
A Proofs

A.1 Nonconvex stochastic optimization

We give proofs of the theorems in section 3.

From Assumption 2, for the mini-batch gradient fSk
(xk) = 1

nk

∑
i∈Sk

fξi(xk), where nk = |Sk|,
we have

E[∇fSk
(x)|xk] = ∇f(xk), (26a)

E[‖∇fSk
(xk)−∇f(xk)‖22|xk] ≤ σ2

nk
. (26b)

Note that the update of SAM (9) can be written as xk+1 = xk + Hkrk, where rk = −∇fSk
(xk),

H0 = β0I and for k ≥ 1,

Hk = βkI − (αkXk + αkβkRk)
(
RT
kRk + δkX

T
k Xk

)−1
RT
k . (27)

Theorems 1-5 state the same convergence and complexity results as the ones proved in [60]. To prove
these theorems, the critical points are (i) the positive definiteness of the approximate Hessian Hk and
(ii) an adequate suppression of the noise in the gradient estimation.

We first give some lemmas.
Lemma 1. Suppose that {xk} is generated by SAM. If αk ≥ 0, βk > 0, δk > 0, then for any vk ∈ Rd,
we have

‖Hkvk‖22 ≤ 2
(
β2
k

(
1 + 2α2

k − 2αk
)

+ α2
kδ
−1
k

)
‖vk‖22. (28)

Proof. The result clearly holds when k = 0 as H0 = β0I . For k ≥ 1,

Hkvk = βkvk − (αkXk + αkβkRk)Γk, (29)

where
Γk = min

Γ
‖vk −RkΓ‖22 + δk‖XkΓ‖22. (30)

Taking Γ = 0, we have
‖vk −RkΓk‖22 + δk‖XkΓk‖22 ≤ ‖vk‖22. (31)

Therefore,

‖Hkvk‖22
= ‖βkvk − (αkXk + αkβkRk)Γk‖22
= ‖βk (vk − αkRkΓk)− αkXkΓk‖22
= ‖βk(1− αk)vk + βkαk(vk −RkΓk)− αkδ

− 1
2

k δ
1
2

kXkΓk‖22
≤
(
β2
k(1− αk)2 + β2

kα
2
k + α2

kδ
−1
k

)
·
(
‖vk‖22 + ‖vk −RkΓk‖22 + δk‖XkΓk‖22

)
≤
(
β2
k

(
1 + 2α2

k − 2αk
)

+ α2
kδ
−1
k

) (
‖vk‖22 + ‖vk‖22

)
= 2

(
β2
k

(
1 + 2α2

k − 2αk
)

+ α2
kδ
−1
k

)
‖vk‖22. (32)

In the above, the first inequality uses the inequality

‖
n∑
i=1

aixi‖22 ≤

(
n∑
i=1

|ai|‖xi‖2

)2

≤

(
n∑
i=1

a2
i

)(
n∑
i=1

‖xi‖22

)
, (33)

where ai ∈ R, xi ∈ Rd. The second inequality is based on inequality (31).

Lemma 2. Suppose that Assumption 2 holds for {xk} generated by SAM. In addition, if βk >
0, δk > 0, and αk ≥ 0 and satisfies (14), then

ESk
[‖Hkrk‖22] ≤ 2

(
β2
k

(
1 + 2α2

k − 2αk
)

+
α2
k

δk

)
·
(
‖∇f(xk)‖22 +

σ2

nk

)
, (34a)

∇f(xk)TESk
[Hkrk] ≤ −1

2
βkµ‖∇f(xk)‖22 +

1

2

α2
k(δ
− 1

2

k + βk)2

βkµ
· σ

2

nk
, (34b)
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where µ > 0 is the constant introduced in (13). If further assuming Hk is independent of Sk, a better
upper bound can be obtained:

∇f(xk)TESk
[Hkrk] ≤ −βkµ‖∇f(xk)‖22. (35)

Proof. (i) From Lemma 1, we have

ESk
[‖Hkrk‖22] ≤ 2

(
β2
k

(
1 + 2α2

k − 2αk
)

+
α2
k

δk

)
ESk

[‖rk‖22]. (36)

From Assumption 2, we have

ESk
[‖rk‖22] = ESk

[‖rk − ESk
[rk]‖22] + ‖ESk

[rk]‖22 ≤ ‖∇f(xk)‖22 + σ2/nk. (37)

With (36), (37), we obtain (34a).

(ii) Recalling that H0 = β0I , the result holds for k = 0. Define εk = ∇fSk
(xk) − ∇f(xk) =

−rk − ∇f(xk), then Hkrk = Hk (−εk −∇f(xk)) . Since αk satisfies (14), we can ensure
λmin

(
1
2

(
Hk +HT

k

))
≥ βkµ. Thus

∇f(xk)THk∇f(xk) =
1

2
∇f(xk)T

(
Hk +HT

k

)
∇f(xk) ≥ βkµ‖∇f(xk)‖22,

which implies
ESk

[∇f(xk)THk∇f(xk)] ≥ βkµ‖∇f(xk)‖22. (38)

Let Mk = αk (Xk + βkRk)
(
RT
kRk + δkX

T
k Xk

)†
RT
k , then Hk = βkI −Mk. With the assumption

(26a), i.e. ESk
[εk] = 0, we have

ESk
[∇f(xk)THkεk] = ESk

[∇f(xk)T (βkεk −Mkεk)]

= βk∇f(xk)TESk
[εk]− ESk

[∇f(xk)TMkεk] = −ESk
[∇f(xk)TMkεk].

Using the Cauchy-Schwarz inequality with expectations, we obtain

|ESk
[∇f(xk)THkεk]| = |ESk

[∇f(xk)TMkεk]| ≤
√
ESk

[‖∇f(xk)‖22]
√
ESk

[‖Mkεk‖22]

≤ ‖∇f(xk)‖2
√

ESk
[‖Mkεk‖22]. (39)

We now bound ‖Mkεk‖22. For brevity, let Zk = RT
kRk + δkX

T
k Xk, and N1 = XkZ

†
kR

T
k , N2 =

βkRkZ
†
kR

T
k , then

‖Mk‖2 = ‖αk (N1 +N2) ‖2 ≤ αk (‖N1‖2 + ‖N2‖2) . (40)

Clearly, XT
k Xk, R

T
kRk and Zk are symmetric positive semidefinite. Also, we have δkXT

k Xk �
Zk, R

T
kRk � Zk, where the notation “�" denotes the Loewner partial order, i.e., A � B with

A,B ∈ Rm×m means that B −A is positive semidefinite.

First we point out that

Z†k = lim
t→0+

Z
1
2

k

(
Z2
k + tI

)−1
Z

1
2

k , (41)

where t > 0, which can be verified as follows:
Since Zk is symmetric positive semidefinite, we have the eigenvalue decomposition: Zk = U ∧ UT,
where UUT = I, 0 � ∧ = diag{∧1, 0} ∈ Rm×m, and ∧1 is diagonal and nonsingular. Hence

Z
1
2

k

(
Z2
k + tI

)−1
Z

1
2

k = U ∧ 1
2

(
∧2 + tI

)−1 ∧ 1
2 UT = U

(
∧1(∧2

1 + tI)−1 0
0 0

)
UT.

It follows that limt→0+ Z
1
2

k

(
Z2
k + tI

)−1
Z

1
2

k = U ∧† UT, where ∧† = diag{∧−1
1 , 0}. From the

definition of Penrose-Moore inverse, we know Equation (41) holds.

Since δkXT
k Xk � Zk, RT

kRk � Zk, we have

δkZ
1
2

k X
T
k XkZ

1
2

k � Z
2
k � Z2

k + tI, Z
1
2

k R
T
kRkZ

1
2

k � Z
2
k � Z2

k + tI. (42)
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Hence, we have

(Z2
k + tI)−

1
2 δkZ

1
2

k X
T
k XkZ

1
2

k (Z2
k + tI)−

1
2 � I, (Z2

k + tI)−
1
2Z

1
2

k R
T
kRkZ

1
2

k (Z2
k + tI)−

1
2 � I,

which implies

‖(Z2
k + tI)−

1
2Z

1
2

k

(
XT
k Xk

)
Z

1
2

k (Z2
k + tI)−

1
2 ‖2 ≤ δ−1

k ,

‖(Z2
k + tI)−

1
2Z

1
2

k

(
RT
kRk

)
Z

1
2

k (Z2
k + tI)−

1
2 ‖2 ≤ 1.

With Equation (41), we also have

N1 = lim
t→0+

N1(t) := XkZ
1
2

k

(
Z2
k + tI

)−1
Z

1
2

k R
T
k ,

N2 = lim
t→0+

N2(t) := βkRkZ
1
2

k

(
Z2
k + tI

)−1
Z

1
2

k R
T
k .

Therefore,
‖N1(t)‖22 = λmax

(
N1(t)N1(t)T

)
= λmax

(
XkZ

1
2

k

(
Z2
k + tI

)−1
Z

1
2

k R
T
k ·RkZ

1
2

k

(
Z2
k + tI

)−1
Z

1
2

k X
T
k

)
= λmax

(
Z

1
2

k X
T
k XkZ

1
2

k

(
Z2
k + tI

)−1
Z

1
2

k R
T
kRkZ

1
2

k

(
Z2
k + tI

)−1
)

= λmax((Z2
k + tI)−

1
2Z

1
2

k X
T
k XkZ

1
2

k (Z2
k + tI)−

1
2

· (Z2
k + tI)−

1
2Z

1
2

k R
T
kRkZ

1
2

k (Z2
k + tI)−

1
2 )

≤ ‖(Z2
k + tI)−

1
2Z

1
2

k X
T
k XkZ

1
2

k (Z2
k + tI)−

1
2

· (Z2
k + tI)−

1
2Z

1
2

k R
T
kRkZ

1
2

k (Z2
k + tI)−

1
2 )‖2

≤ ‖(Z2
k + tI)−

1
2Z

1
2

k X
T
k XkZ

1
2

k (Z2
k + tI)−

1
2 ‖2

· ‖(Z2
k + tI)−

1
2Z

1
2

k R
T
kRkZ

1
2

k (Z2
k + tI)−

1
2 )‖2 ≤ δ−1

k ,

‖N2(t)‖2 = βkλmax

(
RkZ

1
2

k

(
Z2
k + tI

)−1
Z

1
2

k R
T
k

)
= βkλmax

(
Z

1
2

k R
T
kRkZ

1
2

k

(
Z2
k + tI

)−1
)

= βkλmax

((
Z2
k + tI

)− 1
2 Z

1
2

k R
T
kRkZ

1
2

k

(
Z2
k + tI

)− 1
2

)
≤ βk,

which implies ‖N1‖22 ≤ δ−1
k and ‖N2‖2 ≤ βk from the continuity of singular value (e.g. Theo-

rem 2.6.4 in [23]). With (40), we have

‖Mk‖2 ≤ αk(δ
− 1

2

k + βk). (43)

Then ‖Mkεk‖2 ≤ αk(δ
− 1

2

k + βk)‖εk‖2, which implies

ESk
[‖Mkεk‖22] ≤ α2

k(δ
− 1

2

k + βk)2ESk
[‖εk‖22] ≤ α2

k(δ
− 1

2

k + βk)2 σ
2

nk
, (44)

where the last inequality is due to (26b). Now we can obtain the bound of |ESk
[∇f(xk)THkεk]| as

follows (cf. (39)):
|ESk

[∇f(xk)THkεk]|

≤ ‖∇f(xk)‖2
√
ESk

[‖Mkεk‖22]

≤ αk(δ
− 1

2

k + βk)‖∇f(xk)‖2
√
ESk

[‖εk‖22]

≤ αk(δ
− 1

2

k + βk)
σ
√
nk
‖∇f(xk)‖2

=
√
βkµ‖∇f(xk)‖2 ·

αk(δ
− 1

2

k + βk)√
βkµ

σ
√
nk

≤ 1

2
βkµ‖∇f(xk)‖22 +

1

2

α2
k(δ
− 1

2

k + βk)2

βkµ
· σ

2

nk
. (45)
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With the inequality (38) and (45), we obtain

∇f(xk)TESk
[Hkrk]

= −∇f(xk)TESk
[Hk (εk +∇f(xk))]

= −ESk
[∇f(xk)THk∇f(xk)]− ESk

[∇f(xk)THkεk]

≤ −ESk
[∇f(xk)THk∇f(xk)] + |ESk

[∇f(xk)THkεk]|

≤ −βkµ‖∇f(xk)‖22 +
1

2
βkµ‖∇f(xk)‖22 +

1

2

α2
k(δ
− 1

2

k + βk)2

βkµ
· σ

2

nk

= −1

2
βkµ‖∇f(xk)‖22 +

1

2

α2
k(δ
− 1

2

k + βk)2

βkµ
· σ

2

nk
. (46)

If Hk is independent of Sk, then

ESk
[∇f(xk)THkεk] = ∇f(xk)THkESk

[εk] = 0.

