
1 Projection of a Transition Landmark Constraint

Consider the following set of constraints for a set of cuts C:∑
t∈C

Yt ≥ 1 for all C ∈ C (1)∑
t∈T

label(t)=o

Yt ≤ Yo for all o ∈ O. (2)

Yt ≥ 0 for all t ∈ T (3)

Yo ≥ 0 for all o ∈ O. (4)

We want to show that these constraints, projected to the operator-counting variables Yo are
equivalent to: ∑

o∈OS

Yo ≥ |S| for all S ⊆ C (5)

Yo ≥ 0 for all o ∈ O (6)

1.1 General Projection

In general, any constraint implied (1)–(4) can be written as a conic combination of those con-
straints. If we introduce multipliers αC , αo, αt, αō ≥ 0, the general form of this combination
is ∑

C∈C

∑
t∈C

αCYt +
∑
o∈O

(αoYo −
∑
t∈T

label(t)=o

αoYt) +
∑
t∈T

αtYt +
∑
o∈O

αōYo ≥
∑
C∈C

αC

Choosing αō > 0 and all other multipliers as 0 yields constraints (6). As soon as any other
multiplier is positive, choosing αō > 0 only weakens the constraint compared to choosing αō = 0.
So, we can rewrite the constraint above as:∑

C∈C

∑
t∈C

αCYt +
∑
o∈O

(αoYo −
∑
t∈T

label(t)=o

αoYt) +
∑
t∈T

αtYt ≥
∑
C∈C

αC

Grouping the sums by operator, yields

∑
o∈O

∑
C∈C

∑
t∈C

label(t)=o

αCYt + αoYo −
∑
t∈T

label(t)=o

αoYt +
∑
t∈T

label(t)=o

αtYt+

 ≥
∑
C∈C

αC

This can be rewritten to

∑
o∈O

αoYo +
∑
t∈T

label(t)=o

(
∑
C∈C
t∈C

αC + αt − αo)Yt

 ≥
∑
C∈C

αC

To project out Yt, we have to choose the multipliers in a way that the coefficient of Yt is 0, i.e.,
any choice of the multipliers that has coefficients of all Yt at 0 corresponds to an implied constraint,
and together all such constraints are equivalent to the projection. That is, the projection of (1)–(4)

1

to variables Yo is equivalent to the following constraints:∑
o∈O

αoYo ≥
∑
C∈C

αC (7)∑
C∈C
t∈C

αC + αt = αlabel(t) for all t ∈ T (8)

αC , αt, αo ≥ 0 (9)

This can be simplified further to∑
o∈O

αoYo ≥
∑
C∈C

αC (10)

max
t∈T

label(t)=o

∑
C∈C
t∈C

αC ≤ αo for all o ∈ O (11)

αC , αo ≥ 0 (12)

For any choice of multipliers, constraint (10) is dominated by the constraint for the same choice
of αC but choosing αo such that constraint (11) is tight. Thus, the constraints are equivalent to∑

o∈O
(max

t∈T
label(t)=o

∑
C∈C
t∈C

αC)Yo ≥
∑
C∈C

αC (13)

αC ≥ 0 (14)

1.2 Special Case of Disjoint Cuts

For disjoint cuts, a transition t can be at most in one C ∈ C, so the constraints further simplify to∑
o∈O

(max
C∈C

t∈C,label(t)=o

αC)Yo ≥
∑
C∈C

αC (15)

αC ≥ 0 (16)

Consider a set of multipliers α such that there are at least two different non-zero values, where
αC1

and αC2
are the two largest values, i.e., 0 < αC1

= max({αC | C ∈ C} \ {αC2
}) < αC2

=
max{αC | C ∈ C}. Now define multipliers

α1
C =

{
αC − αC1

if αC > αC1
,

0 otherwise
and α2

C =

{
αC1 if αC > αC1 ,

αC otherwise

Note that α1 + α2 = α and that

(max
C∈C

t∈C,label(t)=o

α1
C) + (max

C∈C
t∈C,label(t)=o

α2
C) = (max

C∈C
t∈C,label(t)=o

αC).

