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1 PSEUDOCODE OF DGC

We present the pseudocode of DGC in terms of training (Algorithm 1) and testing (Algorithm 2).

Algorithm 1: Deep Goal-Oriented Clustering—Training
Input: the observation x, the side-information y, the encoder network fenc, the decoder network
fdec, the task networks {f itask}Ki=1 where K is the number of clusters wanted

Result: The predicted cluster assignment ĉ
1. Encode input x, map to the parameters of q(z|x): µzµzµz,ΣzΣzΣz = fenc(x)
2. Sample latent representations from q(z|x): z ∼ N (µzµzµz,ΣzΣzΣz)
3. Decode z and reconstruct: θθθx = fdec(z)
4. Sample reconstruction: x̂ ∼ p(xxx|θθθ)
5. Map z to parameters of p(y|z, c):
if y is discrete then

πyπyπy = f itask(z), ∀i
else

µyµyµy,ΣyΣyΣy = f itask(z), ∀i
end
6. L = LELBO + Ltask(y, ŷ) and backpropogate
7. Calculate

qtrain(c = k|z, y) =
elog p(y|z,k)−Hmax(py|z,k) · p(k|z)∑
j e

log p(y|z,j)−Hmax(py|z,j) · p(j|z)
. (1)

8. Obtain cluster prediction ĉ = argmaxk{qtrain(c = k|z, y)}Kk=1

Algorithm 2: Deep Goal-Oriented Clustering—Testing
Input: the observation x, the encoder network fenc, the decoder network fdec, the task networks
{f itask}Ki=1 where K is the number of clusters wanted

Result: The predicted cluster assignment ĉ, the predicted side-information ŷ
1. Encode input x, map to the parameters of q(z|x): µzµzµz,ΣzΣzΣz = fenc(x)
2. Sample latent representations from q(z|x): z ∼ N (µzµzµz,ΣzΣzΣz)
3. Decode z and reconstruct: θθθx = fdec(z)
4. Sample reconstruction: x̂ ∼ p(xxx|θθθ)
5. Map z to parameters of p(y|z, c):
if y is discrete then

πyπyπy = f itask(z), ∀i
else

µyµyµy,ΣyΣyΣy = f itask(z), ∀i
end
6. Sample ŷ from p(y|z, c): ŷ ∼ p(y|z, c)
7. Calculate the entropies of the task network distributions {Hmax(py|z,k)}Kk=1
8. Calculate

qtest(c = k|z, y) =
e−Hmax(py|z,k) · p(k|z)∑
j e
−Hmax(py|z,j) · p(j|z)

(2)

9. Obtain cluster prediction ĉ = argmaxk{qtest(c = k|z, y)}Kk=1
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2 MATHEMATICAL DETAILS

2.1 INTUITIVE EXPLANATION FOR THE CHOICE OF q(Z|X)

Recall that we choose q(z|x) to be N
(
z|µ̃̃µ̃µz, σ̃̃σ̃σ

2
z I
)

where
[
µ̃̃µ̃µz, σ̃̃σ̃σ

2
z
]

= h(x; θ), with h being parame-
terized as a feed-forward neural network with weights θ. Although it may seem unnatural to use a
unimodal distribution to approximate a multimodal distribution, when the learned q(c|z, y) becomes
discriminative, dissecting the LELBO proposed in the main manuscript in the following way indicates
that such an approximation will not incur a sizeable information loss (see the Appendix for a detailed
derivation):

LELBO = Eq(z,c|x,y) log p(y|z, c)+Eq(z|x) log p(x|z)

−KL (q(c|z, y)||p(c))−
∑
k

λkKL (q(z|x)||p(z|c = k)) , (3)

where λk denotes q(c = k|z, y). Analyzing the last term in Eq. equation 3, we notice that if the
learned variational posterior q(c|z, y) is very discriminative and puts most of its weight on one specific
index c, all but one KL terms in the weighted sum will be close to zero. Therefore, choosing q(z|x)
to be unimodal to minimize that specific KL term would be appropriate, as p(z|c) is assumed to be a
unimodal normal distribution for all c.