Thus ∇f(xk)TESk
[Hkrk] ≤ −βkµ‖∇f(xk)‖22.

By imposing more restrictions to αk, βk, δk, we can obtain a convenient corollary:

Corollary 1. Suppose that Assumption 2 holds for {xk} generated by SAM. C > 0 is a constant. If

βk > 0, δk ≥ Cβ−2
k , 0 ≤ αk ≤ min{1, β

1
2

k } and satisfies (14) , then

ESk
[‖Hkrk‖22] ≤ 2β2

k

(
1 + C−1

)
·
(
‖∇f(xk)‖22 +

σ2

nk

)
, (47a)

∇f(xk)TESk
[Hkrk] ≤ −1

2
βkµ‖∇f(xk)‖22 + β2

k · µ−1
(
1 + C−1

) σ2

nk
. (47b)

Proof. The first result (47a) is easy to obtain by considering (34a) and noticing that 1+2α2
k−2αk ≤ 1

when αk ∈ [0, 1] and δ−1
k ≤ C−1β2

k. Since αk ≤ β
1
2

k , δk ≥ Cβ−2
k and (1 + C−

1
2 )2 ≤ 2(1 + C−1)

we have

1

2

α2
k(δ
− 1

2

k + βk)2

βkµ
· σ

2

nk
≤ 1

2

βk(C−
1
2 βk + βk)2

βkµ
· σ

2

nk

=
1

2
µ−1(C−

1
2 + 1)2β2

k ·
σ2

nk

≤ β2
kµ
−1(1 + C−1)

σ2

nk
.

Substituting it into (34b), we obtain (47b).

Using Corollary 1 we obtain the descent property of SAM:

Lemma 3. Suppose that Assumptions 1 and 2 hold for {xk} generated by SAM. C > 0 is a constant.

If 0 < βk ≤ µ
4L(1+C−1) , δk ≥ Cβ

−2
k , 0 ≤ αk ≤ min{1, β

1
2

k } and satisfies (14), then

ESk
[f(xk+1)] ≤ f(xk)− 1

4
βkµ‖∇f(xk)‖22 + β2

k

(
(L+ µ−1)(1 + C−1)

) σ2

nk
. (48)

Proof. According to Assumption 1, we have

f(xk+1) ≤ f(xk) +∇f(xk)T(xk+1 − xk) +
L

2
‖xk+1 − xk‖22

= f(xk) +∇f(xk)THkrk +
L

2
‖Hkrk‖22. (49)
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Taking expectation with respect to the mini-batch Sk on both sides of (49) and using Corollary 1 we
obtain

ESk
[f(xk+1)]

≤ f(xk) +∇f(xk)TESk
[Hkrk] +

L

2
ESk
‖Hkrk‖22

≤ f(xk)− 1

2
βkµ‖∇f(xk)‖22 + β2

kµ
−1(1 + C−1)

σ2

nk
+ Lβ2

k(1 + C−1)

(
‖∇f(xk)‖22 +

σ2

nk

)
= f(xk)− βk

(
1

2
µ− βkL(1 + C−1)

)
‖∇f(xk)‖22 + β2

k(L+ µ−1)(1 + C−1)
σ2

nk
. (50)

Then (50) combined with the assumption βk ≤ µ
4L(1+C−1) implies (48).

Following the proofs in [60], we introduce the definition of a supermartingale.
Definition 1. Let {Fk} be an increasing sequence of σ-algebras. If {Xk} is a stochastic process
satisfying (i) E[|Xk|] <∞, (ii) Xk ∈ Fk for all k, and (iii) E[Xk+1|Fk] ≤ Xk for all k, then {Xk}
is called a supermartingale.
Proposition 1 (Supermartingale convergence theorem, see, e.g., Theorem 4.2.12 in [13]). If {Xk} is
a nonnegative supermartingale, then limk→∞Xk → X almost surely and E[X] ≤ E[X0].

Now, we prove our theorems.

Proof of Theorem 1. Define ζk := βkµ
4 ‖∇f(xk)‖22 and L̃ := (L+ µ−1)(1 +C−1), γk := f(xk) +

L̃σ
2

n

∑∞
i=k β

2
i . Let Fk be the σ-algebra measuring ζk, γk, and xk. From (48) we know that for any k,

E[γk+1|Fk] = E[f(xk+1)|Fk] + L̃
σ2

n

∞∑
i=k+1

β2
i

≤ f(xk)− 1

4
βkµ‖∇f(xk)‖22 + L̃

σ2

n

∞∑
i=k

β2
i = γk − ζk, (51)

which implies that E[γk+1−f low|Fk] ≤ γk−f low−ζk. Since ζk ≥ 0, we have 0 ≤ E[γk−f low] ≤
γ0 − f low < +∞. As the diminishing condition (18a) holds, we obtain (20). According to
Definition 1, {γk − f low} is a supermartingale. Therefore, Proposition 1 indicates that there exists
a γ such that limk→∞ γk = γ with probability 1, and E[γ] ≤ E[γ0]. Note that from (51) we have
E[ζk] ≤ E[γk]− E[γk+1]. Thus,

E

[ ∞∑
k=0

ζk

]
≤
∞∑
k=0

(E[γk]− E[γk+1]) < +∞,

which further yields that
∞∑
k=0

ζk =
µ

4

∞∑
k=0

βk‖∇f(xk)‖22 < +∞ with probability 1. (52)

Since
∑∞
k=0 βk = +∞, it follows that (19) holds.

Proof of Theorem 2. For any give ε > 0, according to (19), there exist infinitely many iterates xk
such that ‖∇f(xk)‖2 ≤ ε. Then if (22) does not hold, there must exist two infinite sequences of
indices {si}, {ti} with ti > si, such that for i = 0, 1, . . ., k = si + 1, . . . , ti − 1,

‖∇f(xsi)‖2 ≥ 2ε, ‖∇f(xti)‖2 < ε, ‖∇f(xk)‖2 ≥ ε. (53)

Then from (52) it follows that

+∞ >

∞∑
k=0

βk‖∇f(xk)‖22 ≥
+∞∑
i=0

ti−1∑
k=si

βk‖∇f(xk)‖22 ≥ ε2
+∞∑
i=0

ti−1∑
k=si

βk with probability 1,
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which implies that
ti−1∑
k=si

βk → 0 with probability 1, as i→ +∞. (54)

According to (37) and (32), we have

E[‖xk+1 − xk‖2|xk]

= E[‖Hkrk‖2|xk]

≤
√

2
(
β2
k (1 + 2α2

k − 2αk) + α2
kδ
−1
k

)
E[‖rk‖2|xk]

≤ βk
√

2(1 + C−1)E[‖rk‖2|xk]

≤ βk
√

2(1 + C−1)(E[‖rk‖22|xk])
1
2

≤ βk
√

2(1 + C−1)M
1
2
g , (55)

where the last inequalities are due to Cauchy-Schwarz inequality and (21). Then it follows from (55)
that

E[‖xti − xsi‖2] ≤
√

2(1 + C−1)M
1
2
g

ti−1∑
k=si

βk,

which together with (54) implies that ‖xti − xsi‖2 → 0 with probability 1, as i → +∞. Hence,
from the Lipschitz continuity of ∇f , it follows that ‖∇f(xti)−∇f(xsi)‖2 → 0 with probability 1
as i→ +∞. However, this contradicts (53). Therefore, the assumption that (22) does not hold is not
true.

Proof of Theorem 3. Define L̃ := (L+ µ−1)(1 + C−1). Taking expectation on both sides of (48)
and summing over k = 0, 1, . . . , N − 1 yields

1

4
µ

N−1∑
k=0

E[‖∇f(xk)‖22]

≤
N−1∑
k=0

1

βk
(E[f(xk)]− E[f(xk+1)]) + L̃

σ2

n

N−1∑
k=0

βk

=
1

β0
f(x0) +

N−1∑
k=1

(
1

βk
− 1

βk−1

)
E[f(xk)]− 1

βN−1
E[f(xN )] + L̃

σ2

n

N−1∑
k=0

βk

≤ Mf

β0
+Mf

N−1∑
k=1

(
1

βk
− 1

βk−1

)
− f low

βN−1
+ L̃

σ2

n

N−1∑
k=0

βk

=
Mf − f low

βN−1
+ L̃

σ2

n

N−1∑
k=0

βk

≤ 4L(1 + C−1)(Mf − f low)

µ
Nr +

(µ+ L−1)σ2

4n(1− r)
(N1−r − r),

which results in (23), where the second inequality is due to (20) and the last inequality is due to the
choice of βk. Then for a give ε > 0, to guarantee that 1

N

∑N−1
k=0 E‖∇f(xk)‖22 < ε, it suffices to

require that

16L(1 + C−1)(Mf − f low)

µ2
Nr−1 +

(1 + L−1µ−1)σ2

(1− r)n
(N−r − rN−1) < ε.

Since r ∈ (0.5, 1), it follows that the number of iterations N needed is at most O(ε−
1

1−r ).
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Proof of Theorem 4. According to (50) in Lemma 3, we have

N−1∑
k=0

βk

(
1

2
µ− βkL(1 + C−1)

)
E‖∇f(xk)‖22

≤ f(x0)− f low +

N−1∑
k=0

β2
k(L+ µ−1)(1 + C−1)

σ2

nk
, (56)

where the expectation is taken with respect to {Sj}N−1
j=0 . Define

PR(k)
def
= Prob{R = k} =

βk
(

1
2µ− βkL(1 + C−1)

)∑N−1
j=0 βj

(
1
2µ− βjL(1 + C−1)

) , k = 0, . . . , N − 1, (57)

then

E
[
‖∇f(xR)‖22

]
=

∑N−1
k=0 βk

(
1
2µ− βkL(1 + C−1)

)
E
[
‖∇f(xk)‖22

]∑N−1
j=0 βj

(
1
2µ− βjL(1 + C−1)

)
≤
Df + σ2(L+ µ−1)(1 + C−1)

∑N−1
k=0 β2

k/nk∑N−1
j=0 βj

(
1
2µ− βjL(1 + C−1)

) . (58)

If we choose βk = β := µ
4L(1+C−1) and nk = n, then the definition of PR simplifies to PR(k) =

1/N and we have

E
[
‖∇f(xR)‖22

]
≤
Df + σ2(L+ µ−1)(1 + C−1)N β2

n
1
4µNβ

=
4Df

µNβ
+

4(L+ µ−1)(1 + C−1)σ2 β
n

µ

=
16DfL(1 + C−1)

Nµ2
+

(L+ µ−1)σ2

nL
. (59)

Let N̄ be the total number of SFO-calls needed to calculate stochastic gradients in SAM. Then the
number of iterations of SAM is at most N = dN̄/ne. Obviously, N ≥ N̄/(2n).

