Supplementary Material

A. Fine-Grained Ablation Studies

This section provides detailed ablation studies for the Multi-period Time-Frequency
Cooperative Encoder Module (MTFCE) and the Dual-Phase Graph Pooling Module (DPGPM).

1. MTFCE Frequency-Band Analysis

This section presents an ablation study on the Multi-scale Time-Frequency Convolutional
Encoder (MTFCE) to dissect the importance of different EEG frequency bands. We trained and
evaluated FG-MSTGNN using only a single band as input to isolate its contribution, with all other
experimental parameters held constant.

As quantified in Table 1, all bands provided a substantial baseline accuracy, confirming that
emotion-related neural correlates are distributed across multiple oscillatory rthythms. The superior
performance of the Beta and Gamma bands aligns with existing literature that links
high-frequency oscillations to active cognitive processing and emotional arousal. However, the
ultimate performance is achieved only when all bands are integrated. The full-spectrum model
("All") outperformed any single-band configuration, surpassing the best individual band (Beta) by
1.98% on SEED and 5.00% on SEED-IV. This clear performance gap demonstrates that the
MTEFCE's design effectively fuses complementary spectral information, where low-frequency
bands (e.g., Delta, Theta) potentially provide contextual or sustained emotional background, and

high-frequency bands contribute finer-grained discriminative features.

Table 1. Classification accuracy (%) of FG-MSTGNN using individual frequency bands and
full-spectrum input.

Dataset Delta Theta Alpha Beta Gamma All
SEED 91.11 92.26 90.67 92.69 92.41 94.67
SEED-IV 76.58 77.41 77.59 80.28 79.45 85.28

Note: The "All" column represents the performance when using the full multi-band spectrum as input.

2. DPGPM Node-Scoring Analysis

We evaluated the importance of the three scoring metrics—Degree Centrality (DC), Feature
Importance (FI), and PageRank (PR), used in the DPGPM module. We ablated each metric
individually and in combination, reporting the performance on the SEED and SEED-IV datasets.

Table 2. Classification accuracy (%) of FG-MSTGNN with different combinations of scoring
components in the DPGPM module.

Dataset DC FI PR DC+FI DC+PR FI+PR All
SEED 75.83 75.37 76.67 7991 79.72 81.20 85.28
SEED-IV 93.52 93.52 92.96 94.11 94.26 94.08 94.67
Note:The "All" column represents the performance when integrating all three metrics (DC, FI, and
PR).

The results are summarized in Table 2. Removing any of the three metrics leads to a

performance drop. The removal of Feature Importance (FI) causes the most significant



degradation. The best performance is achieved when all three metrics are integrated,
demonstrating that they collectively contribute to stable and optimal graph pruning.

The MTFCE benefits from full-spectrum inputs to leverage information from complementary
rhythmic patterns, while the DPGPM achieves optimal stability and performance by integrating all

three node-scoring metrics.

B. Additional Dataset Validation: DEAP

Beyond the primary datasets, we assessed the adaptability of FG-MSTGNN on the DEAP
dataset to validate its effectiveness under different experimental conditions. The DEAP dataset
employs a different emotion model (valence/arousal) and a distinct 32-channel electrode
configuration, presenting a stringent test for model generalizability. We followed the standard
subject-independent (LOSO) evaluation protocol for a direct comparison with existing works.

As summarized in Table 3, our method consistently outperforms all recent benchmarks on
both valence and arousal dimensions. The observed improvements—3.01% for valence and 2.67%
for arousal over the previous best methods—are substantial, highlighting the model's ability to
capture core emotional features. The fact that FG-MSTGNN, without any paradigm-specific
tuning, successfully generalizes to DEAP's structure underscores a key strength: its dynamic graph
learning and multi-scale feature extraction mechanisms are inherently adaptable. This suggests
that the model learns a generalized representation of emotion-related brain dynamics rather than
memorizing dataset-specific artifacts, marking a significant step toward practical, cross-paradigm
EEG-based emotion recognition.

Table 3. Classification performance (Accuracy % / Standard Deviation %) on the DEAP dataset.

Method Year Valence Arousal
STFG-CAP 2022 48.22/7.83 58.53/15.18
TMS-DANN 2023 57.70/7.23 61.88/5.55

BCJDA 2024 62.98/6.38 64.32/9.15
DT-EEGNet 2024 63.44/4.59 63.87/2.38

DCDNet 2025 65.16/5.38 66.31/8.60

FG-MSTGNN (Ours)

2025

68.17/9.96

68.98 /6.84