2.2 THEORETICAL DERIVATIONS

This section provides detailed derivations for the theoretical claims made in the main manuscript.

Theorem 1. The variational lower bound for DGC is

log p(x, y) ≥ Eq(z,c|x,y) log p(y|z, c)︸ ︷︷ ︸
Probabilistic Ensemble

+Eq(z,c|x,y) log
p(x, z, c)
q(z, c|x, y)︸ ︷︷ ︸

ELBO for VAE with GMM prior

= LELBO .
(4)

Proof. We derive the LELBO as follows

log p(x, y) = log

∫
z

∑
c

p(x, y, z, c)dz

= log

∫
z

∑
c

p(x, y, z, c)
q(z, c|x, y)

q(z, c|x, y)dz

≥ Eq(z,c|x,y) log
p(x, y, z, c)
q(z, c|x, y)

= Eq(z,c|x,y) log p(y|z, c)︸ ︷︷ ︸
Probabilistic Ensemble

+Eq(z,c|x,y) log
p(x, z, c)
q(z, c|x, y)︸ ︷︷ ︸

ELBO for VAE with GMM prior︸ ︷︷ ︸
LLLELBO

.

(5)

Proposition 1. To explain the fact that choosing q(z|x) to be unimodal will not incur a sizable
information loss when the learned q(c|x) is discriminative, we dissect the LELBO as follows (Eq.3 in
the main paper)

LELBO = Eq(z,c|x,y) log p(y|z, c)+Eq(z|x) log p(x|z)

−KL (q(c|y, z)||p(c))−
∑
k

λkKL (q(z|x)||p(z|c = k)) . (6)
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Proof.

LELBO = Eq(z,c|x,y) log p(y|z, c) + Eq(z,c|x,y) log
p(x, z, c)
q(z, c|x, y)

= Eq(z,c|x,y) log p(y|z, c) + Eq(z,c|x,y) log
p(x|z)p(z|c)p(c)
q(z|x)q(c|z, y)

= Eq(z,c|x,y) log p(y|z, c) + Eq(z|x) log p(x|z)−KL (q(c|y, z)||p(c)) + Eq(z,c|x,y) log
p(z|c)
q(z|x)

(7)

where

Eq(z,c|x,y) log
p(z|c)
q(z|x)

= Eq(c|y,z)Eq(z|x) log
p(z|c)
q(z|x)

=
∑
k

λkKL (q(z|x)||p(z|c = k))

where λk = q(c = k|y, z).

Proposition 2. Choosing q(c|z, y)) requires us to decompose LELBO as follows

LELBO = Eq(z,c|x,y) log p(y|z, c) + Eq(z|x) log
p(x, z)
q(z|x)

− Eq(z|x)KL (q(c|z, y)||p(c|z)) . (8)

Proof.

LLLELBO = Eq(z,c|x,y) log p(y|z, c) + Eq(z,c|x,y) log
p(x, z, c)
q(z, c|x, y)

= Eq(z,c|x,y) log p(y|z, c) + Eq(z,c|x,y) log
p(c|x, z)p(x, z)

q(z|x)q(c|z, y)

= Eq(z,c|x,y) log p(y|z, c) + Eq(z|x)Eq(c|z,y)
[
log

p(x, z)

q(z|x)
− log

q(c|z, y)

p(c|z)

]
= Eq(z,c|x,y) log p(y|z, c) + Eq(z|x) log

p(x, z)

q(z|x)
− Eq(z|x)KL (q(c|z, y)||p(c|z))

(9)

Proposition 3. The solution to the following convex program

min
q(c|z,y)

f0(q) = KL (q(c|z, y)||p(c|z))− Eq(c|z,y) log p(y|z, c) ,

s.t.
∑
k

q(c = k|z, y) = 1, q(c = k|z, y) ≥ 0, ∀k
(10)

is

q(c = k|z, y) =
p(y|z, c = k) · p(c = k|z)∑
k p(y|z, c = k) · p(c = k|z)

. (11)