For a given accuracy tolerance ε > 0, we assume that

N̄ ≥ max

{
C2

1

ε2
+

4C2

ε
,
σ2

L2D̃

}
, (60)

where

C1 =
32Df (1 + C−1)σ

µ2
√
D̃

+ (L+ µ−1)σ
√
D̃, C2 =

32DfL(1 + C−1)

µ2
, (61)

where D̃ is a problem-independent positive constant. Moreover, we assume that the batch size
satisfies

nk = n :=

min

N̄ ,max

1,
σ

L

√
N̄

D̃



 . (62)

The we can prove E
[
‖∇f(xR)‖22

]
≤ ε as follows.

From (59) we have that

E
[
‖∇f(xR)‖22

]
≤ 32DfL(1 + C−1)n

µ2N̄
+
L+ µ−1

L

σ2

n

≤ 32DfL(1 + C−1)

µ2N̄

1 +
σ

L

√
N̄

D̃

+
L+ µ−1

L
·max

{
σ2

N̄
,
σL
√
D̃√

N̄

}
.

(63)
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Equation (60) implies that

σ2

N̄
=

σ√
N̄
· σ√

N̄
≤ L

√
D̃ · σ√

N̄
=
σL
√
D̃√

N̄
. (64)

Then from (63) and (61), we have

E
[
‖∇f(xR)‖22

]
≤ 32DfL(1 + C−1)

µ2N̄

1 +
σ

L

√
N̄

D̃

+
L+ µ−1

L

σL
√
D̃√

N̄
=

C1√
N̄

+
C2

N̄
. (65)

To ensure E
[
‖∇f(xR)‖22

]
≤ ε, it is sufficient to let the upper bound C1√

N̄
+ C2

N̄
≤ ε, which implies√

N̄ ≥
√
C2

1 + 4C2ε+ C1

2ε
.

This is guaranteed by Condition (60) since√
N̄ ≥

√
C2

1 + 4C2ε

ε
≥
√
C2

1 + 4C2ε+ C1

2ε
.

To prove Theorem 5, we first prove the following lemma.
Lemma 4. Suppose that Assumptions 1 and 2 hold. C > 0 is a constant. βkt > 0, δkt ≥ C(βkt )−2,
0 ≤ αkt ≤ min{1, (βkt )

1
2 } and satisfies (14). For any ηt > 0, set

ckt = ckt+1

(
1 + 2βkt ηt + 4(βkt )2(1 + C−1)

L2

n
+ 2(βkt )2η−1

t (1 + C−1)
L2

n

)
+ (βkt )2(L+

µ−1

2
)(1 + C−1)

2L2

n
.

Then
Ψk
tE
[
‖∇f(xkt )‖22

]
≤ Φkt − Φkt+1, (66)

where Φkt = E
[
f(xkt ) + ckt ‖xkt − x̃k‖22

]
and Ψk

t = 1
2β

k
t µ− 2ckt+1β

k
t η
−1
t (1 +C−1)− 2L(βkt )2(1 +

C−1)− 4ckt+1(βkt )2(1 + C−1).

(Note: Here and in the following proof of Theorem 5, the definition of notation ckt has no relation
with c1, c2 in (16) of AdaSAM.)

Proof. Define εkt = −rkt −∇f(xkt ),Mk
t = βkt I −Hk

t . Then
E
[
∇f(xkt )THk

t ε
k
t

]
= E

[
∇f(xkt )T(βkt ε

k
t −Mk

t ε
k
t )
]

= −E
[
f(xkt )TMk

t ε
k
t

]
.

According to Lemma 1, for any vk ∈ Rd,
‖Hk

t vk‖22 ≤ 2
(
(βkt )2

(
1 + 2(αkt )2 − 2αkt

)
+ (αkt )2(δkt )−1

)
‖vk‖22 ≤ 2(βkt )2(1 + C−1)‖vk‖22.

(67)
We also have

∇f(xkt )TE
[
Hk
t r
k
t

]
= −∇f(xkt )THk

t ∇f(xkt )− E
[
∇f(xkt )THk

t ε
k
t

]
≤ −βkt µ‖∇f(xkt )‖22 + |E

[
∇f(xkt )TMk

t ε
k
t

]
|

≤ −βkt µ‖∇f(xkt )‖22 + ‖∇f(xkt )‖2
√

E
[
‖Mk

t ε
k
t ‖22
]

≤ −βkt µ‖∇f(xkt )‖22 + αkt ((δkt )−
1
2 + βkt )‖∇f(xkt )‖2

√
E
[
‖εkt ‖22

]
(cf. (43))

= −βkt µ‖∇f(xkt )‖22 +
√
βkt µ‖∇f(xkt )‖2 ·

αkt ((δkt )−
1
2 + βkt )√

βkt µ

√
E
[
‖εkt ‖22

]
≤ −1

2
βkt µ‖∇f(xkt )‖22 +

1

2

(αkt )2((δkt )−
1
2 + βkt )2

βkt µ
E
[
‖εkt ‖22

]
≤ −1

2
βkt µ‖∇f(xkt )‖22 + (βkt )2µ−1(1 + C−1)E‖εkt ‖22. (68)
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Hence, with Assumption 1 we obtain

E
[
f(xkt+1)

]
≤ E

[
f(xkt ) +∇f(xkt )T(xkt+1 − xkt ) +

L

2
‖xkt+1 − xkt ‖22

]
= E

[
f(xkt ) +∇f(xkt )THk

t r
k
t +

L

2
‖Hk

t r
k
t ‖22
]

≤ E
[
f(xkt )− 1

2
βkt µ‖∇f(xkt )‖22 + (βkt )2µ−1(1 + C−1)E‖εkt ‖22 + L(βkt )2(1 + C−1)‖rkt ‖22

]
.

(69)

Next, we give a bound of (xkt − x̃k)THk
t r
k
t . Since

−(xkt − x̃k)THk
t ∇f(xkt ) = −βkt · (βkt )−1(xkt − x̃k)THk

t ∇f(xkt )

≤ βkt ‖xkt − x̃k‖2‖(βkt )−1Hk
t ∇f(xkt )‖2

= βkt η
1/2
t ‖xkt − x̃k‖2 · η

−1/2
t ‖(βkt )−1Hk

t ∇f(xkt )‖2

≤ 1

2
βkt
(
ηt‖xkt − x̃k‖22 + η−1

t (βkt )−2‖Hk
t ∇f(xkt )‖22

)
≤ 1

2
βkt
(
ηt‖xkt − x̃k‖22 + 2η−1

t (1 + C−1)‖∇f(xkt )‖22
)
,

and
−E[(xkt − x̃k)THk

t ε
k
t ] = −E[(xkt − x̃k)T(βkt I −Mk

t )εkt ]

= E[(xkt − x̃k)TMk
t ε
k
t ]

≤ ‖xkt − x̃k‖2 ·
√
E[‖Mk

t ε
k
t ‖22]

=
√
βkt ηt‖xkt − x̃k‖2 ·

αkt ((δkt )−1/2 + βkt )√
βkt ηt

√
E‖εkt ‖22

≤ 1

2
βkt ηt‖xkt − x̃k‖22 +

1

2

(αkt )2((δkt )−1/2 + βkt )2

βkt ηt
E‖εkt ‖22

≤ 1

2
βkt ηt‖xkt − x̃k‖22 + η−1

t (βkt )2(1 + C−1)E‖εkt ‖22,

we obtain
E[(xkt − x̃k)THk

t r
k
t ]

= E[−(xkt − x̃k)THk
t ∇f(xkt )− (xkt − x̃k)THk

t ε
k
t ]

≤ E[βkt η
−1
t (1 + C−1)‖∇f(xkt )‖22 + βkt ηt‖xkt − x̃k‖22 + η−1

t (βkt )2(1 + C−1)E‖εkt ‖22].

Hence, we have
E[‖xkt+1 − x̃k‖22]

= E[‖xkt+1 − xkt ‖22 + ‖xkt − x̃k‖22 + 2(xkt − x̃k)T(xkt+1 − xkt )]

= E[‖Hk
t r
k
t ‖22] + ‖xkt − x̃k‖22 + 2(xkt − x̃k)THk

t r
k
t ]

≤ E[2(βkt )2(1 + C−1)‖rkt ‖22 + ‖xkt − x̃k‖22
+ 2βkt η

−1
t (1 + C−1)‖∇f(xkt )‖22 + 2βkt ηt‖xkt − x̃k‖22 + 2η−1

t (βkt )2(1 + C−1)E‖εkt ‖22]. (70)
Also, the following inequalities hold:

E
[
‖εkt ‖22

]
= E

[
‖∇fK(xkt )−∇fK(x̃k) +∇f(x̃k)−∇f(xkt )‖22

]
= E

[
‖∇fK(xkt )−∇fK(x̃k)− E

[
∇fK(xkt )−∇fK(x̃k)

]
‖22
]

=
1

n
E
[
‖∇fi(xkt )−∇fi(x̃k)− E

[
∇fi(xkt )−∇fi(x̃k)

]
‖22
]

≤ 1

n
E
[
‖∇fi(xkt )−∇fi(x̃k)‖22

]
≤ L2

n
E
[
‖xkt − x̃k‖22

]
, (71)

23



E
[
‖rkt ‖22

]
= E

[
‖εkt +∇f(xkt )‖22

]
≤ E

[
2‖εkt ‖22 + 2‖∇f(xkt )‖22

]
≤ 2E

[
‖∇f(xkt )‖22

]
+

2L2

n
E
[
‖xkt − x̃k‖22

]
. (72)

Combining (69), (70), (71) and (72) yields that

Φkt+1 = E[f(xkt+1) + ckt+1‖xkt+1 − x̃k‖22]

≤ E[f(xkt )− 1

2
βkt µ‖∇f(xkt )‖22 + (βkt )2µ−1(1 + C−1)E‖εkt ‖22 + L(βkt )2(1 + C−1)‖rkt ‖22

+ ckt+12(βkt )2(1 + C−1)‖rkt ‖22 + ckt+1‖xkt − x̃k‖22 + ckt+12βkt η
−1
t (1 + C−1)‖∇f(xkt )‖22

+ ckt+12βkt ηt‖xkt − x̃k‖22 + ckt+12η−1
t (βkt )2(1 + C−1)E‖εkt ‖22]

= E[f(xkt )− (
1

2
βkt µ− ckt+12βkt η

−1
t (1 + C−1))‖∇f(xkt )‖22

+ (L(βkt )2(1 + C−1) + ckt+12(βkt )2(1 + C−1))‖rkt ‖22
+ (ckt+1 + ckt+12βkt ηt)‖xkt − x̃k‖22
+ ((βkt )2µ−1(1 + C−1) + ckt+12(βkt )2η−1

t (1 + C−1))‖εkt ‖22]

≤ E[f(xkt )− (
1

2
βkt µ− ckt+12βkt η

−1
t (1 + C−1))‖∇f(xkt )‖22

+ (L(βkt )2(1 + C−1) + ckt+12(βkt )2(1 + C−1))(2‖∇f(xkt )‖22 +
2L2

n
‖xkt − x̃k‖22)

+ (ckt+1 + ckt+12βkt ηt)‖xkt − x̃k‖22

+ ((βkt )2µ−1(1 + C−1) + ckt+12(βkt )2η−1
t (1 + C−1))

L2

n
‖xkt − x̃k‖22]

= E[f(xkt ) + (ckt+1(1 + 2βkt ηt + 4(βkt )2(1 + C−1)
L2

n
+ 2(βkt )2η−1

t (1 + C−1)
L2

n
)

+ (βkt )2(1 + C−1)
2L3

n
+ (βkt )2µ−1(1 + C−1)

L2

n
)‖xkt − x̃k‖22

− (
1

2
βkt µ− 2ckt+1β

k
t η
−1
t (1 + C−1)− 2L(βkt )2(1 + C−1)

− 4ckt+1(βkt )2(1 + C−1))‖∇f(xkt )‖22] = Φkt −Ψk
tE[‖∇f(xkt )‖22],

which further implies (66).

