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A Methodology

A.1 Policy parameterization
We seek a parameterization for the policy mr,, that:

* Permits efficient sampling from z ~ m, (2|7);
* Permits efficient evaluation of log densities log 7, (2|7);

* Permits efficient evaluation of log density gradients V,, log 7, (2|T).

A natural choice is to use normalizing flows [15,[17], a class of generative models in which noise
is sampled from some base distribution p(¢) that admits straightforward sampling and log density
evaluations (e.g., an isotropic standard Gaussian) and transformed through a series of neural network
layers that are specially constructed so as to be invertible functions with efficient evaluation of the
log absolute determinant of the Jacobian. Because the entire network is invertible, log densities
for the output distribution can be computed via application of the change of variables formula. Let
9y : R? x R, — R be a conditional normalizing flow with parameters 7, such that gn satisfies
In(9y Y(2,7),7) = z for all T by construction. Then the conditional log density for z under the
policy can be evaluated via

dgy (2,7)

det
¢ 0z

log T, (2|7) = log p(g, " (2, 7)) + log ¢))

In our implementation, g,, is a neural spline flow [4] comprised of a stack of rational quadratic spline
affine coupling layers interleaved with shuffling, with an affine transformation applied as the final
operation.

A.2  Objective function

The Rényi a-divergence family generalizes the KL divergence and has been applied in variational
inference via the variational Rényi bound (VRB) [11], which has the form
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In variational inference, the VRB is a lower bound on the marginal log likelihood for o < 1, and it is
related to the negative of an upper bound on the marginal log likelihood for o > 1, which motivates
maximization (cf. minimization) of the VRB for aw < 1 (cf. @ > 1). The VRB recovers the negative
of the reverse KL divergence in the limit &« — 0 and extrema of the log likelihood ratios in the left
and right limits,
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It follows that optimizing the VRB for &« — —oo requires that r,(z) = 0 = m,(2|7) = 0
(otherwise, the VRB attains a value of —c0), which is exactly the mode-seeking behavior described
earlier. Similarly, optimizing the VRB for o« — o0 requires that 7, (z|7) =0 = r,(2) =0, or
equivalently r,(z) > 0 = m,(2|7) > 0 by contraposition, which is the mass-covering behavior.

It can be shown that the unknown normalizing constant contributes a level shift to the VRB:
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Since ¥ does not depend on 7, we have V, L, (7, 7+) = VLo (7, R;), and thus optimization
of the VRB with respect to the policy parameters 1 does not requ1re knowledge of the normalizing
constant. However, for mass-covering o > 1, optimization can be challenged by pronounced variance
in the estimated gradient, which is unfortunate since this is the regime that is generally of interest.

The gradient of the VRB with respect to « is invariant to the unknown normalizing constant and has
the following form:
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It can be shown that (1) 2 L, (r,m,;) > 0 forall & € R, and (2) -2 L (7, ;) = 0if and only if
rr = m,. Hence, the gradient of the VRB with respect to «;, in fact, defines a valid (new) a-divergence
family,
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These a-divergences can be interpreted as the difference between a weighted arithmetic mean of the
log likelihood ratios and the log of a weighted geometric mean of the likelihood ratios, all scaled by




«, and where the weights are proportional to the likelihood ratios exponentiated by «.. Although we
have not attempted to demonstrate this rigorously, we postulate that such a formulation acts like a
control variate, thereby helping to reduce gradient variance. Our intuition is that the first term in (T3)
is effectively a self-normalized (exponentiated) importance weighted expression, which is a common
trick for reducing variance in importance sampling at the expense of introducing bias, whereas the
second term may act like a correction, perhaps mitigating bias similar to a control variate. Further,
these a-divergences have the useful property of being invariant to the unknown normalizing constant
of the target distribution.

Notably, it can be shown that D, (7, |7~ ) recovers the forward KL divergence for o = 1,

rr(2) rr(2)
E”n(zh) |:7r,7(z\7—) IOg wn(z\T):|

- (2)
Dy () = H ~1og B,y | 70 (14)
Bzl L{(iﬁ)} o (2[7)
_ 7 (2) 7 (2)
= By alr) |:7T7,(Z|T) ! 777,(27')] 3)
_ TT(Z)
=B [los 75 1o
= DKL(TT||7I',7). (17)

Interestingly, optimization of the VRB for a = 1, by contrast, does not correspond to divergence
minimization at all, since £ (7, 7) = log Ex, (2|r)[r-(2)/m(2[7)] = 0 is constant.