Proof. First, we note that the constraint, q(c = k|z, y) ≥ 0 for all k, is not needed (and effectively
redundant), as the KL term in the objective function is not defined otherwise. Now consider a convex
program that takes the form of

min
t∈Rk

+

f0(t)

s.t. 1T t = 1 .
(12)

where f0 is a convex function and “�” denotes “element-wise greater than or equal to.” Forming the
Lagrangian, we have

L (t, γ) = f0(t) + γ
(

1T t− 1
)

The Karush–Kuhn–Tucker conditions state that the optimal solution dual, (t∗, γ∗), satisfies the
following
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• −t∗ � 0

• 1T t∗ − 1 = 0

• ∇tL (t∗, γ∗) = 0

Since
∇tL (t, γ) = ∇tf0(t) + γ · 1

the third condition implies that

∇tL (t∗, γ∗) = ∇tf0(t∗) + γ∗ · 1 = 0 . (13)

Let t = q(c|z, y) (i.e. tk = q(c = k|y, z)), and f0(t) as being specified in Eq. 10, we have

∇tkf0(t) =
∂

∂tk

(∑
k

tk log
tk

p(c = k|z)
−
∑
k

tk log p(y|z, c = k)

)

= log
tk

p(c = k|z)
+ 1− log p(y|z, c = k) .

(14)

Based on the condition in Eq. 13, we thus have

∇tkL (t∗, γ∗) = log
t∗k

p(c = k|z)
+ 1− log p(y|z, c = k) + γ∗ = 0

which leads to
t∗k = elog p(y|z,c=k)−1−γ∗ · p(c = k|z) .

Since γ∗ is chosen in a way such that
∑
k t
∗
k = 1 (by the second condition), we obtain the solution

t∗k =
t∗k∑
k t
∗
k

=
p(y|z, c = k) · p(c = k|z)∑
k p(y|z, c = k) · p(c = k|z)

. (15)

3 EXPERIMENTAL DETAILS

This section provides a detailed description of the experimental setups, such as the train/test splits,
the chosen network architectures, and the choices of learning rate and optimizer, for the experiments
conducted. We describe the architecture of DGC in terms of its encoder, decoder, and task network.
We adopt the following abbreviations for some basic network layers

• FL(di, do, f ) denotes a fully-connected layer with di input units, do output units, and
activation function f .
• Conv(ci, co, k1, f,BatchNorm2d, O(k2, s)) denotes a convolution layer with ci input

channels, co output channels, kernel size k1, activation function f , and pooling operation
O(k2, s) with another kernel size k2 and stride s.

3.1 NOISY MNIST

We extract images that correspond to the digits 2 and 7 from MNIST. The MNIST dataset is pre-
divided into training/testing sets, so we naturally use the images that correspond to the digits 2 and
7 from the training set as our training data (12,223 images), and that from the testing set as our
testing data (2,060 images). For each digit, we randomly select half of the images for that digit and
superpose noisy backgrounds onto those images, where the backgrounds are cropped from randomly
selected CIFAR-10 images (more specifically, we first randomly select a class, and then randomly
select a CIFAR image that corresponds to that class). See Fig. 1 for the ground truth and generated
noisy MNIST samples.

We use the Adam optimizer for optimization. We train with a batch size of 128 images, an initial
learning rate of 0.002, and a learning rate decay of 10% after every 10 epochs, for 100 epochs. We
use the following network architecture:
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(a) Ground Truth Images (b) Generated Images from DGC

Figure 1: Ground truth and generated noisy MNIST images.

Encoder
FL(784,500,ReLU)
FL(500,500,ReLU)
FL(500,2000,ReLU)
FL(2000,10,ReLU)

Decoder
FL(10, 2000,ReLU)
FL(200,500,ReLU)
FL(500,500,ReLU)
FL(500,784,ReLU)

Task Network
FL(10, 4,Sigmoid)

3.2 PACMAN

This section provides more details for our Pacman experiments.

