem instead of solving it as multiple scalar
optimization problems. This functional optimization method will make it amenable to approximately
solving the dual problem using an empirical risk minimization approach with offline data.

Consider the probability (measure) space (S A; (S A);)andletL}(S A; (S A);)be
the set of all absolutely integrable functions defined on this space.! In other words, L is the set of all
functionsg:S A ¥ C R, suchthatkgk,. is finite. WesetC =[0;2= (1)], anticipating
the solution of the dual optimization problem (5). We also note is the data generating distribution
which is a -finite measure.

For any given function ¥ : S A ¥ [0;1=(1)], we define the loss function Lg,1(; F) as
Lanat(@;F) = Esia [Ewr po [(9(sia) maxF(sa)),] (1)u(sia)l; 8g2L%: (6)

In the following lemma, we show that the scalar optimization over for each (S; @) pair in (5) can be
replaced by a single functional optimization w.r.t. the loss function L qy).

Lemma 1. Let Lgy. be the loss function defined in (6). Then, for any function® : S A 1
[0;1=(1)], we have h i

inf Laua(g;) = Es. inf E R £(s": 1 -
g|2nL1 dual(9; F) s;a 2[O;I(rl(12 . s P2, ma%X (s’;a’) N () (7)

Note that the RHS of (7) has minimization over for each (S; &) pair and minimization is inside the
expectation Es.a []. However, the LHS of (7) has a single functional minimization over g 2 L!
and this minimization is outside the expectation. For interchanging the expectation and minimization,
and for moving from point-wise optimization to functional optimization, we use the result from
Rockafellar and Wets (2009, Theorem 14.60), along with the fact that L! is a decomposable space. We
also note that this result has been used in many recent works on distributionally robust optimization
(Shapiro, 2017; Duchi and Namkoong, 2018) (see Appendix A for more details).

We can now define the empirical loss function Edual corresponding to the true loss L4y, as

b : 1 X 0. 0 Ay

awal(@) = @6ia) maxf(spa)). (1)g(sia): ®)
i=1

Now, for any given f, we can find an approximately optimal dual function through the empirical risk

minimization approach as infgo 1 Qdual (g; F).

As we mentioned in Section 3, our offline robust RL algorithm is given an input function class
G="fg:S A 02=((1)]g to approximate the dual variable functions. So, in the
empirical risk minimization, instead of taking the infimum over all the functions in L', we can only
take the infimum over all the functions in G. For this to be meaningful, G should have sufficient
representation power. In particular, the result in Lemma 1 should hold approximately even if we
replace the infimum over L' with infimum over G. One can see that this is similar to the realizability
requirement for the function class F as described in Section 3. We formalize the representation power
of G in the following assumption.

"In the following, we will simply denote L' (S x A, %(S x A), u) as L* for conciseness.

Assumption 4 (Approximate dual realizability). For all ¥ 2 F, there exists a uniform constant " g,
such that |nngG I—dual(g; f) "TI:QZL1 I—dual(g; f) " dual

Using the above assumption, for any given f 2 F, we can find an approximately optimal dual
function br 2 G through the empirical risk minimization approach as B = arg ming,g Qdual(g;).

In order to characterize the performance of this approach, consider the operator Ty for any g 2 G as
(ToN)(sia) = r(sia) (Bs pg l(0(si2) maxf(sha))] (1 losia) 9

forall f 2 F and (s;a) 2 S A. We yill show in Lemma 6 in Appendix C that the error
SUpgop KTT Ty Fky; is O(log(jFj=)= N) with probability at least 1

4.3 Robust Fitted Q-iteration

The intuitive idea behind our robust fitted Q-iteration (RFQI) algorithm is to approximate the exact
RQI update step Qk+1 = T Qk with function approximation using offline data. The exact RQI step
requires updating each (S; a)-pair separately, which is not scalable to large state-action spaces. So,
this is replaced by the function approximation as Q11 = arg mingog KT Qg fkg; . It is still
infeasible to perform this update as it requires to exactly compute the expectation (w.r.t. P° and)
and to solve the dual problem accurately. We overcome these issues by replacing both these exact
computations with empirical estimates using the offline data. We note that this intuitive idea is similar
to that of the FQI algorithm in the non-robust case. However, RFQI has unique challenges due to the
nature of the robust Bellman operator T and the presence of the dual optimization problem within T.

Given a dataset D, we also follow the standard non-robust offline RL choice of least-squares residual
minimization (Chen and Jiang, 2019; Xie et al., 2021; Wang et al., 2021). Define the empirical loss
of T given F° (which represents the Q-function from the last iteration) and dual variable function g as

r(si;aj) + (9(si;ai) maxq FO(s); %)+

1 X
Brear(Fiflio) = 5 @ oGia) fsia)

i=1

(10)

The correct dual variable function to be used in (10) is the optimal dual variable gf =
arg ming,g Lauai(9; ') corresponding to the last iterate f°, which we will approximate it by

bro = arg ming,g Edual(g;). The RFQI update is then obtained as arg ming g QRFQI(f; ' bro).

Summarizing the individual steps described above, we formally give our RFQI algorithm below.

Algorithm 1 Robust Fitted Q-Iteration (RFQI) Algorithm

: Input: Offline dataset D = (sj; a;; ri; S?)'i\‘:l, function classes F and G.

. Initialize: Qy 02 F.

: for k =0; K 1 do

Dual variable function optimization: Compute the dual variable function corresponding to

Qk through empirical risk minimization as gk = Bg, = argming,g B ival (9;Qk) (see (8)).

5. Robust Q-update: Compute the next iterate Qy; through least-squares regression as
Qk+1 = arg Mingoe Prrqi(Q; Qk;gk) (see (10)).

end for

: Output: Kk = argmax, Qk (s; a)

B LN =

2

Now we state our main theoretical result on the performance of the RFQI algorithm.

Theorem 1. Let Assumptions 1-4 hold. Let be the output of the RFQI algorithm after K iterations.
Denote 3 = Eg 4,[V (S)] where dy is initial state distribution. Then, for any 2 (0;1), with
probability at least 1~ 2 , we have

K PP r T
L COO+ "aw) 16 18C log(2jFjjGj=).

R R & T) a) N

Remarkl. Theorem 1 states that the RFQI algorithm can achieve approximate optimality. To see
this, note that witiK O (log(ll:) log(- (11))), and neglecting the second term corresponding to

(inevitable) approximation errofg and" 4,4, We getJ J © "=) with probability greater
thanl 2 forany"; 2 (0;1), aslong as the number of sampés O (ryzi—ys log 1oL).
So, the above theorem can also be interpretedsasrgple complexityresult.

Remark2. The known sample complexity of robust-RL in the tabular settir@@;z%) (Yang

et al., 2021; Panaganti and Kalathil, 2022). Conside@lpg(jFjjGj)) to be@(jSjjAj), we can
recover the same bound as in the tabular setting (wejSq\aie to the use of Bernstein inequality).
Remark3. Under similar Bellman completeness and concentratability assumptions, RFQI sample
complexity is comparable to that of a non-robust of ine RL algorithm, Oz(ﬁ log ﬂ) (Chen

and Jiang, 2019). As a consequence of robustness, we hawndlog(jGj) factors in our bound.

)4

4.4 Proof Sketch

Here we brie y explain the key ideas used in the analysis of RFQI for obtaining the optimality gap
bound in Theorem 1. The complete proof is provided in Appendix C.

Step 1.To boundJ J «,we connectittothe err&Q Qk kq. for any state-action distribution

. While the similar step follows almost immediately using the well-known performance lemma in the
analysis of non-robust FQI, such a result is not known in the robust RL setting. So, we derive the basic
inequalities to get a recursive form and to obtain the balind J « 2kQ Qk ki =1)
(see (22) and the steps before in Appendix C). P
Step 2:To boundkQ Qk ky; for any state-action distributionsuch thak =k, C,we
decompose it to get a recursion, with approximation terms based on the least-squares regression and
empirical risk minimization. Recall th& is the dual variable function from the algorithm for state-

action value functiofi 2 F . Denotel’%J as the least squares solution from the algorithm for the state-
action value functiofi 2 F and dual variable functiog 2 G, i.e.,ibg =argmin e E’RFQ| (Q;f;9).
By recursive use of the obtained inequali®) (see Appendix CF? and using uniform bound, we get
K _ _
kQ Qxki + SupkTf Ty fky + c supsupkTyf ks :
1 1 f2oF 1 f2F g2G

Step 3:We recognize thaup , KTf Ty, f ky; isanempirical risk minimization error term, Using
Rademacher complexity based bounds, we show in Lemma 6 that this e&oégjFj=)= N)

with high probability.

Step 4:Similarly, we also recognize thatip; ;. Supypc KTgf Ibgkz; is a least-squares regression
error term. We also show that this erroil@¢log(jFjjGj=)= N) with high probability. We adapt

the generalized least squares regression result to accommodate the modi ed target functions resulting

from the robust Bellman operator to obtain this bound (see Lemma 7).
The proof is complete after combining steps 1-4 above.