For o > 1, the derived a-divergence family has the mass-covering inductive bias. In our experiments,
we therefore minimize the objective

mnin Epry [D(myrs)] (13)

with the divergence defined in (I3)) for o > 1, using Monte Carlo (MC) approximation and stochastic
gradient optimization.

A.3 Policy gradient

We can use MC approximations for all expectations when minimizing the objective (I8). For gener-
ality, we introduce a behavior policy 3(z|7) and re-write expectations using importance sampling,
arriving at the following expression for the gradient of the temperature-marginalized a-divergence
with respect to the policy parameters:
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Because expectations are with respect to p(7) and 8(z|7), neither of which depend on 7, we avoid
the need to invoke a reparameterization trick in gradient estimation. This supports both on-policy
(i.e., for 5(z|T) = stop_grad(m,(z|7))) and off-policy learning (e.g., using a replay buffer to store
past episodes).

VnEp(r) [Da(my|[r-)] = VipEp(r)

Given an episode {(z;, 74, log 8(z;|7;),1log R, (z;)) }1_; of n evaluations, we express the MC objec-
tive as a numerically stable log-sum-exp, making iteration on (I9) reliable in practice and avoiding
under- or overflow.

Importantly, expression does not depend on 7); we do not require that the reward R.(z) is
differentiable with respect to z for policy gradient estimation. We can therefore incorporate numerous
molecular properties as constraints without the need for complex modifications or approximations,
such as surrogate models. However, in cases where evaluating molecular properties is costly, surrogate
models can be employed.



Code Listing 1: A function for numerically stable MC estimation of D, (7,||r-) given log 7, (z|7),
log 5(z|7), and log R, (z) evaluated over a minibatch of n samples drawn from 5(z|7).

def alpha_divergence(log_pi, log_reward, log_beta=None, alpha=2.0):
# If behavior policy is unspecified, assume that it’s on-policy
log_beta = log_pi if log_beta is None else log_beta

# Verify shapes, get batch size
assert log_pi.shape == log_beta.shape == log_reward.shape
n, = log_pi.shape

# Get the log importance weights
log_weights = log_pi - log_beta.detach()

# Get the log (unnormalized) likelihood ratios
log_ratios = log_reward.detach() - log_pi

# Numerically stable estimator for the derived alpha-divergence
logits = log_weights + alpha * log_ratios

wavg = (logits.softmax(0) * log_ratios).sum(O0)

wlme = (logits - math.log(n)).logsumexp(0) / alpha

return (wavg - wlme) / alpha

A.4 Diversity sampling

Suppose that we exactly know the constraint-satisfying set X7,. Depending on the constraints, it may
be highly likely that sampling & compounds uniformly at random from X7, results in far fewer than
k distinct compound clusters, e.g., when using Butina clustering [2]] with ECFP4 similarity. This
can happen when the library includes clusters that contain a very large number of analogues that
are constraint-satisfying. For the policy, this can manifest in probability density being more heavily
concentrated in regions where many latent codes map to compounds that earn a large (expected)
reward, such that sampling i.i.d. from the policy induces compound sets that are surprisingly lacking
in diversity, even if the policy has correctly identified other relevant modes.

To address this, we can try to sample from an alternative distribution informed by the policy, but
defined over a set of latent codes such that (i) they mutually attain a high log likelihood under the
policy and (ii) they are sufficiently spread out to encourage coverage of distinct modes of the policy.
Ideas similar to this have been proposed in prior work, which we take as inspiration [[13}22].

We can formalize these preferences with an energy function,

k k=1 K
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where > 0 is a hyperparameter specifying the tolerated proximity between latent codes and A > 0
is a hyperparameter that governs the penalty for violating the proximity constraint. Our interest is in
the diversified policy, which satisfies 7, (21, ..., 2k) o< exp(—E(21, ..., 2k)).

To sample from 7,,, we first randomly initialize k latent codes by sampling from the policy 7, and
we then run stochastic gradient Langevin dynamics (SGLD) [21] on the latent codes for T iterations
using —FE/(z1, ..., z) as the target unnormalized log density. While the proximity term in the energy
function requires O(k?) distance evaluations, we can form an MC approximation using a subset of
¢ < (k — 1)k /2 pairs sampled randomly each SGLD step to ensure tractability when k is large.

A.5 Discussion and limitations

Casting optimization in design space as optimization in the latent space of a trained auto-encoder
is a well-known technique in machine learning [[7, I8]. Nevertheless, our contributions, a policy
that enriches for mass covering of the target distribution instead of mode seeking and which does
not require knowledge of the unknown normalizing constant for the tempered reward function,
coupled with a decoder constrained to vast catalogs addresses an important problem in drug discovery:
multi-parameter design optimization that generates synthetically accessible compounds.