3.2.1 EXPERIMENTAL SETUP

We create 20,000 points, with 10,000 for the outer annulus and 10,000 for the inner annulus. Both
annuli center at the origin, with the outer annulus having a radius of 1 and the inner annulus having a
radius of 0.8. We create the training set by sampling 7,500 points from each annulus, and leave the
rest of the data for testing. We create the linear responses by dividing the [0,1] range into 10,000
sub-intervals and assign the split points to the points in the inner annulus in a way that it is increasing
(from 1 to 0) in the clockwise direction. We create the exponential responses by evaluating the
exponential function at the aforementioned split points (generated for the linear responses), and then
assign them to the points on the outer annulus in a way that it is decreasing (from 0 to 1) in the
clockwise direction. Fig. 3 shows the ground truth (first row) and the generated (second row) 2D
Pacman annuli, the responses, and the 3D view of the entire dataset.

We use the Adam optimizer for optimization. We train with a batch size of 1,000 points, an initial
learning rate of 0.001, and a learning rate decay of 10% after every 10 epochs, for 80 epochs. We use
the following network architecture:

Encoder
FL(2,64,Sigmoid)
FL(64,128,Sigmoid)
FL(128,256,Sigmoid)
FL(256,60,Sigmoid)

Decoder
FL(60, 256,Sigmoid)
FL(256,128,Sigmoid)
FL(128,64,Sigmoid)
FL(64,2,Sigmoid)

Task Network
FL(64, 128,Sigmoid)
FL(128,4,Sigmoid)

3.2.2 ATTEMPTS USING UNSUPERVISED METHODS

As mentioned in the main manuscript, we have tried the following unsupervised methods on the
Pacman dataset to see how they perform: K-means clustering, hierarchical clustering with single
linkage, spectral clustering, and VaDE. Fig. 2 shows the clustering results. Besides the hierarchical
clustering with single linkage, none of the other methods can separate the two annuli in a satisfactory
way. It is worth noting that hierarchical clustering with other distance metrics would not work, and
choosing single linkage requires advanced, accurate knowledge on the dataset, which one would
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(a) K-Means Clustering (b) Spectral Clustering

(c) Hierarchical Clustering with Single
Linkage (d) VaDE Clustering

Figure 2: Clustering results obtained from four different unsupervised clustering methods, namely (a)
K-means clustering; (b) spectral clustering; (c) hierarchical clustering; and (d) VaDE.

not usually have for more complicated data (e.g, images or sound). This phenomenon echos a deep-
rooted obstacle for clustering methods in general: the concept of clusters is inherently subjective, and
different clustering methods can potentially produce very different clustering results. Furthermore,
for most unsupervised clustering methods, it is nontrivial to incorporate a prior given information
about the clusters, even when such information exists.

3.3 SVHN

We apply DGC to the Street View House Number (SVHN) dataset. We follow the standard procedure
to pre-process the images (Zagoruyko & Komodakis, 2016; Devries & Taylor, 2017), only normalizing
them so that the pixel values are within the [0,1] range.

We use the Adam optimizer for optimization. We train with a batch size of 128 images and a learning
rate of 0.0001 (stays constant throughout epochs) for 150 epochs. We use the following network
architecture:
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(a) Pacman Inputs (b) Pacman Task (c) Pacman Task vs Inputs

(d) Pacman Inputs (e) Pacman Task (f) Pacman Task vs Inputs

Figure 3: The first row shows the ground truth 2D Pacman, the responses y alone, and the combined
3D Pacman. The second row depicts the corresponding generated counterparts from DGC.

Encoder
Conv(3, 48, 5,ReLU,BatchNorm2d,MaxPool(2, 2))
Conv(48, 64, 5,ReLU,BatchNorm2d,MaxPool(2, 1))
Conv(64, 128, 5,ReLU,BatchNorm2d,MaxPool(2, 2))
Conv(128, 160, 5,ReLU,BatchNorm2d,MaxPool(2, 1))
Conv(160, 192, 5,ReLU,BatchNorm2d,MaxPool(2, 2))
Conv(192, 192, 5,ReLU,BatchNorm2d,MaxPool(2, 1))
Conv(192, 192, 5,ReLU,BatchNorm2d,MaxPool(2, 2))
Conv(192, 192, 5,ReLU,BatchNorm2d,MaxPool(2, 1))