5 Experiments

Figure 1: CartPole Figure 2: CartPole Figure 3: Hopper

Here, we demonstrate the robust performance of our RFQI algorithm by evaluatinGatrtpoleand
Hopperenvironments in OpenAl Gym (Brockman et al., 2016). In all the gures shown, the quantity

in the vertical axis is averaged ov20 different seeded runs depicted by the thick line and the band
around itisthe 0:5standard deviatiorA more detailed description of the experiments, and results on
additional experiments, are deferred to AppendiX\& provide our code igithub webpagehttps:
/[github.com/zaiyan-x/RFQI containing instructions to reproduce all results in this paper.

For theCartpole we compare RFQI algorithm against the non-robust RL algorithms FQI and DQN,
and the soft-robust RL algorithm proposed in Derman et al. (2018). We test the robustness of the
algorithms by changing the parameterce_magto model external force disturbance), and also by
introducing action perturbations (to model actuator noise). Fig. 1 and Fig. 2 shows superior robust per-
formance of RFQI compared to the non-robust FQI and DQN. The RFQI performance is similar to that
of soft-robust DQN. We note that soft-robust RL algorithm (here soft-robust DQN) is an online deep
RL algorithm (and not an of ine RL algorithm) and has no provable performance guarantee. More-
over, soft-robust RL algorithm requires generating online data according a number of models in the
uncertainty set, whereas RFQI only requires of ine data according to a single nominal training model.

For theHopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and TD3
(Fujimoto et al., 2018), and the soft-robust RL (here soft-robust DDPG) algorithm proposed in Derman
et al. (2018). We test the robustness of the algorithms by changing the paréegejeint_stiffness

Fig. 3 shows the superior performance of our RFQI algorithm against the non-robust algorithms and
soft-robust DDPG algorithm. The average episodic reward of RFQI remains almost the same initially,
and later decays much less and gracefully when compared to the non-robust FQI and TDS3.

6 Conclusion

In this work, we presented a novel robust RL algorithm called Robust Fitted Q-Iteration algorithm
with provably optimal performance for an RMDP with arbitrarily large state space, using only of ine
data with function approximation. We also demonstrated the superior performance of the proposed
algorithm on standard benchmark problems.

One limitation of our present work is that, we considered only the uncertainty set de ned with respect
to the total variation distance. In future work, we will consider uncertainty sets de ned with respect to
otherf -divergences such as KL-divergence and Chi-square divergence. Finding a lower bound for the
sample complexity and relaxing the assumptions used are also important and challenging problems.

7 Acknowledgements

This work was supported in part by the National Science Foundation (NSF) grants NSF-CAREER-
EPCN-2045783 and NSF ECCS 2038963. Any opinions, ndings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily re ect the views of the
sponsoring agencies.

References

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. (2019). Reinforcement learning: Theory and
algorithms.CS Dept.,UW Seattle Seattle WA, USA, Tech.Rep. 4, 5, 19, 21

Agarwal, A., Kakade, S., and Yang, L. F. (2020). Model-based reinforcement learning with a
generative model is minimax optimal. @onferencen LearningTheory, pages 67-83. 23

Antos, A., Szepesvari, C., and Munos, R. (2008). Learning near-optimal policies with Bellman-
residual minimization based tted policy iteration and a single sample pd#thinelLearning
71(1):89-129. 2, 23

Azar, M. G., Munos, R., and Kappen, H. J. (2013). Minimax PAC bounds on the sample complexity
of reinforcement learning with a generative moddlch.Learn., 91(3):325-349. 23

Bertsekas, D. P. (2011). Approximate policy iteration: A survey and some new methmdsalof
ControlTheoryandApplications, 9(3):310-335. 2, 23

Borkar, V. S. (2002). Q-learning for risk-sensitive contrdlathematicsof operationgesearch
27(2):294-311. 23

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gymarXiv preprintarXiv:1606.01540. 8, 24, 27

Chen, J. and Jiang, N. (2019). Information-theoretic considerations in batch reinforcement learning.
In InternationalConferenceon MachinelLearning, pages 1042-1051. 2, 4,5, 7, 8, 23

Csiszar, I. (1967). Information-type measures of difference of probability distributions and indirect
observationstudiascientiarumMathematicarunHungarica, 2:229-318. 16

Derman, E., Mankowitz, D., Mann, T., and Mannor, S. (2020). A bayesian approach to robust
reinforcement learning. lbncertaintyin Arti cial Intelligence, pages 648-658. 2

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor, S. (2018). Soft-robust actor-critic policy-
gradient. INAUAI pressfor Associationfor Uncertaintyin Arti cial Intelligence pages 208—218.
2,9,23,26

Duchi, J. and Namkoong, H. (2018). Learning models with uniform performance via distributionally
robust optimizationarXiv preprintarXiv:1810.08750. 5, 6, 16

Dullerud, G. E. and Paganini, F. (20137 coursein robustcontrol theory: a convexapproach
volume 36. Springer Science & Business Media. 23

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement learning.
Journalof MachineLearningResearch, 6:503-556. 2, 23

Farahmand, A.-m., Szepesvari, C., and Munos, R. (2010). Error propagation for approximate policy
and value iterationAdvancesn NeurallnformationProcessingystems, 23. 2, 23

Fei, Y., Yang, Z., Chen, Y., and Wang, Z. (2021). Exponential bellman equation and improved regret
bounds for risk-sensitive reinforcement learning. Aimual Conferenceon Neurallnformation
Processingystem=021, pages 20436-20446. 23

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning. 26, 27, 28

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-critic
methods. IrinternationalConferencen MachineLearning, pages 1582-1591. 9, 27

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning without
exploration. IninternationalConferenceon MachinelLearning pages 2052-2062. 2, 23, 24, 25,
27

Gordon, G. J. (1995). Stable function approximation in dynamic programmiridathinelearning
proceedingd.995, pages 261-268. 2, 23

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actorlnternationalconferenceon
machinéearning, pages 1861-1870. 25, 26

Haskell, W. B., Jain, R., and Kalathil, D. (2016). Empirical dynamic programmniif@thematicsof
OperationResearch, 41(2):402-429. 23

Huang, P., Xu, M., Fang, F., and Zhao, D. (2022). Robust reinforcement learning as a stackelberg
game via adaptively-regularized adversarial trainiagXiv preprintarXiv:2202.09514. 23

lyengar, G. N. (2005). Robust dynamic programminiylathematicsof OperationsResearch
30(2):257-280. 1, 2, 3, 4, 21, 23

Kalathil, D., Borkar, V. S., and Jain, R. (2021). Empirical Q-Value IteratiBtochasticSystems
11(1):1-18. 23

Kaufman, D. L. and Schaefer, A. J. (2013). Robust modi ed policy iteratib=ORMS Journalon
Computing, 25(3):396—410. 23

10

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimizatiarXiv preprint
arXiv:1412.6980. 24

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayestXiv preprint
arXiv:1312.6114. 24

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy g-learning
via bootstrapping error reduction. Advancesn NeurallnformationProcessingystems, pages
11784-11794. 2, 23

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative g-learning for of ine
reinforcement learningAdvancesn NeurallnformationProcessingystems33:1179-1191. 2,
23

Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch reinforcement learnirigeilforcement
learning, pages 45-73. Springer. 2, 23

Lazaric, A., Ghavamzadeh, M., and Munos, R. (2012). Finite-sample analysis of least-squares policy
iteration. Journalof MachineLearningResearch, 13:3041-3074. 2, 23

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Of ine reinforcement learning: Tutorial, review,
and perspectives on open problerasXiv preprintarXiv:2005.01643. 2, 23, 26, 27, 28

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2020). Breaking the sample size barrier in model-based
reinforcement learning with a generative model Alilvancesn NeurallnformationProcessing
Systems, volume 33, pages 12861-12872. 23

Lim, S. H. and Autef, A. (2019). Kernel-based reinforcement learning in robust Markov decision
processes. linternationalConferencen MachineLearning, pages 3973-3981. 23

Lim, S. H., Xu, H., and Mannor, S. (2013). Reinforcement learning in robust Markov decision
processes. IAdvancesn NeurallnformationProcessingystems, pages 701-709. 2

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E. (2020). Provably good batch off-policy
reinforcement learning without great exploration.NaurallnformationProcessingystems 2,
4,23, 24, 25, 26, 27, 28

Mankowitz, D. J., Levine, N., Jeong, R., Abdolmaleki, A., Springenberg, J. T., Shi, Y., Kay, J., Hester,
T., Mann, T., and Riedmiller, M. (2020). Robust reinforcement learning for continuous control
with model misspeci cation. IrinternationalConferencen LearningRepresentations. 2, 23

Mannor, S., Mebel, O., and Xu, H. (2016). Robust mdps with k-rectangular uncertsliatigematics
of OperationResearch, 41(4):1484-1509. 2

Moses, A. K. and Sundaresan, R. (2011). Further results on geometric properties of a family of
relative entropies. 1120111EEE InternationalSymposiumon Information TheoryProceedings
pages 1940-1944. 16

Munos, R. (2003). Error bounds for approximate policy iteratioddKIL , volume 3, pages 560-567.
4

Munos, R. and Szepesvari, C. (2008). Finite-time bounds for tted value iterationrnalof
MachineLearningResearch, 9(27):815-857. 2, 23