Proof of Theorem 5. Let ηt = η := L(1+C−1)1/2

T 1/3 . Denote θ = 2βη + 4β2(1 + C−1)L2/n +

2β2η−1(1 + C−1)L2/n. It then follows that

θ =
2µ0n

T
+

4µ2
0n

T 4/3
+

2µ2
0n

TL(1 + C−1)1/2

≤ µ0n

T

(
2 + 4µ0 +

2µ0

L(1 + C−1)1/2

)
≤ µ0n

T

(
6 +

2

L(1 + C−1)1/2

)
=
µ0n

T
d0,

which implies (1 + θ)q ≤ e. Let ckq = cq := 0, then for any k ≥ 0, we have

ckt ≤ ck0 = β2(L+
µ−1

2
)(1 + C−1)

2L2

n
· (1 + θ)q − 1

θ

=
2µ2

0n(L+ µ−1

2 )((1 + θ)q − 1)

T
4
3 θ

=
2µ2

0(L+ µ−1

2 )((1 + θ)q − 1)

2µ0T
1
3 + 4µ2

0 +
2µ2

0

L(1+C−1)
1
2
T

1
3

≤
2µ2

0(L+ µ−1

2 )((1 + θ)q − 1)

2µ0T
1
3

≤
µ0(L+ µ−1

2 )(e− 1)

T
1
3

.
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Therefore, it follows that

Ψk
t =

1

2
βµ− 2ckt+1βη

−1(1 + C−1)− 2Lβ2(1 + C−1)− 4ckt+1β
2(1 + C−1)

=
1

2

µ0nµ

L(1 + C−1)
1
2T

2
3

− 2ckt+1

µ0n

L2T
1
3

− 2µ2
0n

2

LT
4
3

− 4ckt+1

µ2
0n

2

L2T
4
3

≥ 1

2

µ0nµ

L(1 + C−1)
1
2T

2
3

−
2µ2

0(L+ µ−1

2 )(e− 1)n

L2T
2
3

− 2µ2
0n

2

LT
4
3

−
4µ3

0(L+ µ−1

2 )(e− 1)n2

L2T
5
3

≥ n

LT
2
3

(
µ0µ

2(1 + C−1)
1
2

−
2µ2

0(L+ µ−1

2 )(e− 1)

L
− 2µ2

0n−
4µ3

0(L+ µ−1

2 )(e− 1)n

L

)
≥ nν

LT
2
3

.

As a result, we have
q−1∑
t=0

E
[
‖∇f(xkt )‖22

]
≤

Φk0 − Φkq
mint Ψk

t

=
E [f(x̃k)− f(x̃k+1)]

mint Ψk
t

,

which yields that

E
[
‖∇f(x)‖22

]
=

1

qN

N−1∑
k=0

q−1∑
t=0

E
[
‖∇f(xkt )‖22

]
≤ f(x0)− f low

qN mint Ψk
t

≤ T 2/3L(f(x0)− f low)

qNnν
.

To achieve E
[
‖∇f(x)‖22

]
≤ ε, the outer iteration number N of Algorithm 2 should be in the order of

O
(
T 2/3

qnε

)
= O

(
T−1/3

ε

)
, which is due to the fact that qn = O(T ). As as result, the total number of

SFO-calls is T + (T + 2qn)N (taking the first iteration into account), which is O(T +T 2/3/ε).

A.2 Relationship with GMRES

Although the previous worst-case analysis shows that Anderson mixing has similar convergence rate
as SGD, Anderson mixing usually performs much better in practice. To explain this phenomenon, we
briefly discuss the relationship of Anderson mixing with GMRES [46] for deterministic quadratic
optimization since a twice continuously differentiable objective function can be approximated by a
quadratic model in a local region, thus leading to a quadratic optimization. An optimization method
that performs well in quadratic optimization is likely to have good convergence property as well in
general nonlinear optimization.

We consider the following strongly convex quadratic objective function:

f(x) =
1

2
xTAx− bTx. (73)

where A ∈ Rd×d is symmetric positive definite, b ∈ Rd. Solving (73) is equivalent to solving linear
system

Ax = b. (74)
In this case, ∇f(x) = Ax − b,∇2f(x) = A, rk = b − Axk is the residual. Hence the quadratic
approximation in AM is always exact, i.e. Rk = −AXk = −∇2f(xk)Xk.

When neither regularization nor damping is used, i.e. δk = 0 and αk = 1, SAM is identical to AM
to accelerate fixed-point iteration g(x) = (I − A)x + b. It has been proved in [59] that in exact
arithmetic, AA is essentially equivalent to GMRES when starting from the same initial point and no
stagnation occurs. We restate the main result here.

Let xG
k , r

G
k

def
= b−AxG

k denote the k-th GMRES iterate and residual, respectively, and Kk(A, v)
def
=

span{v,Av, . . . , Ak−1v} denotes the k-th Krylov subspace generated by A and v. Define ej def
=

(1, 1, . . . , 1)T ∈ Rj for j ≥ 1. For brevity, let span(X) denote the linear space spanned by the
columns of X . Besides, {xk} are the iterates generated by AM (SAM), and {x̄k} are the intermediate
iterates generated by (4a). We have
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Proposition 2. To minimize (73), suppose that for SAM, δk = 0, αk = βk = 1,m = k ≥ 1. If
x0 = xG

0 and rank(Rk) = m, then x̄k = xG
k .

Proof. Since Rk = −AXk and A is nonsingular, we have rank(Xk) = m. We first show
span(Xk) = Kk(A, rG

0 ) by induction. We abbreviate Kk(A, rG
0 ) as Kk in this proof.

First, ∆x0 = r0 = rG
0 . If k = 1, then the proof is complete. Then, suppose that k > 1 and, as an

inductive hypothesis, that span(Xk−1) = Kk−1. With (9) and noting that αk = βk = 1, we have
∆xk−1 = xk − xk−1

= rk−1 − (Xk−1 +Rk−1)Γk−1

= b−Axk−1 − (Xk−1 −AXk−1)Γk−1

= b−A(x0 + ∆x0 + · · ·+ ∆xk−2)− (Xk−1 −AXk−1)Γk−1

= r0 −AXk−1e
k−1 − (Xk−1 −AXk−1)Γk−1. (75)

Since r0 ∈ Kk−1, and by the inductive hypothesis span(Xk−1) ⊆ Kk−1 which also implies
span(AXk−1) ⊆ Kk, we know ∆xk−1 ∈ Kk, which implies span(Xk) ⊆ Kk. Since we assume
rank(Xk) = m = k which implies dim(span(Xk)) = dim(Kk), we have span(Xk) = Kk, thus
completing the induction.

Recalling that to determine Γk, we solve the least squares problem (5) and Rk = −AXk, we have
Γk = arg min

Γ∈Rm

‖rk +AXkΓ‖2. (76)

Since rank(AXk) = rank(Xk) = m, (76) has a unique solution. Also, since rk = b − Axk =

b−A(x0 +Xke
k) = r0 −AXke

k, we have rk +AXkΓ = r0 −AXke
k +AXkΓ = r0 −AXkΓ̃,

where Γ̃ = ek − Γ. So Γk solves (76) if and only if Γ̃k = ek − Γk solves

min
Γ̃∈Rm

‖r0 −AXkΓ̃‖2, (77)

which is the GMRES minimization problem. Since the solution of (77) is also unique, we have

x̄k = xk −XkΓk = xk −Xk(ek − Γ̃k) = x0 +XkΓ̃k = xG
k .

If Rk is rank deficient, then a stagnation occur in AM (SAM).
Proposition 3. To minimize (73), suppose that for SAM, δk = 0, αk = βk = 1,m = k ≥ 1. If
rank(Rk) = k holds for 1 ≤ k < s while failing to hold for k = s, where s > 1, then x̄s = x̄s−1.

Proof. The rank deficiency of Xs implies ∆xs−1 ∈ span(Xs−1). Therefore, there exists γs ∈ Rs−1

such that ∆xs−1 = Xs−1γs. Partitioning Γ̃ ∈ Rs in (77) as Γ̃ = (η1, η2)T ∈ Rs, where η1 ∈
Rs−1, η2 ∈ R, we have

XsΓ̃ = (Xs−1 Xs−1γs)

(
η1

η2

)
= Xs−1(η1 + γsη2),

which implies

r0 −AXsΓ̃ = r0 −AXs−1(η1 + γsη2).

Hence
min
Γ̃∈Rs

‖r0 −AXsΓ̃‖2 (78a)

= min
η1∈Rs−1,η2∈R

‖r0 −AXs−1(η1 + γsη2)‖2. (78b)

Since AXs−1 has full rank, Γ̃s−1 = η1 + γsη2 is the unique solution to minimize (78b) and
Γ̃s = (η1, η2)T minimizes (78a) while being not unique. Therefore, from the equivalence of (76) and
(77), we conclude that

x̄s = x0 +XsΓ̃s = x0 +Xs−1(η1 + γsη2)

= x0 +Xs−1Γ̃s−1 = x̄s−1.
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When the stagnation happens, further iterations of AM cannot make any improvement. This is a
potential numerical weakness of AM relative to GMRES, which does not break down upon stagnation
before the solution has been found. At this point, switching to applying several fixed-point iteration
xk+1 = g(xk) may help jump out of the stagnation [42].

In Section 2.3, we introduce the preconditioned mixing strategy. This form of preconditioning for
AM is new as far as we know. We reveal its relationship with right preconditioned GMRES [47]
here. Let xRG

k , rRG
k denote the k-th right preconditioned GMRES iterate and residual. According to

Proposition 9.1 in [47], with a fixed preconditioner M , then xRG
k in the right preconditioned GMRES

minimize residual in the affine subspace x0 +Kk{M−1A,M−1rRG
0 }.

Proposition 4. To minimize (73), suppose that for preconditioned SAM (cf. (17)), δk = 0, αk =
βk = 1,m = k ≥ 1 and Mk = M where M is nonsingular. If x0 = xRG

0 and rank(Rk) = m, then
x̄k = xRG

k .

Proof. Since Rk = −AXk and A is nonsingular, we have rank(Xk) = m. We first show that
span(Xk) = Kk(M−1A,M−1rRG

0 ) by induction. We abbreviate Kk(M−1A,M−1rRG
0 ) as Kk in

this proof.

First, ∆x0 = M−1r0 = M−1rRG
0 . If k = 1, then the proof is complete. Then, suppose that k > 1

and, as an inductive hypothesis, that span(Xk−1) = Kk−1. With (17) and noting that αk = βk = 1,
we have

∆xk−1 = xk − xk−1

= M−1rk−1 − (Xk−1 +M−1Rk−1)Γk−1

= M−1(b−Axk−1)− (Xk−1 −M−1AXk−1)Γk−1

= M−1b−M−1A(x0 + ∆x0 + · · ·+ ∆xk−2)− (Xk−1 −M−1AXk−1)Γk−1

= M−1r0 −M−1AXk−1e
k−1 − (Xk−1 −M−1AXk−1)Γk−1, (79)

where Γk−1 minimizes (5) since δk−1 = 0.