FL(9408,3072, ReLU)
FL(3072,256, ReLU)

Decoder
FL(256, 3072,ReLU)

Conv(3072, 256, 4,ReLU,BatchNorm2d,MaxPool(2, 2))
Conv(256, 128, 4,ReLU,BatchNorm2d,MaxPool(2, 1))
Conv(128, 64, 4,ReLU,BatchNorm2d,MaxPool(2, 2))
Conv(64, 3, 4,ReLU,BatchNorm2d,MaxPool(2, 1))

Task Network
FL(256, 512, Sigmoid)
FL(512,1024, Sigmoid)
FL(1024,512, Sigmoid)
FL(512,256, Sigmoid)
FL(256,100, Sigmoid)

3.4 CAROLINA BREAST CANCER STUDY (CBCS)

3.4.1 DATA PROCESSING

Due to the fact that the histopathological images collected in CBCS are large (of size 3×3000×3000),
we use a pretrained VGG16 network to extract feature representations for each image, and use the
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extracted, fixed features as the input to DGC. The features are of dimension 512, and are the output of
the 8th layer of the pretrained VGG16 network.

As mentioned in the main manuscript, each patient has 2-4 associated histopathologial images. Due
to the scarce nature of medical data, we treat each image as an individual “patient” during training.
At test time, we obtain patient-level prediction by aggregating image-level predictions (i.e. taking
majority vote), and disregard patients with ambiguous patient-level predictions (e.g. a patient has 4
associated images. 2 of the images are predicted to be in cluster 0 and the other 2 are predicted to be
in cluster 1). The number of disregarded patients accounts for 3.4% of the entire population.

Finally, again due to the scarce nature of this dataset, we use 10-fold cross validation to obtain
predictions on the entire dataset. More specifically, we split the dataset into 10 subsets, train on 9 of
those subsets and predict on the remaining subset. We then repeat this process 10 times to obtain the
final predictions on the entire dataset.

3.4.2 EXPERIMENTAL SETUP

We use the Adam optimizer for optimization. We train with a batch size of 32, and an initial learning
rate of 0.001 and decay rate of 0.9 (for every 10 epochs), for 150 epochs. The network architecture
used is as follows

Encoder
FL(512,1024,ReLU)
FL(1024,2048,ReLU)
FL(2048,5,ReLU)

Decoder
FL(5, 2048,ReLU)

FL(2048,1024,ReLU)
FL(1024,512,ReLU)

Task Network
FL(5,3,Sigmoid)

3.4.3 TUMOR CHARACTERISTICS FOR CLUSTERS OBTAINED FROM VADE

Table 1: Tumor characteristics for each cluster from VaDE.
Features are color-coded as low , intermediate , or high
risk.

Cluster 0 Cluster 1 Cluster 2
N(%) N(%) N(%)

ER Status Positive 24 (51.1) 9 (56.3) 88 (63.3)
Negative 23 (48.9) 7 (43.8) 51 (36.7)

Grade
Low 6 (12.8) 0 (0) 22 (15.8)

Medium 8 (17.0) 3 (18.8) 47 (33.8)
High 33 (70.2) 13 (81.2) 70 (50.4)

Tumor Subtype

Luminal A 8 (22.9) 3 (23.1) 44 (44.0)
Luminal B 5 (14.3) 3 (23.1) 16 (16.0)

ER-/HER2+ 1 (2.9) 0 (0.0) 9 (9.0)
Basal-like 21 (60.0) 7 (53.8) 31 (31.0)

We present the tumor characteristics
for each cluster obtained from VaDE
in Tab. 1. As one can see, cluster 0,
who has the highest recurrence rate,
should have the most negative ER sub-
type, the most high grade, and the
most Basal-like tumor subtype. As
for grade, it is not the cluster with the
most high grade patients. For ER sta-
tus and tumor subtype, it does have
the highest negative ER subtype and
the most Basal-like tumor subtype, but
the differences are much less signifi-
cant compared to the clusters obtained
from DGC.
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