Nilim, A. and El Ghaoui, L. (2005). Robust control of Markov decision processes with uncertain
transition matricesOperationdResearch, 53(5):780-798. 1, 2, 4, 23

Panaganti, K. and Kalathil, D. (2021). Robust reinforcement learning using least squares policy itera-
tion with provable performance guaranteesPhoceedingsf the 38th InternationalConference
on MachineLearning, pages 511-520. 2, 23

Panaganti, K. and Kalathil, D. (2022). Sample complexity of robust reinforcement learning with a
generative model. IRroceedingsf The 25thInternationalConferenceon Arti cial Intelligence
andStatistics, pages 9582-9602. 2, 8, 24

11

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Sim-to-real transfer of robotic
control with dynamics randomization. RO18IEEE internationalconferenceon roboticsand
automationICRA), pages 3803-3810. IEEE. 1

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. (2017). Robust adversarial reinforcement
learning. IninternationalConferencen MachinelLearning, pages 2817-2826. 2, 23

Prashanth, L. A. and Ghavamzadeh, M. (2016). Variance-constrained actor-critic algorithms for
discounted and average reward mdigach.Learn., 105(3):367-417. 23

Raf n, A. (2020). Rl baselines3 zodttps://github.com/DLR-RM/rl-baselines3-zoo .25

Rockafellar, R. T. and Wets, R. J.-B. (200%griationalanalysis volume 317. Springer Science &
Business Media. 6, 15, 16

Roy, A., Xu, H., and Pokutta, S. (2017). Reinforcement learning under model mismatstivamces
in NeurallnformationProcessingystems, pages 3043-3052. 2, 23

Russel, R. H. and Petrik, M. (2019). Beyond con dence regions: Tight bayesian ambiguity sets for
robust mdpsAdvancesdn NeurallnformationProcessingystems. 2

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithmsarXiv preprintarXiv:1707.06347. 25

Shalev-Shwartz, S. and Ben-David, S. (201¥nderstandingnachinelearning: From theoryto
algorithms. Cambridge university press. 15

Shapiro, A. (2017). Distributionally robust stochastic programmBIgAM Journalon Optimization
27(4):2258-2275. 5, 6, 16

Sidford, A., Wang, M., Wu, X., Yang, L. F,, and Ye, Y. (2018). Near-optimal time and sample
complexities for solving markov decision processes with a generative mod@loteedingsf the
32ndInternationalConferenceon NeurallnformationProcessingystemspages 5192-5202. 23

Singh, S. P. and Yee, R. C. (1994). An upper bound on the loss from approximate optimal-value
functions.MachineLearning, 16(3):227-233. 23

Sunderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P,
Burgard, W., Milford, M., et al. (2018). The limits and potentials of deep learning for robotics.
The Internationajournal of roboticsresearch, 37(4-5):405-420. 1

Szepesvéri, C. and Munos, R. (2005). Finite time bounds for sampling based tted value iteration. In
Proceedingsf the 22ndinternationalkconferenceon Machinelearning, pages 880-887. 4

Tamar, A., Mannor, S., and Xu, H. (2014). Scaling up robust mdps using function approximation. In
InternationalConferencen MachinelLearning, pages 181-189. 2, 23

Tessler, C., Efroni, Y., and Mannor, S. (2019). Action robust reinforcement learning and applications
in continuous control. IinternationalConferenceon MachinelLearning, pages 6215-6224. 23

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain randomization
for transferring deep neural networks from simulation to the real world20ih7 IEEE/RSJ
internationakconferencen intelligentrobotsandsystemgIROS), pages 23-30. 1

Vershynin, R. (2018).High-DimensionalProbability: An Introductionwith Applicationsin Data
Science, volume 47. Cambridge University press. 15

Wang, R., Foster, D., and Kakade, S. M. (2021). What are the statistical limits of of ine {rl} with
linear function approximation? limternationalConferencen LearningRepresentations. 4, 5, 7

Wang, Y. and Zou, S. (2021). Online robust reinforcement learning with model uncerfaghitginces
in NeurallnformationProcessingystems, 34. 2

Wiesemann, W., Kuhn, D., and Rustem, B. (2013). Robust Markov decision prochtsbematics
of OperationResearch, 38(1):153-183. 2, 23

12

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. (2021). Bellman-consistent pessimism
for of ine reinforcement learningAdvancedn neuralinformationprocessingystems34. 2, 4,
57,23

Xie, T. and Jiang, N. (2020). Q* approximation schemes for batch reinforcement learning: A
theoretical comparison. I8onferenceon Uncertaintyin Arti cial Intelligence pages 550-559.
2,23

Xu, H. and Mannor, S. (2010). Distributionally robust Markov decision processeésivancesn
NeurallnformationProcessingystems, pages 2505-2513. 2, 23

Yang, W., Zhang, L., and Zhang, Z. (2021). Towards theoretical understandings of robust markov
decision processes: Sample complexity and asympt@ie8v preprintarXiv:2105.038632, 8,
24

Yu, P. and Xu, H. (2015). Distributionally robust counterpart in Markov decision proce&es.
Transaction®n AutomaticControl, 61(9):2538-2543. 2

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. (2020). Mopo:
Model-based of ine policy optimization. Ihdvancedn NeurallnformationProcessingystems
2,23

Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning, D., and Hsieh, C.-J. (2020a). Robust deep
reinforcement learning against adversarial perturbations on state observatimascesn Neural
InformationProcessingystems, 33:21024-21037. 2

Zhang, K., Hu, B., and Basar, T. (2020b). Policy optimization fer lihear control with H
robustness guarantee: Implicit regularization and global convergenBeodeedingsf the2nd
Annual Conferencen Learningfor DynamicsandControl, volume 120, pages 179-190. 23

Zhang, S. and Jiang, N. (2021). Towards hyperparameter-free policy selection for of ine reinforce-
ment learning. IMdvancesn NeurallnformationProcessingystemspages 12864-12875. 2,
23

Zhang, X., Chen, Y., Zhu, X., and Sun, W. (2022). Corruption-robust of ine reinforcement learning.
In InternationalConferenceon Arti cial IntelligenceandStatistics pages 5757-5773. PMLR. 23

Zhang, Y., Yang, Z., and Wang, Z. (2021). Provably ef cient actor-critic for risk-sensitive and robust
adversarial rl: A linear-quadratic case.|imernationalConferencen Arti cial Intelligenceand
Statistics, pages 2764-2772. 23

Zhou, K., Doyle, J. C., Glover, K., et al. (1998obustandoptimal control volume 40. Prentice
hall New Jersey. 23

Zhou, Z., Bai, Q., Zhou, Z., Qiu, L., Blanchet, J., and Glynn, P. (2021). Finite-sample regret bound
for distributionally robust of ine tabular reinforcement learning.liernationalConferenceon
Arti cial IntelligenceandStatistics, pages 3331-3339. 2, 24

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately re ect the paper's
contributions and scope? [Yes] Seantributions in the Introduction.

(b) Did you describe the limitations of your work? [Yes] The discussions on the assump-
tions describes the limitations.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sections
3-4.3

(b) Did you include complete proofs of all theoretical results? [Yes] We provide proof
sketch 4.4 in main paper and the complete proof in Appendix with self-contained
material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Described in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Described in the main paper and the Appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Mentioned in the Appendix.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identi able
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Appendix

A Useful Technical Results

In this section, we state some existing results from concentration inequalities, generalization bounds,
and optimization theory that we will use later in our analysis. We rst state the Berstein's inequality
that utilizes second-moment to get a tighter concentration inequality.

Lemma 2 (Bernstein's inequality\ershynin, 2018, Theorem 2.8)4)LetX1; ;X be indepen-
dent random variables. Assume that; E[X.]j M, for all t. Then, for any' > 0, we
have | I

1 X T2"2
P+ (Xe EXdD " 2exp > 24 MT
P t=1 3
where 2 = thl E[X 2]. Furthermore, ifX;; ;X are independent and identically distributed
random variables, then for any2 (0; 1), we have
r—
1 X 2E[X2]log(2=) . M log(2=)
EXa] = X = g

with probability at leastl

We now state a result for the generalization bounds on empirical risk minimization (ERM) problems.
This result is adapted from Shalev-Shwartz and Ben-David (2014, Theorem 26.5, Lemma 26.8,
Lemma 26.9).

Lemma 3 (ERM generalization bound)Let P be the data generating distribution on the space
and letH be a given hypothesis class of functions. Assume that faralK andh 2 H we have
thatjl(h;x)j ¢ for some positive constant > 0. Given a dataseb = fX;gl, , generated
independently fronP, denotehi as the ERM solution, i.éf = arg min oy (1=N) iNzl I(h; X;).

Forany xed 2 (0;1)andh 2 argmin,,y Ex p[l(h; X)], we have

r—
Ex I Bx pl(hX)] 2R0H D)+56 29y
with probability at leastl. ~ , whereR() is the Rademacher complexitylofH given by
|
1 X
R(Il H D)= =E o sup ig(Xi)
N og2iH

in which ;'s are independent fronX;'s and are independently and identically distributed according
to the Rademacher random variablei.e.P(=1)=0:5=P(= 1).