Since M−1r0 ∈ Kk−1, and by the inductive hypothesis span(Xk−1) ⊆ Kk−1 which also implies
span(M−1AXk−1) ⊆ Kk, we know ∆xk−1 ∈ Kk, which implies span(Xk) ⊆ Kk. Since we
assume rank(Xk) = m = k which implies dim(span(Xk)) = dim(Kk), we have span(Xk) = Kk,
thus completing the induction.

Recalling that to determine Γk, we solve the least squares problem (5) and Rk = −AXk, we have
Γk = arg min

Γ∈Rm

‖rk +AXkΓ‖2. (80)

Since rank(AXk) = rank(Xk) = m, (80) has a unique solution. Also, since rk = b − Axk =

b−A(x0 +Xke
k) = r0 −AXke

k, we have rk +AXkΓ = r0 −AXke
k +AXkΓ = r0 −AXkΓ̃,

where Γ̃ = ek − Γ. So Γk solves (80) if and only if Γ̃k = ek − Γk solves

min
Γ̃∈Rm

‖r0 −AXkΓ̃‖2, (81)

which is the right preconditioned GMRES minimization problem. Since the solution of (81) is also
unique, we have

x̄k = xk −XkΓk = xk −Xk(ek − Γ̃k) = x0 +XkΓ̃k = xRG
k .

For preconditioned SAM, the preconditioner Mk can vary from step to step, while the minimal
residual property still holds, i.e. x̄k = arg minx∈xk+span{Xk} ‖b−Ax‖2.
Remark 4. When the objective function is only approximately convex quadratic in a local region
around the minimum, the relation between SAM and GMRES can only approximately hold. Nonethe-
less, SAM can often show superior behaviour in practice.

B Implementation of AdaSAM/pAdaSAM

In this section, we give the implementation details of our methods AdaSAM and pAdaSAM, including
the pseudocodes and the discussion of the extra computational cost.
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Algorithm 3 AdaSAM, namely our proposed SAM with δk chosen as (16). optim(xk, gk) is an
optimizer which updates xk given stochastic gradient gk.
Input: x0 ∈ Rd,m = 10, αk = 1, βk = 1, c1 = 10−2, p = 1, γ = 0.9, ε = 10−8,max_iter > 0,
optimizer optim.
Output: x ∈ Rd

1: ∆x̂0 = 0,∆r̂0 = 0
2: for k = 0, 1, · · · ,max_iter do
3: rk = −∇fSk

(xk)
4: if k > 0 then
5: mk = min{m, k}
6: ∆x̂k = γ ·∆x̂k−1 + (1− γ) ·∆xk−1

7: ∆r̂k = γ ·∆r̂k−1 + (1− γ) ·∆rk−1

8: X̂k = [∆x̂k−mk+1,∆x̂k−mk+2, · · · ,∆x̂k]

9: R̂k = [∆r̂k−mk+1,∆r̂k−mk+2, · · · ,∆r̂k]
10: end if
11: if k > 0 and k mod p = 0 then
12: δk = c1‖rk‖22/

(
‖∆x̂k‖22 + ε

)
13: ∆xk = βkrk − αk

(
X̂k + βkR̂k

)(
R̂T
k R̂k + δkX̂

T
k X̂k

)†
R̂T
k rk

14: if (∆xk)Trk > 0 then
15: xk+1 = xk + ∆xk
16: else
17: xk+1 = optim(xk,−rk)
18: end if
19: else
20: xk+1 = optim(xk,−rk)
21: end if
22: Apply learning rate schedule of αk, βk
23: end for
24: return xk

B.1 Pseudocode for AdaSAM/pAdaSAM

Algorithm 3 gives the pseudocode for AdaSAM. Based on the prototype Algorithm 1, we incor-
porate sanity check of the positive definiteness, alternating iteration and moving average in our
implementation of AdaSAM:

1. Sanity check of the positive definiteness. Besides calculating the largest eigenvalue to
check Condition (14), a rule of thumb is checking a necessary condition rTkHkrk > 0, i.e. the
searching direction ∆xk = Hkrk is a descent direction with respect to the stochastic gradient
∇fSk

(xk). If this condition is violated, we switch to updating xk via optim. Although
such rule of thumb is not theoretically justified, it causes no difficulty of convergence in our
practice. (Line 14-17 in Algorithm 3.)

2. Moving average. In mini-batch training, moving average can be used to incorporate
information from the past and reduce the variability. Specifically, we maintain the moving
averages ofXk, Rk by X̂k, R̂k respectively. Here X̂k = [∆x̂k−m+1,∆x̂k−m+2, · · · ,∆x̂k],
R̂k = [∆r̂k−m+1,∆r̂k−m+2, · · · ,∆r̂k], where ∆x̂k = γ · ∆x̂k−1 + (1 − γ) · ∆xk−1,
∆r̂k = γ ·∆r̂k−1 + (1− γ) ·∆rk−1, ∆x̂0 = 0,∆r̂0 = 0 and γ ∈ [0, 1). For deterministic
quadratic optimization, R̂k = −∇2f(xk)X̂k still holds. (Line 6-9 in Algorithm 3.)

3. Alternating iteration. To amortize the computational cost of SAM, it is reasonable to apply
a form of alternating iteration like [42]. In each cycle, we iterate with optim for (p − 1)
steps and update Xk, Rk simultaneously, then apply SAM in the p-th step, the result of
which is the starting point of the next cycle. (Line 11,19 in Algorithm 3.)

We point out that these three techniques are not required in our theoretical analysis in Section 3.
Nonetheless, they may have positive effects in practice.
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Algorithm 4 pAdaSAM, namely the preconditioned AdaSAM. optim(xk, gk) is an optimizer which
updates xk given stochastic gradient gk.
Input: x0 ∈ Rd,m = 10, αk = 1, c1 = 10−2, p = 1, γ = 0.9, ε = 10−8,max_iter > 0, optimizer
optim.
Output: x ∈ Rd

1: ∆x̂0 = 0,∆r̂0 = 0
2: for k = 0, 1, · · · ,max_iter do
3: rk = −∇fSk

(xk)
4: if k > 0 then
5: mk = min{m, k}
6: ∆x̂k = γ ·∆x̂k−1 + (1− γ) ·∆xk−1

7: ∆r̂k = γ ·∆r̂k−1 + (1− γ) ·∆rk−1

8: X̂k = [∆x̂k−mk+1,∆x̂k−mk+2, · · · ,∆x̂k]

9: R̂k = [∆r̂k−mk+1,∆r̂k−mk+2, · · · ,∆r̂k]
10: end if
11: if k > 0 and k mod p = 0 then
12: δk = c1‖rk‖22/

(
‖∆x̂k‖22 + ε

)
13: Γk =

(
R̂T
k R̂k + δkX̂

T
k X̂k

)†
R̂T
k rk

14: x̄k = xk − αkX̂kΓk
15: r̄k = rk − αkR̂kΓk
16: ∆xk = optim(x̄k,−r̄k)− xk
17: if (∆xk)Trk > 0 then
18: xk+1 = xk + ∆xk
19: else
20: xk+1 = optim(xk,−rk)
21: end if
22: else
23: xk+1 = optim(xk,−rk)
24: end if
25: Apply learning rate schedule of αk, βk
26: end for
27: return xk

Our implementation of the RAM method, i.e. using constant regularization (cf. (10)),
differs from AdaSAM by replacing Line 13 in Algorithm 3 with ∆xk = βkrk −
αk

(
X̂k + βkR̂k

)(
R̂T
k R̂k + δI

)†
R̂T
k rk. In other words, we also incorporate the damped projection

into the constant-regularized AM. Therefore, the comparison between AdaSAM and RAM can show
the effect of adaptive regularization with δk chosen as (16).

We give the pseudocode of pAdaSAM in Algorithm 4, which is the preconditioned version of
AdaSAM. (See Section 2.3.) The effect of the preconditioner optim is reflected in Line 16 in
Algorithm 4.

Remark 5. In our implementations, we introduce several extra hyper-parameters to the prototype
Algorithm 1. However, we will show in the additional experiments that the only hyper-parameter
needed to be tuned is still the regularization parameter c1, while setting the other hyper-parameters as
default is proper. We also omit the second term c2β

−2
k in (16), which we will justify in Appendix D.3.

B.2 Additional computational complexity of SAM

In Remark 2, we claim that the additional computational complexity of SAM compared with SGD
is O(m2d) + O(m3), which accounts for the matrix multiplications (Rm×d × Rd×m) and matrix
decomposition of a small Rm×m matrix. In fact, the computational complexity can be further reduced
to O(md) +O(m3) as the matrix multiplications XT

k Xk, R
T
kRk need not be calculated from scratch

because we can reuse the submatrice of XT
k−1Xk−1, R

T
k−1Rk−1 calculated in the last iteration. To
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see this, consider XT
k Xk(k ≥ m). By column partitioning Xk = ((Xk)1:m−1 (Xk)m), where we

use (A)i:j to denote the submatrix formed by the i to j columns of matrix A, we have

XT
k Xk =

(
(Xk)T

1:m−1(Xk)1:m−1 (Xk)T
1:m−1(Xk)m

(Xk)T
m(Xk)1:m−1 (Xk)T

m(Xk)m

)
=

(
(Xk−1)T

2:m(Xk−1)2:m (Xk)T
1:m−1(Xk)m

(Xk)T
m(Xk)1:m−1 (Xk)T

m(Xk)m

)
.

Hence, the submatrix (Xk−1)T
2:m(Xk−1)2:m can be reused, and only XT

k (Xk)m needs to be calcu-
lated. RT

kRk can be similarly calculated. Thus, if we reuse the matrix multiplication as explained
above, the additional computational time can be further reduced.

C Experimental details

Our codes were written in PyTorch1.4.04 and one GeForce RTX 2080 Ti GPU is used for each test.
Our methods are AdaSAM and its preconditioned variant pAdaSAM. The RAM method serves as
an ablation study for the regularization. Before describing the experimental details, we explain the
hyperparameter setting of AdaSAM/pAdaSAM/RAM.

C.1 Hyperparameter setting of AdaSAM/pAdaSAM/RAM

Since these methods are all the variants of AM with minor differences, their hyperparameter setting
are similar. The only hyperparameter that needs to be carefully tuned is the regularization parameter,
i.e. c1 for AdaSAM/pAdaSAM, and δ for RAM. We explain reasons of the default setting of other
hyperparamters:

• α0 = 1. Setting α0 = 1 corresponds to using no damping, which means that the minimal
residual procedure is exact for AM in deterministic quadratic optimization. This setting
follows the same philosophy of setting initial learning rate as 1 in Newton’s method.

• β0 = 1. Setting the mixing parameter β0 = 1 is a standard setting in AM. (See e.g. [59].)
Tuning βk may be of help [41, 14], but we abandon this possibility to reduce the work of
hyperparameter tuning.

• m = 10. Since the extra space is 2md and the extra computational cost isO(m2d)+O(m3),
using small m is preferred. m = 10 or 20 is also the default setting in restarted GMRES
[47]. Moreover, large m, say, m = 100, can cause the solution of Γk less stable as we solve
the normal equation directly.

• p = 1. By default, no alternating iteration is used. When the extra computational cost (e.g.
Line 13 in Algorithm 3) dominates the computation, this option can be helpful to alleviate
the cost.

• ε = 10−8. ε only serves as the safe-guard to prevent the denominator in (16) from being
zero. It does not have meaning like the constant regularization δ in RAM. Only when
‖∆x̂k‖22 ≈ ε, the effect of ε becomes obvious, but xk is supposed to converge at this point.

• γ = 0.9. This is a default setting for moving average [55, 29].

C.2 Experiments on MNIST

Since SAM is expected to behave like the minimal residual method in deterministic quadratic
optimization, this group of experiments focused on large mini-batch training where the variance of
noise is relatively small, thus the curvature of the objective function rather than noise dominates the
optimization. Moreover, using constant learning rate is proper in this situation.