This means that constraint (15) for α exactly matches the sum of constraint (15) for α1 and
α2. Applying this argument inductively shows that we do not have to consider multipliers with
more than one non-zero value. If all non-zero multipliers are the same, we can divide the whole
constraint by that value to get an equivalent constraint that only uses binary values for αC . The
constraints are then equivalent to∑

o∈O
(max

C∈C
t∈C,label(t)=o

αC)Yo ≥
∑
C∈C

αC

αC ∈ {0, 1}

2

The possible choices of multipliers then correspond to the subsets S ⊆ C with αC = 1 iff C ∈ S.
The constraint is then equivalent to∑

o∈O
(max

C∈C
t∈C,label(t)=o

[C ∈ S])Yo ≥
∑
C∈C

[C ∈ S] for all S ⊆ C

or ∑
o∈OS

Yo ≥ |S| for all S ⊆ C.

1.3 Further Simplification of the Model

Say two subsets S1, S2 ⊆ C are connected if there is a t1 in some C1 ∈ S1 and t2 in some C2 ∈ S2

such that label(t1) = label(t2), i.e. intuitively, there is an operator mentioned in both sets. We
now show that we do not have to consider subsets S ⊆ C that can be split into two disconnected
sets S1 and S2. In that case, OS1

and OS2
are disjoint, so the constraint for S matches the sum

of the constraints for S1 and S2.

2 Total Unimodularity

Total unimodularity is an important property in linear programming.

Definition 1 (Totally Unimodular). A matrix is totally unimodular if the determinants of all its
square submatrices are either 0, −1, or 1.

The important property for us is that linear programs with integer bounds and totally uni-
modular coefficient matrices always have integer valued optimal solutions

Theorem 1 ([Conforti et al., 2014]). Let A be an n ×m totally unimodular matrix and b ∈ Zm

an integer-valued vector. Then the polyhedron P = {x | Ax ≥ b, x ≥ 0} is integral, meaning that
all basic solutions of P are integer.

One way to show that a matrix is totally unimodular is the following result.

Proposition 1 ([Conforti et al., 2014]). A matrix A with entries from {−1, 0, 1} with at most
two non-zero entries in each column is totally unimodular iff its rows can be colored red or blue,
such that the sum of the red rows minus the sum of the blue rows is a vector with entries from
{−1, 0, 1}.

Consider again the case of disjoint cuts in constraints (1)–(4):∑
t∈C

Yt ≥ 1 for all C ∈ C (1)∑
t∈T

label(t)=o

Yt ≤ Yo for all o ∈ O. (2)

Yt ≥ 0 for all t ∈ T (3)

Yo ≥ 0 for all o ∈ O. (4)

It is easy to see that all coefficients are from {−1, 0, 1}. If cuts are disjoint, variable Yt

only occurs in at most one constraint of type (1) with coefficient 1 and in the constraint (2) for
o = label(t) with coefficient −1. Variable Yo only occurs with coefficient 1 in one constraint of type
(2). Adding all rows (i.e., coloring all lines red) results in a vector with entries {−1, 0, 1} which
shows total unimodularity with Proposition 1.

3

If we treat Yo as constants, the resulting matrix is still totally unimodular for the same reason.
With Theorem 1 this shows that any vector of integer values Yo, that can be extended to a solution
of constraints (1)–(4), can also be extended with integer values for all Yt. Since we know that
every solution to our projection can be extended to a (real-valued) solution to (1)–(4), we can
conclude that integer solutions to the projection can be extended to integer solutions of (1)–(4).
That is, our projection perfectly captures the information contained in constraints (1)–(4), even
when restricting all variables to integers.

References

[Conforti et al., 2014] Conforti, M., Cornuéjols, G., and Zambelli, G. (2014). Integer Program-
ming. Springer.

4