Furthermore, ifH is a nite hypothesis class, i.gHj < 1 ,withjh xj ¢, forallh2 H and
x 2 X, andl(h; x) is cs-Lipschitz inh, then we have

' 2log(8=) .

Ex p[l(A;X)] Ex pll(h;X)] 26 5¢; N ;

r—
2|O?\|(1Hj) N (12)

with probability at leastl

We now mention two important concepts from variational analysis (Rockafellar and Wets, 2009)
literature that is useful to relate minimization of integrals and the integrals of pointwise minimization
under special class of functions.

De nition 1 (Decomposable spaces and Normal integrands
(Rockafellar and Wets, 2009, De nition 14.59, Example 14)29A space X of measurable
functions is a decomposable space relative to an underlying measure(spate), if for every
functionxg 2 X, every setA 2 A with (A) < 1, and any bounded measurable function
X1 : Al R, the functionx(!) = xo(!)1(! 2 A)+ x3(!)1(" 2 A) belongs taxX . A function

f: R! R (nite-valued) is a normal integrand, if and onlyff(!; x) is A-measurable in for
eachx and is continuous ix for each! .

15

Remarkd4. A few examples of decomposable spacesdes A ; (S A);)foranyp 1land
M(S A; (S A)),thespaceofall S A)-measurable functions.

Lemma 4 (Rockafellar and Wets, 2009, Theorem 14.6Det X be a space of measurable functions
from to R that is decomposable relative to a nite measure on the -algebraA. Letf :
R! R (nite-valued) be a normal integrand. Then, we have

Z VA
i |- | 1)Y= i |- 1):
Xlg)lz » f(hx (1)) (d!) , X|r21f:ef(.,x) (d?'):
Moreover, as long as the above in mum is nbt , we have that
z
x°2 argmin f(hx () @d!);
X2X 12

if and only if xq!) 2 argmin,, 5 f (!;x) almost surely.

We now give one result from distributioanlly robust optimization. Thdivergence between the
distributionsP andP?® is de ned as 2

D¢ (PkP®) = f(dP

dpo
wheref is a convex function (Csiszar, 1967; Moses and Sundaresan, 2011). We obtain different
divergences for different forms of the functién including some well-known divergences. For
examplef (t) = jt 1j=2 gives Total Variati?p (TV)f (t) = tlogt gives Kullback-Liebler (KL),
f(t)=(t 1)%gives Chi-square, arf(t) = (t 1)? gives squared Hellinger divergences.

Let P° be a distribution on the spaeeand letl : X | R be a loss function. We have the following

result from thedistributionally robust optimizatiofiterature, see e.g., Shapiro (2017, Section 3.2)
and Duchi and Namkoong (2018, Proposition 1).

Proposition 2. LetD; be thef -divergence as de ned iflL3). Then,
1(X)

sup Ep[I(X)]= inf Epo f L —0 4+ o+ ; (14)
D¢ (PkP?) > 0 2R

)d P (13)

wheref (s) =sup; fst f(t)gisthe Fenchel conjugate.

Note that on the right hand side (if4), the expectation is taken only with respec®®. We will use
the above result to derive the dual reformulation of the robust Bellman operator.

B Proof of the Proposition 1

As the rst step, we adapt the result given in Proposition 2 in two wdijsSince Proposition 1
considers the TV uncertainty set, we will derive the speci ¢ form of this result for the TV uncertainty
set,(ii) Since Proposition 1 considers the minimization problem instead of the maximization problem,
unlike in Proposition 2, we will derive the speci ¢ form of this result for minimization.

Lemma 5. LetD; be as de ned in(13)withf (t) = jt 1j=2 corresponding to the TV uncertainty
set. Then,

Df(PiEI;f’O) Ep[I(X)I= inf Epo[(I(X))+]1+(inf 1(x)). ;

Proof. First, we will compute the Fenchel conjugatef¢f) = jt 1j=2. We have
1 1 1 1 1
f (s)=sup fst —=jt 1ljg=max supf(s+ =)t =g;sud(s =)t+ =g :
(s) up it 1g tz[opl] (2) 595 St y(2) 59

It is easy to see that f&r> 1=2, we havef (s)=+ 1 , and fors 1=2, we havef (s)= 1=2.
Fors2 [1=2;1=2], we have

1 1 1 1

f (s)=max supf(s+)t =g;sup(f(s =)t+ =

(s) tmﬁ] (s+ 3t 39 t>§>((s i+ 59

16

1

=max ((s+2) 1 2i((s 3) 1+3) =s

2
Thus, we have 8
< % s 1.
2 21' 1
f(s)=.s s2[3 5]:
"+l s> 3
From Proposition 2, we obtain
, (X
sup EelX)]= i Epolf (O yju 4
Dt (PkP©) > 0; 2R
. (X 1
= inf Epo[maxf L; g+ +
o> 0 2R MRx2x 0O 1) i 2
= inf Epo[maxfl(X) ; =2g]+ +
© o> 0 2R MPx2x 100 i
= inf Epo[(I(X) + =2)] =2+ 4+
C o> 0 2R MPx2x 109 i
= inf Epo[(I(X) 9.1+ + ©
. 0> 0 OpRyMRxax 109 7 ° 1

The second equality follows sintte(&) =+ 1 whenever&*) _ > % which can be ignored

as we are minimizing over and . The fourth equality follows form the fact thataxf x; yg =

(x y)+ +yforanyx;y 2 R. Finally, the last equality follows by making the substitution
0

= = 2. Taking the optimal value of, i.e., = (Sup,ox 1(X) 9., we get
sup Ep[I(X)]=inf Epo[(I(X) D)s]+(supl(x))+ + :
D¢ (PkP©) 2R x2X
Now,
inf Ep[I(X)] = Su Ep[I(X
o,y ERlOOI= - sup - Ee[1(X)]
= inf Epo[(I(X))+]+(sup I(x))+ +
2R x2X
— H 0 0 H 0.
= it Epel(7 1(X))+]+(7 inf 1(x))+ ,
which completes the proof. O

We are now ready to prove Proposition 1.

Proof of Proposition 1 For each (s;a), the optimization problem in(3) is given by
minp,, 2p .. Eso p.. [V (sY], and our focus is on the setting whé?e, is given by the TV uncer-
tainty set. SoPs., can be equivalently de ned using tliedivergence withf (t) = jt 1j=2 as
Psia = fPsa : Dt (PsiajiPsa) g. We can now use the result of Lemma 5 to get

; - ; 0

o nf Esop V(= inf Ewopg [V(SDIH(inf V().

From Proposition 2, the functiom() = Eso po [(V(s))+]+ (infsoV(s%9)+ is

convex in . SinceV(s) O;h()= 0 when 0. So,inf 51 .gh(), achieved at
=0. Also, sincevV(s) 1=(1), we have

_2
@)

2
@)
0:

()= B e Ly VI

L, 2 L, 2 @x)
@) ~@)y @)y @)y @)

So, itis suf cient to consider 2 [0; ﬁ] for the above optimization problem.

inf V (s%9)

17

Using these, we get
(TQ)Xsia) = r(s;ad)+ _ inf Exo p,, [V(s))]

= r(s;a) + 1 inf Eeo po [(V(sH)+]+(inf V(s%).
2[0; 21 o s02s
This completes the proof of Proposition 1. O

C Proof of Theorem 1
We start by proving Lemma 1 which mainly follows from Lemma 4 in Appendix A.

Proof of Lemma 1Leth((s;a);) = Ego P2, («(maxgof (s%a%), (1)). We note that
h((s;a);)is (S A)-measurableirfs;a) 2 S A foreach 2 [0;1=((1))] andis
continuous in foreach(s;a) 2S A . Now it follows thath((s;a);) is a normal integrand (see
De nition 1 in Appendix A). We now note that*(S A ; (S A);)isadecomposable space
(Remark 4 in Appendix A). Thus, this lemma now directly follows from Lemma 4. O

Now we state a result and provide its proof for the empirical risk minimization on the dual parameter.

Lemma 6 (Dual Optimization Error Bound)Letty be the dual optimization parameter from the
algorithm (Step 4) for the state-action value functioand letTy be as de ned in(9). With probability
atleastl ,we have

r— r
SupkTf Ty, ku. 4 (2) 2log(iG)) N 25 2log(gFj=) g

f 2F @) N @) N
Proof. Fix anf 2 F . We will also invoke union bound for the supremum here. We recall fi@m
thaty = argmin 4, Paua (g;). From the robust Bellman equation, we directly obtain

KTg f Tfky = (Esa JEso pg, (Gr(si@) maxf(shad)s (1)bi(sia)

2o, Eeo pg (- maxf (s%a%)+ (@)i
® (Bsa Esopp (B (sd) maxf(a). (1)b (sia)

; 0.
Esa [, 0,00 Ewpg ((maxf(sha), @)))

© (Esa sope (B(s8) maxf(sta). (1)b (sia)
nf Esa 5o pg (9(si@) maxf(sia). (1)g(sia))
= (Bsa sopg (B (si@) maxf(siad). (1)bi(sia)
inf Esa s ey, (9(5:9) maxf (s5a)). (1)g(s:a)
+ (inf Esa 0 pg, ((9(si0) maxf(sia)). (1)g(s;a)
nf Esa 5o pg, (9(si@) maxf(sia). (1)g(sia))

(© . 0. .
(Esa 50 pg, ((br(s;d) ma%\xf %a%. @ b (s;a)

inf Esa o pg, ((9(si) maxf(s5a). (1)gsia)+ " qa
25 r 2log(8=) Lo
(l) N dual

(&) 4 (2)r 2Iog(jGj)+ 25 r 2Iog(8=)+ .
@y N @) N e

(a)
2R(G D)+

18

(a) follows sinceinfy h(g) h(b). () follows from Lemma 1(c) follows from the approximate
dual realizability assumption (Assumption 4).