The baselines are SGDM, Adam and SdLBFGS. For SGDM and Adam, we used the built-in PyTorch
implementations. For SdLBFGS, in addition to the initial proposal [60], the Hessian is always

4 Information about this framework is referred to https://pytorch.org.
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initialized with the identity matrix and the calculated descent direction is normalized because such
modifications were found to be more effective for SdLBFGS in our experiments.

We tuned the learning rates of the baseline optimizers by log-scale grid-searches from 10−3 to 100.
The learning rates of SGDM, Adam and SdLBFGS were 0.1, 0.001 and 0.1, respectively. The
historical lengths for SdLBFGS, RAM and AdaSAM were set as 20. δ = 10−6 for RAM and
c1 = 10−4 for AdaSAM. The optim in Algorithm 3 is optim(xk, gk) = xk − 0.1 ∗ gk.

For the preconditioned AdaSAM, i.e. Adagrad-AdaSAM and RMSprop-AdaSAM, the learning rates
of Adagrad and RMSprop were 0.01, 0.001, respectively.

For all the tests, the model was trained for 100 epochs.

In the main paper, we only report training loss. Here, we report both the training loss and the squared
norm of the gradient (SNG) in Figure 4. By comparing the training loss and SNG, it can be observed
that a smaller SNG typically indicates a smaller training loss, which confirms the way to minimize
E‖∇f(x)‖22. Since AM is closely related to the minimal residual method, where the term “residual"
is actually the negative gradient in optimization, AM is expected to achieve small SNG when the
quadratic approximation of the objective function is accurate enough. From the experiments, we find
the behaviour of AdaSAM is rather stable even in mini-batch training.
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Figure 4: Experiments on MNIST. Train Loss: (a) Batchsize = 6K; (b) Batchsize = 3K; (c) AdaSAM
with variance reduction; (d) Preconditioned AdaSAM with batchsize = 3K. Square norm of the gradi-
ent: (e) Batchsize = 6K; (f) Batchsize = 3K; (g) AdaSAM with variance reduction; (h) Preconditioned
AdaSAM with batchsize = 3K.

C.3 Experiments on CIFAR

For this group of experiments, we followed the same setting of training ResNet in [21]. The batchsize
was 128 as commonly suggested. When training for N iterations, the learning rate was decayed at the(
bN2 c

)
-th and the

(
b 3N

4 c
)
-th iterations. For AdaSAM/RAM, the learning rate decay means decaying

αk, βk simultaneously. The results in Table 1 come from repeated tests with 3 random seeds.

The baseline optimizers were SGDM, Adam, AdaBelief [66], Lookahead [65], RNA [52], AdaHessian
[63]. AdaBelief is a recently proposed adaptive learning rate method to improve Adam. Lookahead
is a k-step method, which can be seen as a simple sequence interpolation method. In each cycle,
Lookahead iterates with an inner-optimizer optim for k steps and then interpolates the first and the
last iterates to give the starting point of the next cycle. RNA is also an extrapolation method but based
on the minimal polynomial extrapolation approach [5]. AdaHessian is a second-order optimizer
which uses Hessian-vector products to approximate the diagonal of the Hessian.

We tuned the hyperparameters through experiments on CIFAR-10/ResNet20. For AdaSAM/RAM,
we only tuned the regularization parameter as explained in Section C.1. For each optimizer, the hy-
perparameter setting that has the best final test accuracy on CIFAR-10/ResNet20 was kept unchanged
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and used for the other tests. We list the hyperparameters of all the tested optimizers here. (Learning
rate is abbreviated as lr.)

• SGDM: lr = 0.1, momentum = 0.9, weight-decay = 5× 10−4, lr-decay = 0.1.

• Adam: lr = 0.001, (β1, β2) = (0.9, 0.999), weight-decay = 5× 10−4, lr-decay = 0.1.

• AdaBelief: lr = 0.001, (β1, β2) = (0.9, 0.999), eps = 1× 10−8, weight-decay = 5× 10−4,
lr-decay = 0.1.

• Lookahead: optim: SGDM (lr = 0.1, momentum = 0.9, weight-decay = 1×10−3), α = 0.8,
steps = 10, lr-decay = 0.1.

• AdaHessian: lr = 0.15, (β1, β2) = (0.9, 0.999), eps=1× 10−4, hessian-power: 1, weight-
decay: 5× 10−4/0.15, lr-decay: 0.1.

• RNA: lr = 0.1, momentum = 0.9, λ = 0.1, hist-length = 10, weight-decay = 5 × 10−4,
lr-decay = 0.1.

• RAM: optim: SGDM (lr = 0.1, momentum = 0, weight-decay = 1.5 × 10−3), αk =
1.0, βk = 1.0, δ = 0.1, p = 1,m = 10, weight-decay = 1.5× 10−3, lr-decay = 0.06.

• AdaSAM: optim: SGDM (lr = 0.1, momentum = 0, weight-decay = 1.5 × 10−3), αk =
1.0, βk = 1.0, c1 = 0.01, p = 1,m = 10, weight-decay = 1.5× 10−3, lr-decay = 0.06.
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(a) CIFAR-10/ResNet18
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(b) CIFAR-10/WideResNet16-4
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(c) CIFAR-100/ResNeXt50
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(d) CIFAR-100/DenseNet121

Figure 5: Test accuracy of ResNet18/WideResNet16-4 on CIFAR-10 and ResNeXt50/DenseNet121
on CIFAR-100.

Figure 5 shows the test accuracy of different optimizers for training ResNet18/WideResNet16-4 on
CIFAR-10 and ResNeXt50/DenseNet121 on CIFAR-100. The full results of final test accuracy are
listed in Table 1 in the main paper. From Figure 5, we find that the convergence behaviour of AdaSAM
is rather erratic during the first 120 epochs. However, it always climbs up and stabilizes to the highest
accuracy in the final 40 epochs. This phenomenon is due to the fact that AdaSAM uses a large weight-
decay (1.5× 10−3 vs. 5× 10−4 of SGDM) and large mixing parameter (βk = 1 ). We verify this
claim by doing tests on CIFAR-10/ResNet20. In Figure 6, we fixed other hyperparameters and tested
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the effect of different weight-decays of AdaSAM. It is clear that a smaller weight-decay can lead to
faster convergence on the training dataset, but often cause poorer generalization on the test dataset.
In Figure 7, we only changed β0 while fixing other hyperparameters (weight-decay=1.5× 10−3). We
can see a smaller β0 can lead to faster and more stable convergence at the beginning, but the final test
accuracy is suboptimal. This phenomenon coincides with the results in [34].

0 20 40 60 80 100 120 140 160
epochs

10 1

100

Tr
ai

n 
Lo

ss

SGDM
AdaSAM: wd=0.0001
AdaSAM: wd=0.0005
AdaSAM: wd=0.0010
AdaSAM: wd=0.0015

(a) Train Loss

0 20 40 60 80 100 120 140 160
epochs

40

50

60

70

80

90

100

Tr
ai

n 
Ac

cu
ra

cy
 %

SGDM
AdaSAM: wd=0.0001
AdaSAM: wd=0.0005
AdaSAM: wd=0.0010
AdaSAM: wd=0.0015

(b) Train Accuracy

0 20 40 60 80 100 120 140 160
epochs

100

Te
st

 L
os

s

SGDM
AdaSAM: wd=0.0001
AdaSAM: wd=0.0005
AdaSAM: wd=0.0010
AdaSAM: wd=0.0015

(c) Test Loss

0 20 40 60 80 100 120 140 160
epochs

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
%

SGDM
AdaSAM: wd=0.0001
AdaSAM: wd=0.0005
AdaSAM: wd=0.0010
AdaSAM: wd=0.0015

(d) Test Accuracy

Figure 6: Experiments on CIFAR-10/ResNet20 with different weight-decay (abbreviated as wd in the
legends). The weight-decay of SGDM is 0.0005.
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Figure 7: Experiments on CIFAR-10/ResNet20 with different β0.
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(a) Test loss on CIFAR10/ResNet18

0 20 40 60 80 100 120 140 160
epochs

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
%

SGDM: epoch=80
SGDM: epoch=120
SGDM: epoch=160
Lookahead: epoch=80
Lookahead: epoch=120
Lookahead: epoch=160
AdaSAM: epoch=80
AdaSAM: epoch=120
AdaSAM: epoch=160

60 80 100 120 140 160
92

93

94

95
94.8294.58

94.99 95.17

(b) Test accuracy on CIFAR10/ResNet18

0 20 40 60 80 100 120 140 160
epochs

100

Te
st

 L
os

s

SGDM: epoch=80
SGDM: epoch=120
SGDM: epoch=160
Lookahead: epoch=80
Lookahead: epoch=120
Lookahead: epoch=160
AdaSAM: epoch=80
AdaSAM: epoch=120
AdaSAM: epoch=160

(c) Test loss on CIFAR10/WideResNet16-4
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(d) Test accuracy on CIFAR10/WideResNet16-4
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(e) Test loss on CIFAR100/ResNeXt50
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(f) Test accuracy on CIFAR100/ResNeXt50
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(g) Test loss on CIFAR100/DenseNet121
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(h) Test accuracy on CIFAR100/DenseNet121

Figure 8: Training deep neural networks for 80,120,160 epochs. We report the final test accuracy of
AdaSAM for training 80,120,160 epochs at nearby point in the nested figure. The final test accuracy
of SGDM for training 160 epochs is also reported for comparison.
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Since AdaSAM requires additional matrix computation in each iteration, it consumes more time if
training for the same number of epochs as SGDM. Nonetheless, AdaSAM can achieve comparable test
accuracy if decaying the learning rate earlier and stopping the training earlier. As indicated in Table 1,
SGDM and Lookahead can serve as the strong baselines, so we conducted tests of comparisons
between AdaSAM and SGDM/Lookahead to see the effectiveness of AdaSAM when training with
fewer epochs. Results in Figure 8 show that the final test accuracy of AdaSAM for training 80 or 120
epochs can match or even surpass the test accuracy of SGDM for training 160 epochs. Therefore, the
generalization benefit from AdaSAM pays for its additional cost.

In Table 2 in Section 4, we report the memory, per-epoch running time, and total running time of
AdaSAM compared with SGDM. Here, we give more comprehensive results in Table 5, including the
epochs and final test accuracy (AdaHessian ran out of memory in our device for training ResNeXt50
and DenseNet121). It shows that except for ResNet18, by using SGD as the baseline, AdaSAM
can achieve a comparable solution within fewer training epochs and save computation time. Also,
AdaSAM is far more efficient than the second-order optimizer AdaHessian.
Remark 6. Since all the methods and neural networks were implemented and tested with the Python
language, the measured memory and time may not exactly reflect the actual performance of each
optimizer. Nonetheless, the observed results indicate that our method is efficient even though we did
not do code optimization. Besides, we point out that the per-epoch running time of AdaSAM can be
reduced by reusing matrix multiplications as discussed in Section B.2.

Table 5: The cost and final test accuracy compared with SGDM. Memory, per-epoch time, to-
tal training epochs, total running time, and accuracy are abbreviated as “m",“t/e", “e", “t", “a",
respectively.