For (d), we consider the loss functidtg;(s; a; %)) = (g(s;a) maxeef (s®a%). (1)g(s;a)
and dataseD = fs;;a;;sgY; . Note thafl(g;(s;a;s))j 5= (1)) (sincef 2 F andg 2 G).
Now, we can apply the empirical risk minimization reqilt) in Lemma 3 to ge{d), whereR() is
the Rademacher complexity.

Finally, (e) follows from (12) in Lemma 3 when combined with the facts thég;(s; a; s?) is
(2)-Lipschitzingandg(s;a) 2=((1)), sinceg 2 G.

With union bound, with probability at I(raaett , we nally get .
4 2) 2log(Gj 25 2log(§Fj=) . |
fSZUFD KTf Ty ke 1) N + @) N *+ 7 duan
which concludes the proof. O

We next prove the least-squares generalization bound for the RFQI algorithm.

Lemma 7 (Least squares generalization bounti)ati’og be the least-squares solution from the
algorithm (Step 5) for the state-action value functfoand dual variable functiog. LetTy be as
de ned in(9). Then, with probability at least , we haver

supsupkTyf ks, I06'7'6+ 16 18log(3FiiGj=):
f2F g2G (1) N

Proof. We adapt the least-squares generalization bound given in Agarwal et al. (2019, Lemma A.11)
to our setting. We recall fror(iL0) thatfbg = argmin gor DRFQ| (Q;f;g). We rst x functions

f 2 F andg 2 G. For any functiorf °2 F , we de ne random variablar " as
0

2 =(f%sha) W) (Tof)(sia) w)?;
wherey; = r; (9(si;a) maxpf(shad). + (1)o(si;a), and(si;a;s?) 2 D
with (si; &) ;s 9 Pg .o, - Itis straightforward to note that for a gives;; a;), we have
Eso po,, 1= (Tof)(sisa).
Also, sinceg(si;a;) 2=((1)) (becauseq 2 G) andf (si;a;);fYsi;a) 1=(1) (because
f;f 92 F), we have(Tyf)(si;a) 5= (1)). Thisalsogivesusthat 5= (1)).
Using this, we obtain the rst moment and an upper-bound for the second moméﬁ)tarf follows:

Ew pp, 2012 Egp oy, [(FAsiia) (Tof)(siia)) (Fsiia)+(Tof)(siia) 2yi)]
(f%si;a) (Tof)si @))%
Esp po, [(2)21= Eso py, [(F%si@) (Tof)(siia))? (F%si;a) +(Tof Xsiia) 21)%
=(f%si;a) (Tof)(siia))? Esp o, [(FAsiia) + (Tof)sisa) 2yi)%]
Ci(fUsi;a) (Tof)(siza));
whereC; = 16°2=(2(1)?). This immediately implies that
Esa s 0 PO . [Z|f O] = KTyf f(kg; ;

0
Es a, s Y P2 [(Zlf)2] Ca KTyf fokg; :

i
i@

From these calculations, it is also straightforward to seejzlﬁglt Esiai 50 po. k4 O]j 2Cy

A
almost surely.

Now, using the Bernstein's inequality (Lemma 2), together with a union bound ovie? 2IF , with
probability atleasfi. ~ , we have <

X 2C.kT,f f%2 log(2jFj= iFi=
KTof 193 Ni A 1KTg Nz, 9(2jFj)+2C1|02§\|21FJ);
i=1

(15)

19

forallf °2 F . Settingf ©= 3, with probability at least =2, we have
s

X 2C,kTof K2 log(4jF] = .
1b@lkg; i z‘bg.;. C, g gh2; OQ(JJ)+2C1|09(4JFJ):

KT,f : N N

(16)
i=1

P
Now we upper-boun@l=N) iNzl z:bg in the following. Consider a functiof¥ 2 arg miny,, kh

Tyf k3. . Note that®is independent of the dataset. We note that our earlier rst and second moment

calculations hold true fo, replacingf ©, as well. Now, from(15) settingf ©= f€, with probability at
leastl =2we have

s
1 e 2 2C;kTyf %5 log(4iFj=) = 2C;log(4jFj=)
N 7z k Tgf &S, N + 3N A7)
P
Suppos€1=N) iNzl z:e 2Cq log(4jFj =)=N holds, then from (17) we get
v
u
X X iCi =
Ni 2 kT @ FkTgf =) Ni 2©+ %: (18)
i=1 i=1

We note the following alglgbra fact: Suppose ax+ b Owithb > 0anda® 4b, then we have
X a. Takingx = (1 =N) iN=1 zife in this fact, from (18) we get

1 X
N 4 SKTef g +
i=1

4C1 log(4jFj=)

N 3KTf 3 +

2Cq log(4jFj=): (19)
N
P
Now suppos€1=N) :\‘:1 zi'e 2C, log(4jFj =)=N, then(19) holds immediately. Thug19)
always holds with probability at leagt =2. Furthermore, recaff 2 argmin, - kh Tgf k3. |
we have
2C; log(4iFj=)
N
2C, log(4jFj = 2C, log(4jFj =
Cilog@Fi=) 5 , 2Cilog@Fi=). 5
N N
where the last inequality follows from the approximate robust Bellman completion assumption
(Assumption 2).

3KTf 3 +

— H 2
—3rg12|£1 kh Tgf ks +

. . . . P
We note that sch is the least-squares regression solution, we know (vt) iNzl szg

P
(1=N) iNzl zi'e. With this note in (20), from (16), with probability at lealst , we have

KT,f %kg; 3+ 2C, log(4jFj=)

s N
2CikTof Bk log(4Fi=) 2Cilog(4Fj=)
N 3N
S
. 3Cilog(4iFj=) 3CikTgf RK3. log(4iFj=)
3.+ S VR + N’ .

From the earlier algebra fact, taking= kTyf fbgkg; , with probability atleast ~ , we have

, 9Cilog(4Fj=).
N :
y, with probability at leasl ~ , we get

kTgf RK3. 6

From thefach+ y p§+ P

r..
Bko. P 9C1|09(4JFJ:):

KT,f 67+ N

20

Using union bound fof 2 F andg 2 G, with probability atleast , we nally obtain
r

f2F g2G N
which completes the least-squares generalization bound analysis. O]

We are now ready to prove the main theorem.

Proof of Theorem 1 We letVk(s) = Qk(s; «(s)) foreverys 2 S. Since is the greedy policy
W.r.t Qx, we also havak(s) = Qk(s; k(S)) = max 5 Qk(s;a). We recall thatv = V and

Q = Q .We alsorecall from Section 2 th@ is a xed-point of the robust Bellman operator
T de ned in (3). We also note that the same holds true for any stationary deterministic policy
from lyengar (2005) tha® satis esQ (s;a) = r(s;a)+ minp_, 2p ., Eso p., [V (s9]: We
can now further use the dual forf®) under Assumption 3. We rst characterize the performance
decomposition betweevt andV « . For a giversy 2 S, we observe that

Vo (so) V *(so)=(V (so) Vk(so) (V “(so) Vk(so)
=(Q (so; (s0)) Qx(so; k(S0)) (Q *(so; k(S0)) Qk(So; « (S0)))
“Q (s () Qulsor (so)+ Qe (Sl k(%) Q (S0 (S0)

= Q (So; (S0)) Qk(So; (S0))+ Qk(So; k(S0)) Q (So; « (S0))
+Q (So; k(s0)) Q “(so; k(s0))

Y0 (s (%) Qu(soi (So)* Qu(soi k() Q (Soi k (S0)
+oSUpEs, pr o ((VEGs)s (Y (s)s)

(

7K (so)

“TQ (s () Q(sor (0)i*iQ (S0 k(S0) Q(Soi x (So)]
+ Es, po GV (s1) V *(sw)j):

sg: K (so)
(a) follows from the fact that is the greedy policy with respect @k . (b) follows from the
Bellman optimality equations and the fasup, f (x) sup, g(x)j sup jf (x) g(x)j. Finally,
(c) follows from the fact{x). (y)+ (X Vy)+ and(x)+ j Xjforanyx;y 2 R.

We now recall the initial state distributiady. Thus, we have
ESo do [V] ESo do [V K]

Es, do JQ (So; (So0)) Qk(so; (S0))ji+jQ (so; k(So0)) Qx(So; «k(So))]

+ By by L (VO (s) V< (sD))

SinceV (s) V x(s)foranys2 S, by telescoping we get

X
Es, do[v] Es, do[V “] n
h=0

Es an [Q (55 (5) Qx(s; (i+iQ (s; k(s) Q(s; «x (il ; (21)
whered,. , 2 (S) for all nat(ural numbers 0Ois de ned as

do ifh=0;
P&, . sy Otherwise, withs® dp 1.

We emphasize that the state distributidiy , 's are different from the discounted state-action
occupancy distributions. We note that a similar state distribution proof idea is used in Agarwal et al.
(2019).

thK:

21

Recallkf k. = (Esa jf (s;@)j?)'™, where 2 (S A). With this we have

X
Es, alV 1 Es [V ©] " kQ Qkug, , *kQ Qkug, .
h=0
(22)
where the state-action distributiomnls. , (s;a) I dn (S)lfa = (s)g and dn.

k(s;8)/ dn (s)lfa= g (s)gdirectly follows by comparing with (21).

We now bound one of the RHS terms above by bounding for any state-action distribugidisfying
Assumption 1 (in particular the following bound is true thy ordn k in(21)):

kQ Qkky; kQ TQk 1ky; + KTQx 1 Qxky;
(a) _

k Q TQk 1k, + kaTQK 1 pQK K

=(Esa JQ (s;@ TQx 1(s;@)j)+ CKTQk 1 Qxki

(b)
(Esa sUpjEso pg, (- maxQx 1(sha))s (- maxQ (sha)+)i)

p_

+ CKTQk 1 QkKki;
) ; 0 0 Ny Pe
(Esa JEso pg, (MaxQ (s%a) max Q 1(s%a%)))+ CKTQk 1 Qky

(d) _ P
(Esa Es pp, maxjQ (s%a) Qc 1(s%a)))+ CkTQx 1 Quky

(e) p_—
kQ Qk 1Ky o+ CKTQk 1 QkKi

kQ Qk 1Ky o+ kaTgK Q1 Qkky + P CkTQk 1 Tg ,Qx 1k ;
(23)

where(a) follows by the concentratability assumption (Assumption() from Bellman equation,
operatofT, and the facisup, p(x) sup, q(x)j sup jp(X) q(x)j, (c) from the fact(x).
W+] (x y)«jforanyx;y 2 R, (d) follows by Jensen's inequality and by the fagssip, p(x)
sup, q(x)j suppjp(x) g(x)jand(x)+ | xjforanyx;y 2 R, and(e) by de ning the distribution

%as As%a) =, (sia)P2y(sY1fal=argmax,jQ (s%b) Qk 1(s%b)jg, and(f) using
the factthak ki. k K 2. .

Now, by recursion until iteration 0, we get

()

p_K1
kQ Qk Ka; K supkQ Qoky; + C 'KTQk 1t Tge o (Qk 1 tky;
t=0
p_%X1
+ C KTge + (Qk 1t Qk tke
t=0

(a) K p7*§(1t
+ C KTQk 1t Tg , Qr 1 tky

t=0
p_X 1t
+ C KTge + (Qk 1t Qk tke
t=0
p_ p_
(b) K
+ SupkTf Ty fky + c supkTy f 1, k.
1 f2F 1 f2F
. _

+ SupkTf Ty fky + c supsupkTyf ks : (24)
1 foF 1 f2F g2G

where(a) follows sincejQ (s;a)] 1=(1);Qo(s;a) =0, and(b) follows sincely is the dual

variable function from the algorithm for the state-action value l‘uncfti(;ﬂrmdi’og as the least squares
solution from the algorithm for the state-action value funcficaind dual variable functiog pair.

22

The proof is now complete combining (22) and (24) with Lemma 6 and Lemma 7. O

D Related Works

Here we provide a more detailed description of the related work to complement what we listed in the
introduction (Section 1).

Ofine RL: The problem of learning the optimal policy only using an of ine dataset is rst addressed
under the generative model assumption (Singh and Yee, 1994; Azar et al., 2013; Haskell et al., 2016;
Sidford et al., 2018; Agarwal et al., 2020; Li et al., 2020; Kalathil et al., 2021). This assumption
requires generating the same uniform number of next-state samples for each and every state-action
pairs. To account for large state spaces, there are number of works (Antos et al., 2008; Bertsekas,
2011; Lange et al., 2012; Chen and Jiang, 2019; Xie and Jiang, 2020; Levine et al., 2020; Xie et al.,
2021) that utilize function approximation under similar assumption, concentratability assumption
(Chen and Jiang, 2019) in which the data distributiasuf ciently covers the discounted state-action
occupancy. There is rich literature (Munos and Szepesvari, 2008; Farahmand et al., 2010; Lazaric
etal., 2012; Chen and Jiang, 2019; Liu et al., 2020; Xie et al., 2021) in the conquest of identifying
and improving these necessary and suf cient assumptions for of ine RL that use variations of Fitted
Q-lteration (FQI) algorithm (Gordon, 1995; Ernst et al., 2005). There is also rich literature (Fujimoto

et al., 2019; Kumar et al., 2019, 2020; Yu et al., 2020; Zhang and Jiang, 2021) that develop of ine
deep RL algorithms focusing on the algorithmic and empirical aspects and propose multitude heuristic
approaches to advance the eld. All these results assume that the of ine data is generated according
to a single model and the goal is to nd the optimal policy for the MDP with the same model. In
particular, none of these works consider tiféne robust RL problemwhere the of ine data is
generated according to a (training) model which can be different from the one in testing, and the goal
is to learn a policy that is robust w.r.t. an uncertainty set.

Robust RL: To address the parameter uncertainty problem, lyengar (2005) and Nilim and El Ghaoui
(2005) introduced the RMDP framework. lyengar (2005) showed that the optimal robust value
function and policy can be computed using the robust counterparts of the standard value iteration and
policy iteration algorithms. To tackle the parameter uncertainty problem, other works considered
distributionally robust setting (Xu and Mannor, 2010), modi ed policy iteration (Kaufman and
Schaefer, 2013), and more general uncertainty set (Wiesemann et al., 2013). These initial works
mainly focused on the planning problem (known transition probability dynamics) in the tabular
setting. Tamar et al. (2014) proposed linear function approximation method to solve large RMDPs.
Though this work suggests a sampling based approach, a general model-free learning algorithm and
analysis was not included. Roy et al. (2017) proposed the robust versions of the classical model-free
reinforcement learning algorithms, such as Q-learning, SARSA, and TD-learning in the tabular setting.
They also proposed function approximation based algorithms for the policy evaluation. However,
this work does not have a policy iteration algorithm with provable guarantees for learning the
optimal robust policy. Derman et al. (2018) introduced soft-robust actor-critic algorithms using neural
networks, but does not provide any global convergence guarantees for the learned policy. Tessler et al.
(2019) proposed a min-max game framework to address the robust learning problem focusing on the
tabular setting. Lim and Autef (2019) proposed a kernel-based RL algorithm for nding the robust
value function in a batch learning setting. Mankowitz et al. (2020) employed an entropy-regularized
policy optimization algorithm for continuous control using neural network, but does not provide any
provable guarantees for the learned policy. Panaganti and Kalathil (2021) proposed least-squares
policy iteration method to handle large state-action space in robust RL, but only provide asymptotic
policy evaluation convergence guarantees whereas Panaganti and Kalathil (2021) provide nite time
convergence for the policy iteration to optimal robust value.

Other robust RL related works: Robust control is a well-studied area in the classical control
theory (Zhou et al., 1996; Dullerud and Paganini, 2013). Recently, there are some interesting works
that address the robust RL problem using this framework, especially focusing on the linear quadratic
regulator setting (Zhang et al., 2020b). Risk sensitive RL algorithms (Borkar, 2002; Prashanth and
Ghavamzadeh, 2016; Fei et al., 2021) and adversarial RL algorithms (Pinto et al., 2017; Zhang et al.,
2021; Huang et al., 2022) also address the robustness problem implicitly under different frameworks
which are independent from RMDPs. (Zhang et al., 2022) addresses the proldemupftion-robust

of ine RL problem, where an adversary is allowed to change a fraction of the samples of an of ine
RL dataset and the goal is to nd the optimal policy for the nominal linear MDP model (according to

23

which the of ine data is generated). Our framework and approach of robust MDP is signi cantly
different from these line of works.

This work: The works that are closest to ours are by Zhou et al. (2021); Yang et al. (2021); Panaganti
and Kalathil (2022) that address the robust RL problem in a tabular setting under the generative
model assumption. Due to the generative model assumption, the of ine data has the same uniform
number of samples corresponding to each and every state-action pair, and tabular setting allows the
estimation of the uncertainty set followed by solving the planning problem. Our work is signi cantly
different from these in the following way(i) we consider a robust RL problem with arbitrary large
state space, instead of the small tabular settiinwe consider a true of ine RL setting where the
state-action pairs are sampled according to an arbitrary distribution, instead of using the generative
model assumptior(jii) we focus on a function approximation approach where the goal is to directly
learn optimal robust value/policy using function approximation techniques, instead of solving the
tabular planning problem with the estimated model.the best of our knowledge, this is the rst
work that addresses the of ine robust RL problem with arbitrary large state space using function
approximation, with provable guarantees on the performance of the learned policy.