Cost (× SGDM) CIFAR10/ResNet18 CIFAR10/ResNet20
& accuracy m t/e e t a(%) m t/e e t a(%)

SGDM 1.00 1.00 1.00 1.00 94.82 1.00 1.00 1.00 1.00 92.03
AdaHessian 2.33 5.78 1.00 5.78 94.36 1.78 3.59 1.00 3.59 91.92
AdaSAM 1.73 1.78 0.56 1.00 94.81 1.14 1.34 0.63 0.83 92.01

Cost (× SGDM) CIFAR10/ResNet32 CIFAR10/ResNet44
& accuracy m t/e e t a(%) m t/e e t a(%)

SGDM 1.00 1.00 1.00 1.00 92.86 1.00 1.00 1.00 1.00 93.10
AdaHessian 2.01 4.10 1.00 4.10 92.18 2.15 4.66 1.00 4.66 92.74
AdaSAM 1.12 1.17 0.69 0.80 92.89 1.12 1.22 0.63 0.76 93.13

Cost (× SGDM) CIFAR10/ResNet56 CIFAR10/WideResNet16-4
& accuracy m t/e e t a(%) m t/e e t a(%)

SGDM 1.00 1.00 1.00 1.00 93.47 1.00 1.00 1.00 1.00 94.90
AdaHessian 2.32 5.35 1.00 5.35 92.40 2.35 5.97 1.00 5.97 94.04
AdaSAM 1.21 1.35 0.63 0.84 93.47 1.26 1.28 0.63 0.80 94.94

Cost (× SGDM) CIFAR100/ResNet18 CIFAR100/ResNeXt50
& accuracy m t/e e t a(%) m t/e e t a(%)

SGDM 1.00 1.00 1.00 1.00 77.27 1.00 1.00 1.00 1.00 78.41
AdaHessian 2.56 5.87 1.00 5.87 76.59 >1.6 - - - -
AdaSAM 1.85 1.79 0.56 1.00 77.33 1.30 1.16 0.50 0.58 78.37

Cost (× SGDM) CIFAR100/DenseNet121
& accuracy m t/e e t a(%)

SGDM 1.00 1.00 1.00 1.00 78.49
AdaHessian >1.8 - - - -
AdaSAM 1.16 1.19 0.50 0.60 78.84

C.4 Experiments on Penn Treebank

Our experimental setting on training LSTM models on Penn Treebank dataset was based on the
official implementation of AdaBelief [66]. Results in Table 3 were measured across 3 repeated runs
with independent initialization. The parameter setting of the LSTM models are the same as that
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of AdaBelief. The baseline optimizers are SGDM, Adam, AdaBelief and Lookahead. We tuned
hyperparameters on the validation dataset for each optimizer.

For SGDM, we tuned the learning rate (abbr. lr) via grid-search in {1, 10, 30, 100} and found that
lr=10 performs best on 2,3-layer LSTM. For 1-layer LSTM, we set lr=30 and momentum=0 as that in
AdaBelief because we found such setting is better.

For Adam, we tuned the learning rate via grid-search in {1×10−3, 2×10−3, 5×10−3, 8×10−3, 1×
10−2, 2× 10−2} and found 5× 10−3 performs best.

For AdaBelief, we tuned the learning rate and found 5× 10−3 is better than 1× 10−2 used in [66].

For Lookahead, as suggested by the authors in [65], Adam with best hyperparameter setting is set as
the inner optimizer, then the interpolation parameter α = 0.5 and steps = 5.

The batch size is 20. We trained for 200 epochs and decayed the learning rate by 0.1 at the 100th and
150th epoch. For pAdaSAM, since the learning rate decay has been applied to the inner optimizer,
we did not apply decay to αk, i.e. αk = 1 is kept unchanged during the training.

Table 6: Test perplexity on Penn Treebank for 1,2,3-layer LSTM. Lower is better. AdaSAM* denotes
AdaSAM with β0 = 100.

Method 1-Layer 2-Layer 3-Layer

SGDM 85.21±.36 67.12±.14 61.56±.14
Adam 80.88±.15 64.54±.18 60.34±.22
AdaBelief 82.41±.46 65.07±.02 60.64±.14
Lookahead 82.01±.07 66.43±.33 61.80±.10
AdaSAM 155.38±.35 159.07±1.58 163.60±.81
AdaSAM* 91.23±.69 68.53±.13 63.74±.09
pAdaSAM 79.34±.09 63.18±.22 59.47±.08

Our method is pAdaSAM, which set optim = Adam in Algorithm 4, where Adam is the tuned
baseline. AdaSAM with the default setting is not suitable for this task. To give a full view of the
vanilla AdaSAM, we also report the results of AdaSAM with default setting and the tuned AdaSAM
(β0 = 100) in Table 6.
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(a) 1-Layer LSTM
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(b) 2-Layer LSTM
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(c) 3-Layer LSTM

Figure 9: Experiments on Penn Treebank. Validation perplexity of training 1,2,3-Layer LSTM.

We think the scaling of the model’s parameters is important for this problem. Since the batch size is
very small, the gradient estimation is too noisy to capture the curvature information of the objective
function. Hence the quadratic approximation in AdaSAM is rather inaccurate and further scaling by
βk is required. For pAdaSAM, the scaling of the stochastic gradient is done by the inner optimizer
Adam, so αk can be set as default.

D Additional experiments

This section is about the techniques and hyperparameters used in our method. The computational
costs with different batch sizes are also reported in the end.

36



D.1 Check of positive definiteness

In Algorithm 3, we simplify the check of positive definiteness of Hk described in Section 2.2 by
(∆xk)Trk > 0. To see the effect of such simplification, we first give the pseudocode in Algorithm 5
that faithfully follows the procedure of checking positive definiteness in Section 2.2. We designate it
as AdaSAM0. Note that the check of (14) is reflected in Line 17 in Algorithm 5.

We compared AdaSAM (Algorithm 3) with AdaSAM0 via experiments on MNIST and CIFAR-
10/ResNet20. The experimental setting was the same as that in Section C.

The results on MNIST are shown in Figure 10. We trained 100 epochs with full-batch (batch-
size=12K) and mini-batch (batchsize=3K). The evolution of αk in Figure 10(c) implies that the
Hessian approximation Hk in AdaSAM ( αk = βk = 1) is hardly positive definite. So AdaSAM0
reduces αk to ensure Condition (13) holds. However, in full-batch training, there exists no noise
in gradient evaluations, so rT

kHkrk > 0 is suffice to ensure Hkrk is a descent direction. In other
words, Condition (13) may be too stringent to prevent the acceleration effect of AdaSAM. We also
find that even running without checking of positive definiteness, the result is comparable. The result
of AdaSAM0 with µ = 0.9 suggests that the optimization is trapped in a local minima. In mini-batch
training, Condition 13 is violated more frequently if using αk = 1, which can be inferred from the
evolution of αk of AdaSAM. Switching to optim when (∆xk)Trk ≤ 0 is better than ignoring the
violation of the positive definiteness. For AdaSAM0, we find using small µ is proper.

The results on CIFAR-10/ResNet20 are shown in Figure 11. We tested AdaSAM0 with different
selections of µ. We see smaller µ is better. We also find that the value of λk is restrictive in training
ResNet20. For µ = 0, the Condition (14) is seldom violated during training, which means αk is not
need to be reduced to a smaller value to make Hk positive definite. Therefore, AdaSAM0 with µ = 0
has nearly the same behaviour as AdaSAM.

With these tests, we confirm that using the sanity check of positive definiteness of Hk in Algorithm 3
does not lead to any deterioration.

Algorithm 5 AdaSAM0. AdaSAM with the check of (13)
Input: x0 ∈ Rd,m = 10, αk = 1, β0 = 0.1, βk = 1(k ≥ 1), γ = 0.9, µ = 10−8, ε =
10−8,max_iter > 0.
Output: x ∈ Rd

1: ∆x̂0 = 0,∆r̂0 = 0
2: for k = 0, 1, . . . ,max_iter do
3: rk = −∇fSk

(xk)
4: if k = 0 then
5: xk+1 = xk + βkrk
6: else
7: mk = min{m, k}
8: ∆x̂k = γ ·∆x̂k−1 + (1− γ) ·∆xk−1

9: ∆r̂k = γ ·∆r̂k−1 + (1− γ) ·∆rk−1

10: X̂k = [∆x̂k−mk+1,∆x̂k−mk+2, · · · ,∆x̂k]

11: R̂k = [∆r̂k−mk+1,∆r̂k−mk+2, · · · ,∆r̂k]
12: δk = c1‖rk‖22/

(
‖∆x̂k‖22 + ε

)
13: Yk = X̂k + βkR̂k, Zk = R̂T

k R̂k + δkX̂
T
k X̂k

14: Compute λk = λmax

((
Y T
k

R̂T
k

)(
Yk R̂k

)( 0 Z†k
Z†k 0

))
.

15: α̃k = αk
16: if λk > 0 then
17: α̃k = min{αk, 2βk(1− µ)/λk}
18: end if
19: xk+1 = xk + βkrk − α̃kYkZ†kR̂T

k rk
20: end if
21: Apply learning rate schedule of αk, βk
22: end for
23: return xk
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(d) Train Loss (batchsize=3K)

0 20 40 60 80 100
epochs

10 7

10 5

10 3

10 1

101

103

Sq
ua

re
d 

no
rm

 o
f g

ra
di

en
t AdaSAM0: = 0.9

AdaSAM0: = 0.1
AdaSAM0: = 0.01
AdaSAM0: = 0
AdaSAM w/o check
AdaSAM
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Figure 10: Experiments on MNIST. Training loss, squared norm of gradient (abbr. SNG) and αk for
batch size = 12K, 3K.
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Figure 11: Experiments on CIFAT-10/ResNet20. Training with AdaSAM0 with µ = 0, 0.2, 0.4, 0.6,
0.8, 1. (c) and (d) show the evolutions of λk and αk in AdaSAM0 during training.

D.2 Effect of damped projection

Damped projection is introduced to overcome the weakness of the potential indefiniteness of Hk in
Anderson mixing. Its necessity has been justified in theory in Section 3. In practice, though we always
initially set αk = 1 in AdaSAM, using damped projection can help improve the effectiveness. As
shown in Figure 10, temporarily setting αk = 0 when (∆xk)Trk ≤ 0 did improve convergence com-
pared with the way of keeping αk = 1 unchanged. We also conducted tests on CIFAR-10/ResNet20,
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where the learning rate decay of αk was forbidden during training. The result is shown in Figure 12.
We see the learning rate decay of αk improves generalization.
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Figure 12: Experiments on CIFAT-10/ResNet20. Training with/without damped projection.

D.3 Effect of adaptive regularization

AdaSAM is a special case of SAM with selection of δk as (16). Note that in our implementation
Algorithm 3, we omit the term c2β

−2
k . In fact, such special choice is important for SAM to be

effective since it can roughly capture the curvature information. The comparison between AdaSAM
and RAM in experiments on MNIST and CIFARs confirms the superiority of the regularization term
of AdaSAM. Here, we further compare the choice of (16) with two other choices:

δk = δ, (Option I),

δk = δβ−2
k , (Option II),

We designate SAM with δk chosen as Option I (Option II) as SAM† (SAM‡).

Table 7: Test accuracy on training CIFAR-10/ResNet20. The number on the first row are the
regularization parameter δs.

103 102 101 1 10−1 10−2 10−3

SAM† 91.57±.17 91.28±.27 91.40±.03 91.63±.01 91.65 ±.24 91.60±.24 91.67 ±.31
SAM‡ 91.48±.23 91.64±.30 91.74±.20 91.91±.19 91.62±.11 91.68±.34 91.48±.29

Experimental results on MNIST when training CNN with batch size of 12K, 3K are reported in
Figure 13. Note that c1 = 10−4 was unchanged across two tests of different batch sizes. We see
AdaSAM adaptively adjusts δk during training and always achieves the best result. On the contrary,
the proper δ for SAM† is dependent on the batch size.

For the tests on CIFAR-10/ResNet20, we made considerable efforts to tune δ in SAM†/SAM‡. The
results corresponding to different δs are shown in Table 7. We also plot related curves of SAM‡ and
AdaSAM in Figure 14, from which we see the δk determined in Line 12 in Algorithm 3 roughly
matches the scheme of SAM‡, i.e. δk ≥ Cβ−2

k for some constant C > 0 , thus conforming our
heuristic analysis about the convergence of AdaSAM in Section 3. Observed from Figure 14(c), we
set δ = 0.5 in SAM‡ to roughly match the evolution of δk in AdaSAM and obtain a slightly better
test accuracy 92.05%. These results demonstrate the effectiveness of our choice of δk in AdaSAM.
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Figure 13: Experiments on MNIST. SAM† with δ = 10−2, 10−4, 10−6, 10−8 and AdaSAM. Training
loss, training accuracy, squared norm of gradient (abbr. SNG) and δk with batchsize (abbr. b) of 12K,
3K are reported.
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Figure 14: Experiments on CIFAT-10/ResNet20. Training with SAM‡ with δ = 0.1, 1, 10. (c) shows
the evolution of δk in SAM‡ and AdaSAM during training.

D.4 Moving average

For our implementation Algorithm 3 and Algorithm 4, we incorporate moving average as an option.
In deterministic quadratic optimization, the minimal residual property still holds since the relation
R̂k = −∇f(xk)X̂k is maintained. In general stochastic optimization, We find moving average may
enhance the robustness to noise or generalization ability.
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Figure 15: Experiments on MNIST. (a)(b) Training loss and square norm of gradient (abbr. SNG) of
AdaSAM with/without moving average (abbr. MA). (c)(d) Training loss and SNG of AdaSAM-VR
with/without MA. Batch size n =2K, 4K, 6K.

In Figure 15, we report AdaSAM/AdaSAM-VR with/without moving average for mini-batch training
on MNIST. Figure 15(a) indicates that AdaSAM without moving average stagnates when batchsize is
2K due to noise in gradient estimates. By incorporating variance reduction, AdaSAM-VR without
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moving average recovers the fast convergence rate. From this example, we conclude that moving
average may help reduce the variability in gradient estimates and improve convergence.

We also reran the experiments on CIFAR-10/CIFAR-100 to see the effect of moving average. Results
are reported in Table 8 and plotted in Figure 16. There seems to be no significant differences judging
from final test accuracy, while AdaSAM without moving average can be faster at the beginning as
indicated from Figure 16.

We reran the experiments on Penn Treebank. Results are shown in Table 9 and Figure 17. Similar to
the phenomenon on CIFARs, pAdaSAM without moving average converges faster at the beginning.
However, its final validation perplexity and test perplexity is slightly suboptimal compared with
pAdaSAM with moving average.

With these experimental results, we think although moving average is not needed in our theoretical
analysis, it may be beneficial in stabilizing the training or improving generalization ability.

Table 8: Experiments on CIFAR10/CIFAR100. WideResNet is abbreviated as WResNet.
Method CIFAR10 CIFAR100

ResNet18 ResNet20 ResNet32 ResNet44 ResNet56 WResNet ResNet18 ResNeXt DenseNet

AdaSAM w MA 95.17±.10 92.43±.19 93.22±.32 93.57±.14 93.77±.12 95.23±.07 78.13±.14 79.31±.27 80.09±.52
AdaSAM w/o MA 95.22±.13 92.52±.09 93.08±.22 93.62±.05 93.89±.16 95.16±.04 78.09±.27 79.57±.21 80.03±.25
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Figure 16: Experiments on CIFARs. Training CIFAR-10/ResNet18, CIFAR-10/WideResNet16-4,
CIFAR-100/ResNeXt50, and CIFAR-100/DenseNet121 using AdaSAM with moving average (abbr.
MA) or AdaSAM without moving average. Curves of training accuracy and test accuracy are reported.
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(c) 3-Layer LSTM

Figure 17: Experiments on Penn Treebank. Validation perplexity of training 1,2,3-Layer LSTM.
Comparison between pAdaSAM with moving average (abbr. MA) and pAdaSAM without MA.
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Table 9: Test perplexity on Penn Treebank for 1,2,3-layer LSTM. Comparison between pAdaSAM
with moving average (abbr. MA) and pAdaSAM without MA.

Method 1-Layer 2-Layer 3-Layer

pAdaSAM w/o MA 80.27±.09 64.74±.02 59.72±.05
pAdaSAM w MA 79.34±.09 63.18±.22 59.47±.08

D.5 Alternating iteration

Alternating iteration is incorporated in Algorithm 3 and Algorithm 4: given an optimizer optim , in
each cycle, we iterate with optim for (p − 1) steps and then apply AdaSAM in the p-th step, the
result of which is the starting point of the next cycle.

This option can be helpful to save per-iteration computational cost. We also tested this option in the
experiments on CIFAR. We give some results here.

We tested vanilla SGD (momentum = 0) alternated with AdaSAM, and Adam alternated with
AdaSAM, which are denoted as AdaSAM-SGD and AdaSAM-Adam respectively. The number of
steps of one cycle is 5, i.e. p = 5. Results listed at the bottom of Table 10 show AdaSAM-Adam
gives a thorough improvement over Adam. AdaSAM-SGD can even beat AdaSAM on CIFAR-
100/ResNeXt50, and exceed the test accuracy of SGDM by 1.06%. Hence alternating iteration can
reduce computational overhead while achieving comparable test accuracy.

Table 10: Final TOP1 test accuracy (%) on CIFAR10/CIFAR100. Alternating iterations are AdaSAM-
SGD and AdaSAM-Adam.

Method CIFAR10 CIFAR100

ResNet18 ResNet20 ResNet32 ResNet44 ResNet56 WResNet ResNet18 ResNeXt DenseNet

SGDM 94.82±.15 92.03±.16 92.86±.15 93.10±.23 93.47±.28 94.90±.09 77.27±.09 78.41±.54 78.49±.12
Adam 93.03±.07 91.17±.13 92.03±.28 92.28±.62 92.39±.23 92.45±.11 72.41±.17 73.57±.17 70.80±.23
AdaSAM 95.17±.10 92.43±.19 93.22±.32 93.57±.14 93.77±.12 95.23±.07 78.13±.14 79.31±.27 80.09±.52
AdaSAM-SGD 95.04±.22 92.26±.10 92.92±.28 93.01±.15 93.71±.15 94.99±.19 77.81±.12 79.47±.44 79.58±.39
AdaSAM-Adam 93.86±.23 92.27±.29 92.67±.09 92.94±.30 93.22±.12 93.88±.20 74.46±.51 75.34±.20 75.21±.49

D.6 Additional experiments on MNIST

We provide some additional experiments on MNIST that is omitted in the main paper.

Diminishing stepsize Our theoretical analysis of SAM in Section 3 takes the diminishing condi-
tion (18a) as an assumption of βk in Theorems 1, 2, 3. Nonetheless, using constant stepsize and
decaying after several epochs is a common way in practice. To test the diminishing condition, we set
the t-th epoch learning rate for SGD/Adam/SdLBFGS and the t-th epoch mixing parameter βk for
RAM/AdaSAM as ηt = η0(1 + bt/20c)−1, where t denotes the number of epochs, η0 is tuned for
each optimizer. For SGD, Adam and SdLBFGS, η0 is 0.2, 0.001, 0.1, respectively. For RAM and
AdaSAM, η0 is 2. The results of training with batch sizes of 3K and 6K are reported in Figure 18.
AdaSAM still shows the better convergence rate.
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Figure 18: Experiments on MNIST (with diminishing stepsize). (a)(b) Training loss and square norm
of gradient (abbr. SNG) using batchsize n= 6K; (c)(d) Training loss and SNG using n= 3K.
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Figure 19: Experiments on MNIST (with variance reduction). (a)(b) Training loss and square norm
of gradient (abbr. SNG) using batchsize n= 2K; (c)(d) Training loss and SNG using n= 4K.

Comparisons with SVRG and SdLBFGS-VR We also compared with SVRG and SdLBFGS-VR
[60]. The learning rates for SVRG and SdLBFGS-VR are 0.2 and 0.1. Results of training with batch
sizes of 2K and 4K are shown in Figure 19. We find that AdaSAM-VR is more effective compared
with the other two variance reduced optimizers.

D.7 Discussion about the hyperparameters

As explained in Section C.1, though at first glance AdaSAM has several hyperparameters to tune,
we actually only need to individually tune the regularization parameter c1 besides other common
hyperparameter such as weight-decay in almost all the cases. For example, setting c1 = 10−2 is fairly
robust in our experiments in image classification on CIFARs and language model on Penn Treebank.
We tested various deep neural networks on CIFAR-10 and CIFAR-100, while the hyperparameters
were kept unchanged across different tests.

We conducted tests to see the effect of the historical length m in AdaSAM and pAdaSAM. As pointed
in [7] that the quasi-Newton updating is inherently an overwriting process rather than an average
process, large noise in gradient estimates can make a secant method rather unstable. On the contrary,
since AM is identified as a multisecant method, it leverages more secant conditions in one update
which may alleviate the negative impact of a noisy secant condition. Hence, AM may be more
tolerant to noise. The historical length m determines how many secant conditions are taken into
consideration at one time, so a larger m is supposed to make AdaSAM more tolerant to noise.
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Figure 20: Experiments on MNIST. Training loss and square norm of gradient (abbr. SNG) using
batchsize n= 2K. AdaSAM without moving average and m = 10, 20, 30, 40.

We set m = 20 in the experiments on MNIST. In Figure 15(a) and (b), we find AdaSAM without
moving average stagnates when training with batchsize = 2K. We set m to 10,30,40 to see if any
difference happens. The result is shown in Figure 20, from which we see using a larger m = 30 did
help convergence. Further increasing m = 40 does not lead to lower training loss, which may be due
to the potential numerical weakness in solving (11) with (12) directly.

The results related to different m in CIFAR-10/ResNet20 and 3-layer LSTM on Penn Treebank are
reported in Figure 21. A larger m seems to be beneficial to generalization ability. m = 5 or 10 is
proper for these tests.

D.8 Computational efficiency

The additional per-iteration computational cost of AdaSAM/pAdaSAM compared with SGD is mainly
due to computing (12). The cost is a potential limitation of our method. Fortunately, this part of
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Figure 21: (a)(b) Experiments on CIFAR-10/ResNet20. AdaSAM with m = 1, 5, 10, 20. (c)(d)
Experiments on training a 3-layer LSTM on Penn Treebank. pAdaSAM with m = 2, 3, 5, 10.

computation is parallel-friendly since the main operation is dense matrix multiplications. Therefore,
when the cost of function evaluations and gradient evaluations dominates the computation, the extra
overhead incurred by AdaSAM is negligible. In high performance computing, we expect that the
matrix computation in AdaSAM can be further optimized.
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Figure 22: (a) Running time of one epoch of training CIFAR-10/ResNet20; (b) Running time of one
epoch of training CIFAR-10/ResNet56. Batch size = 128, 256, 512, 1024. The numbers marked
beside the curve of AdaSAM show the computational time of AdaSAM vs. SGDM.

Figure 22 reports the running time of one epoch of training ResNet20 and ResNet56 on CIFAR-10
with batch size of 128, 256, 512, 1024. Optimizers are SGDM, Adam, SdLBFGS and AdaSAM.
It can be observed that the additional overhead of AdaSAM gradually becomes marginal with the
increment of batch size. Therefore, AdaSAM is expected to be more computationally efficient in
large mini-batch training. Also, AdaSAM is more efficient than the stochastic quasi-Newton method
SdLBFGS, which is reasonable since SdLBFGS incurs 2x cost of gradient evaluations compared
with AdaSAM, as discussed in Section 5. Finally, as confirmed by the experiments (Figure 8 and
Table 5), AdaSAM can achieve comparable solutions while using fewer training epochs, which
can save computation time. The proposed alternating iteration scheme can also serve as a trade-off
between computational cost and final accuracy or loss.
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