E Experiment Details

We provide more detailed and practical version of our RFQI algorithm (Algorithm 1) in this section.
We also provide more experimental results evaluateGantpole Hopper, andHalf-CheetalOpenAl
Gym Mujoco (Brockman et al., 2016) environments.

We provide our code igithub webpagehttps://github.com/zaiyan-x/RFQI containing in-
structions to reproduce all results in this paper. We implemented our RFQI algorithm based on the
architecture of Batch Constrained deep Q-learning (BCQ) algorithm (Fujimoto et al., 2646)
Pessimistic Q-learning (PQL) algorithm (Liu et al., 2020)We note that PQL algorithm (with

b= 0 Itration thresholding (Liu et al., 2020)) and BCQ algorithm are the practical versions of FQI
algorithm with neural network architecture.

E.1 RFQI Practical Algorithm

We provide the practical version of our RFQI algorithm in Algorithm 2 and highlight the difference
with BCQ and PQL algorithms in blue (steps 8 and 9).

RFQI algorithm implementation details: The Variational Auto-Encoder (VAER? (Kingma and
Welling, 2013) is de ned by two networks, an encodgr, (s; a) and decodeb, , (s; z), where

I = fl4;! 0. The encoder outputs mean and standard deviation,) = E, , (s; a), of a normal
distribution. A latent vector is sampled from the standard normal distribution and for a state

the decoder maps them to an ac{dn, : (s;z) 7! & Then the evidence lower boungl(BO) of

VAE is given byELBO (B;G) = g(a &2+ Dk (N(;);N(0;1)); whereN is the normal
distribution with mean and standard deviation parameters. We refer to (Fujimoto et al., 2019) for
more details on VAE. We also use the default VAE architecture from BCQ algorithm (Fujimoto et al.,
2019) and PQL algorithm (Liu et al., 2020) in our RFQI algorithm.

We now focus on the additions described in blue (steps 8 and 9) in Algorithm 2. For all the other
networks we use default architecture from BCQ algorithm (Fujimoto et al., 2019) and PQL algorithm
(Liu et al., 2020) in our RFQI algorithm.

(1) In each iteratiork, we solve the dual variable functian optimization problem (step 4 in
Algorithm 1, step 8 in Algorithm 2) implemented by ADAM (Kingma and Ba, 2014) on the minibatch

B with the learning raté; mentioned in Table 1.

(2) Our state-action value target function corresponds to the robust state-action value target function
described in(10). This is re ected in step 9 of Algorithm 2. The state-action value func@on
optimization problem (step 5 in Algorithm 1, step 9 in Algorithm 2) is implemented by ADAM
(Kingma and Ba, 2014) on the minibatBhwith the learning raté, mentioned in Table 1.

2pvailable athttps://github.com/sfujim/BCQ
3pavailable athttps://github.com/yaoliucs/PQL

24

Algorithm 2 RFQI Practical Algorithm

1: Input: Of ine datasetD, radius of robustness maximum perturbation , target update rate,
mini-batch sizeN , maximum number of iteratiort§ , number of actions.

2: Initialize: Two state-action neural network® , andQ ,, one dual neural networs ,

policy (perturbation) model:: 2 [;1) ; and action VAEGE, with random parameters,

2,",!, and target network® ¢;Q g, - o with 9 19 5t 0

fork=1; ;K do
Sample a minibatcB with N samples fronD.
Train! argmin, ELBO (B;G?): Sampleu actionsa? from G? (s9 for eachs®.
Perturbu actionsad = a’+ . (s% a).
Compute next-state value target for eafin B

Vi =max (0:75 minfQ ¢;Q ¢g+0:25 maxfQ ¢;Q gg):
g

Noahw

P
3 argmin [maxfg (s;a) W(s9);0g (1)g(s;a)l:
9: Compute next-state Q target for egsha;r; s% pair inB:

Qu(s;a)=r maxfg,(s;a) Vi(s);0g+ (1)g.(s;a):

©

10: arg min P (Qi(s;a) Q (s;a)?:

11: Sampleu actiosa; from Gf (s) for eachs.

12: " argmax maxy Q ,(s;a + (S;a)).

13: Update target network®=(1) %+ ;' O=(@) %+ ',
14: end for

15: Output policy: Given s, sampleu actions g from G2(s). Select actiona =
argmax, Q ,(s;a + - (S;&)).

Environment | Discount Learning rates Q Neural nets | Dual Neural nets
[11;12] 1= 2=[hg;hy] 3 =[hg; hy]
CartPole 0:99 [10 3;10 3] [400, 300] [64; 64]
Hopper 0:99 [10 3;8 10 4 [400,300] [64; 64]
[3 10 %6 10 4
Half-Cheetah| 0:99 [10 3;8 10 4] [40G, 300] [64; 64]
[3 10 %6 10 4

Table 1: Details of hyper-parameters in FQI and RFQI algorithms experiments.

Hyper-parameters details We now give the description of hyper-parameters used in our codebase
in Table 1. We use same hyper-parameters across different algorithms. Across all learning algorithms

we use = 0:005 for the target network updaté& = 5 10° for the maximum iterations,
jDj = 10° for the of ine datasetjBj = 1000 for the minibatch size. We used grid-search fon
f0:2;0:3; ;0:6g9. We also picked best of the two sets of learning rates mentioned in Table 1. For

all the other hyper-parameters we use default values from BCQ algorithm (Fujimoto et al., 2019) and
PQL algorithm (Liu et al., 2020) in our RFQI algorithm that can be found in our code.

Of ine datasets: Now we discuss the of ine dataset used in the our training of FQI and RFQI
algorithms. For the fair comparison in every plot, we train both FQI and RFQI algorithms on same
of ine datasets.

Cartpole dataseD.: We rst train proximal policy optimization (PPO) (Schulman et al., 2017)
algorithm, under default RL baseline zoo (Raf n, 2020) parameters. We then generate the Cartpole
dataseD. with 10° samples using ah-greedy { = 0:3) version of this PPO trained policy. We

note that this of ine dataset contains non-expert behavior meeting the richness of the data-generating
distribution assumption in practice.

Mixed dataseD,: For the MuJoCo environmentsiopper and Half-Cheetah we increase the
richness of the dataset since these are high dimensional problems. We rst train soft actor-critic (SAC)
(Haarnoja et al., 2018) algorithm, under default RL baseline zoo (Raf n, 2020) parameters, with replay

25

buffer updated by a xed-greedy { = 0:1) policy with the model parametexcctuator_ctrlrange
setto[0:85;0:85]. We then generate the mixed dataBgtwith 10° samples from thi§-greedy

(" = 0:3) SAC trained policy. We note that such a dataset generation gives more diverse set of
observations than the procesdnf generation for fair comparison between FQI and RFQI algorithms.

D4RL dataseDy: We consider théopper-mediunandhalfcheetah-mediurof ine datasets in (Fu

et al., 2020) which are benchmark datasets in of ine RL literature (Fu et al., 2020; Levine et al., 2020;
Liu et al., 2020). These “medium’ datasets are generated by rst training a policy online using Soft
Actor-Critic (Haarnoja et al., 2018), early-stopping the training, and colledifigsamples from this
partially-trained policy. We refer to (Fu et al., 2020) for more details.

We end this section by mentioning the software and hardware con gurations used. The training
and evaluation is done using three computers with the following con guration. Operating system
is Ubuntu 18.04 and Lambda Stack; main softwares are PyTorch, Caffe, CUDA, cuDNN, Numpy,
Matplotlib; processor is AMD Threadripper 3960X (24 Cores, 3.80 GHz); GPUs are 2x RTX 2080
Ti; memory is 128GB RAM; Operating System Drive is 1 TB SSD (NVMe); and Data Drive is 4TB
HDD.

E.2 More Experimental Results

Figure 4:Cartpole simulation results on of ine datasBt. Average cumulative reward 20 episodes
versus different model parameter perturbations mentioned in the respective titles.

Figure 5:Hopper simulation results on of ine datasBt,,. Average cumulative reward 20 episodes
versus different model parameter perturbations mentioned in the respective titles.

Here we provide more experimental results and details in addition to Fig. 1-3 in Section 5.

For theCartpolg we compare RFQI algorithm against the non-robust RL algorithms FQI and DON,
and the soft-robust RL algorithm proposed in Derman et al. (2018). We trained FQI and RFQI
algorithms on the datasBEx. (a detailed description of data set is provided in Appendix E.1). We
test the robustness of the algorithms by changing the paranfietees magto model external force
disturbance)length(to model change in pole length), and also by introducing action perturbations
(to model actuator noise). The nominal valudate_magandlengthparameters ar#0 and0:5
respectively. Fig. 4 shows superior robust performance of RFQI compared to the non-robust FQI and
DOQON. For example, consider the action perturbation performance plot in Fig. 4 where RFQI algorithm
improves by75% compared to FQI algorithm in average cumulative reward f40% chance of

action perturbation. We note that we found 0:5 is the best from grid-search for RFQI algorithm.

The RFQI performance is similar to that of soft-robust DQN. We note that soft-robust DQN algorithm
is an online deep RL algorithm (and not an of ine RL algorithm) and has no provable performance
guarantee. Moreover, soft-robust DQN algorithm requires generating online data according a number
of models in the uncertainty set, whereas RFQI only requires of ine data according to a single
nominal training model.

26

Before we proceed to describe our results on the OpenAl Gym MuJoCo (Brockman et al., 2016) envi-
ronmentHopperandHalf-Cheetahwe rst mention their model parameters and its corresponding
nominal values in Table 2. The model parameter names are self-explanatory, for example, stiffness
control on the leg joint is théeg_joint_stiffnessrange of actuator values is thetuator_ctrlrange

The front and back parameters in Half-Cheetah are for the front and back legs. We refer to the
perturbed environments provided in our code andhibygper.xml, halfcheetah.xnis in the environ-

ment assets of OpenAl Gym MuJoCo (Brockman et al., 2016) for more information regarding these
model parameters.

Environment Model parameter Nominal range/valug

Hopper actuator_ctrlrange [L1]
foot_joint_stiffness
leg_joint_stiffness
thigh_joint_stiffness
joint_damping
joint_frictionloss
joint_frictionloss
Half-Cheetah front actuator_ctrlrange [
backactuator_ctrlrange [
frontjoint_stiffness= (thigh_joint_stiffness
shin_joint_stiffnesgoot_joint_stiffness (180; 126G, 60)
backjoint_stiffness= (thigh_joint_stiffness
shin_joint_stiffnesgoot_joint_stiffness (240, 180,120)
front joint_damping= (thigh_joint_damping
shin_joint_dampingfoot_joint_dampiny (4:5; 3:0; 1.5)
backjoint_damping= (thigh_joint_damping
shin_joint_dampingfoot_joint_dampiny (6:0; 4:5; 3:0)

[eolleol NoloNe)

gl g

1]
1]

Table 2: Details of model parameters féopperandHalf-Cheetatenvironments.

For theHopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and TD3
(Fujimoto et al., 2018). We trained FQI and RFQI algorithms on the mixed dddasé detailed
description of dataset provided in Appendix E.1). We note that we do not compare with soft robust
RL algorithms because of its poor performance on MuJoCo environments in the rest of our gures.
We test the robustness of the algorithm by introducing action perturbations, and by changing the
model parameteractuator_ctrlrangefoot_joint_stiffnessandleg_joint_stiffnessFig. 3 and Fig. 5
shows RFQI algorithm is consistently robust compared to the non-robust algorithms. We note that
we found = 0:5is the best from grid-search for RFQI algorithm. The average episodic reward of
RFQI remains almost the same initially, and later decays much less and gracefully when compared
to FQI and TD3 algorithms. For example, in plot 3 in Fig. 5, atfiwt_joint_stiffnesparameter
valuel5, the episodic reward of FQI is only arouid00whereas RFQI achieves an episodic reward

of 320Q Similar robust performance of RFQI can be seen in other plots as well. We also note that
TD3 (Fujimoto et al., 2019) is a powerful off-policy policy gradient algorithm that relies on [&@§e
replay buffer of online data collection, unsurprisingly performs well initially with less perturbation
near the nominal models.

In order to verify the effectiveness and consistency of our algorithm across different of ine dataset,
we repeat the above experiments, on additional OpenAl Gym MuJoCo (Brockman et al., 2016)
environmentalf-Cheetah using D4RL datasddy (a detailed description of dataset provided in
Appendix E.1) which are benchmark in of ine RL literature (Fu et al., 2020; Levine et al., 2020;
Liu et al., 2020) than our mixed datag®t,. Since D4RL dataset is a benchmark dataset for of ine

RL algorithms, here we focus only on the comparison between the two of ine RL algorithms we
consider, our RFQI algorithm and its non-robust counterpart FQI algorithm. We now showcase the
results orHopperandHalf-Cheetalfor this setting.

For theHopper, we test the robustness by changing the model parangtarity, joint_damping and
joint_frictionloss Fig. 6 shows RFQI algorithm is consistently robust compared to the non-robust
FQI algorithm. We note that we found= 0:5 is the best from grid-search for RFQI algorithm.

The average episodic reward of RFQI remains almost the same initially, and later decays much less
and gracefully when compared to FQI algorithm. For example, in plot 2 in Fig. 6, fa3Qbie

27

Perturbed "gravity"

"joint_damping" perturbation

"joint_frictionloss" perturbation

g8 8

2000

8

8

8

—— RFQI
- FQI

3500

3000

2500

2000

1500

g

—— RFQI
-+ FQI

3000

2500

2000

1500

1000

—— REQI
QI

y

Average cumulative reward in 20 games

-50 -40 -30 -20

Percentage change in 'gravity"

-10

Average cumulative reward in 20 games

0 0 220 B 4 s 6 70
Percentage change in ‘joint_damping’

Average cumulative reward in 20 games

00 05 10 15 20 25 30 35 40
"joint_frictionloss" values (default=0.0)

Figure 6: Hopper evaluation simulation results on offline dataset D,. Average cumulative reward in
20 episodes versus different model parameter perturbations mentioned in the respective titles.

Back "actuator_ctrlrange" perturbation

Front "joint_stiffness" perturbation Back "joint_stiffness" perturbation

@ 5500 o 5400 —— RFQI " —— RFQI
g M g) g QI
g g 5200 & 5000
g s S S
T T s000 T
= B B 4000
g 4500 2
g £ 4800 g
® 8]
o o @
£ 4000 £ w0 2 3000

g
H EW 3
§ as00 Eha £
H — rral s 2 2000

4

g -+ FQ g w00 g
£ 3000 g g
2 < 2

10 20 a

0 0 40 EY 0
Percentage change in back “joint_stiffness"

20 30 40 50 60 10

Pe‘;centaéue change in front "joint_stiffness" Bu04und ounshack ‘;‘;ctuato‘jr7(contfoiler) r;rg\ge
Figure 7: Half-Cheetah evaluation simulation results on offline dataset D,. Average cumulative
reward in 20 episodes versus different model parameter perturbations mentioned in the respective

titles.

change in joint_damping parameter, the episodic reward of FQI is only around 1400 whereas RFQI
achieves an episodic reward of 3000 which is almost the same as for unperturbed model. Similar
robust performance of RFQI can be seen in other plots as well.

For the Half-Cheetah, we test the robustness by changing the model parameters joint_stiffness of front
and back joints, and actuator_ctrlrange of back joint. Fig. 7 shows RFQI algorithm is consistently
robust compared to the non-robust FQI algorithm. We note that we found = 0:3 is the best from
grid-search for RFQI algorithm. For example, in plot 1 in Fig. 7, RFQI episodic reward stays at
around 5500 whereas FQI drops faster to 4300 for more than 50% change in the nominal value.
Similar robust performance of RFQI can be seen in other plots as well.

“joint_frictionloss”

“actuator_ctrirange” “joint_damping"
— ol
-~ For

“thigh_joint_stiffness"

—
—

S=C

I

o
Y

\
—r

a
g

g
g

g
g

g

Average cumulative rewart
g

H

35 4o

52 s 100 kS o0 05 10 15 20 25 30
“joint_frictionloss” values (default=0.0)

G0 75 so 75 100 ©s mo us 20 % om0 0% 0% 0% 0 o e e o
“thigh_joint_stiffness" values (default=0.0) Bound on actuator (controller) range Percentage change in ‘joint_damping’

Figure 9: Similar performance of RFQI and FQI
in Half-Cheetah on dataset Dy w.r.t. parameters
Jjoint_damping and joint_frictionloss.

Figure 8: Similar performance of RFQI and
FQI in Hopper on dataset Dy w.r.t. parameters
actuator_ctrirange and thigh_joint_stiffness.

As part of discussing the limitations of our work, we also provide two instances where RFQI and
FQI algorithm behave similarly. RFQI and FQI algorithms trained on the D4RL dataset D4 per-
form similarly under the perturbations of the Hopper model parameters actuator_ctrlrange and
thigh_joint_stiffness as shown in Fig. 8. We also make similar observations under the perturba-
tions of the Half-Cheetah model parameters joint_damping (both front joint_damping and back
Jjoint_damping) and joint_frictionloss as shown in Fig. 9. We observed that the robustness perfor-
mance can depend on the offline data available, which was also observed for non-robust offline RL
algorithms (Liu et al., 2020; Fu et al., 2020; Levine et al., 2020). Also, perturbing some parameters
may make the problem really hard especially if the data is not representative with respect to that
parameter. We believe that this is the reason for the similar performance of RFQI and FQI w.r.t. some
parameters. We believe that this opens up an exciting area of research on developing online policy
gradient algorithms for robust RL, which may be able to overcome the restriction and challenges due
to offline data. We plan to pursue this goal in our future work.

28

	Introduction
	Preliminaries
	Offline Robust Reinforcement Learning
	Robust Fitted Q-Iteration: Algorithm and Main Results
	Dual Reformulation of Robust Bellman Operator
	Approximately Solving the Dual Optimization using Empirical Risk Minimization
	Robust Fitted Q-iteration
	Proof Sketch

	Experiments
	Conclusion
	Acknowledgements
	Useful Technical Results
	Proof of the Proposition 1
	Proof of Theorem 1
	Related Works
	Experiment Details
	RFQI Practical Algorithm
	More Experimental Results