Our approach scales favorably as the size of the CSL grows. We hypothesize that the latent dimension
d does not need to grow dramatically to accommodate larger library sizes | Xp |E] Again, we have not
formalized, for example, how large d must be to accommodate a library D of a particular size | Xp|,
but it has been empirically demonstrated that modest choices are sufficient to attain suitably high
reconstruction accuracy on ultra-large libraries.

Nonetheless, our approach also has limitations. We have not demonstrated that the proposed policy
over the latent space Z adequately induces a uniform distribution over the constraint-satisfying subset
of the library X7, C Xp. An exact characterization would require certain (stringent) assumptions to
hold, such as regarding extent to which the decoder py(x|z, D) approximately inverts the encoder
qy (z|z) within the essential support of g, (z|D). Nevertheless, our approach provides a framework
for casting what is otherwise an extensive discrete search problem over Xp as a tractable continuous
search problem over R? and is sufficiently general to support a large class of virtual screening
formulations applied to CSLs.

As a final note, to ensure that the policy 7, (z|7) remains within the essential support of the aggregated
variational posterior where the decoder approximately inverts the encoder, we augmented R, (z) by
introducing an additional constraint that the log probability density under the aggregated variational
posterior is sufficiently high, log ¢,,(2|DP) > &. In practice, we might instead choose to impose the
constraint on the latent space prior, log p(z) > &, or on a density fit to a finite sample of latent codes
drawn from (x, 2) ~ gy (2|z)p(z|D), e.g., a Gaussian mixture model.

B Experiments

B.1 Synthetic example

We demonstrate our approach with a synthetic example. Given dimensionality d, let W € R%*? be
a random orthonormal matrix, W € R4 s.t. WTW = WW T = I. The latent space and design
space are related through rotation by W, i.e.,  := Wz. Our goal is to learn a policy m,(z|7 = 0)
that samples vertices of the d-dimensional signed hypercube after rotation by W. Specifically, define
the binarized reward Ry(z) = I[z € {£1}9]. Thus,

1, ifWz=:2¢€ {+1}%
RO(Z):{ {£1}

21
0, otherwise. @h

We can define an associated tempered reward by
d
(zf — 1)?
R (z) = ———). 22
(2) 1:[1 o < - (22)

Thus, in the zero temperature limit, the optimal policy m,(z|7 = 0) should induce a uniform
distribution over 2¢ distinct modes of the design space. To assess the extent to which the policy
iterates capture these various modes of the reward function, we track the log density under the worst-,
average-, and best-case modes:

Swin(n) = _ min logm, (z = W a|r = 0); (23)
1
Swe(n) = 5 > logmy(z =W z|r =0); (24)
ze{£1}d
Smax(n) = Ier?gc}d log 7, (z = WTalr =0). (25)

The reward-induced density can be approximated by a mixture of isotropic Gaussians whose centers
are given by {W 'z : x € {£1}?}. Letting 0> > 0 denote the component-wise variance, the
approximate density follows:

re(z) = id Z Normal(z — W Tz|u = 0,% = o21). (26)
ze{£1}d

"Even a modest d = 64 dimensions has been shown to be sufficient to train a CSLVAE model with top-1
reconstruction accuracy in excess of 60% for libraries on the order 10'° molecules [16]).



For z € {41} and for small % > 0, the log density for the induced z := W T z is well approximated
by T, = dlog Normal(0|0, 0%) — dlog(2). Hence, T}, quantifies the log density that the mixture of
Gaussians approximation to the ground truth discrete distribution assigns to each of the 2¢ modes of
the reward function. We can compare - to T, for different choices of « to assess how «
affects worst-, average-, and best-case coverage of modes over the course of policy optimization.

For this example, we set d = 10 and parameterize 7, by a neural spline flow with eight rational
quadratic spline flow coupling layers with eight knots each, with a fixed but randomly-initialized
permutation applied after each coupling layer to mix units.

We examine a range of a-divergences by sweeping o = 27 for j = —2,...,4. This allows us to
assess the performance for values of o > 1 that induce the mass-covering behavior and demonstrates
the optimization challenges encountered for values of o < 1 that induce the mode-seeking behavior.

Training is performed over episodes, each of which is comprised of 1,000 pairs of the form (z,7) ~
B(z|T)p(7) along with the corresponding tempered reward R, (z), where S is the behavior policy.
We consider both the on-policy and off-policy regimes. In the off-policy setting, we maintain a replay
buffer of the past 10 episodes and train the policy for 10 iterations on the replay buffer before sampling
a new episode. In either setting, we train the policy until we reach a maximum of 1,000 episodes,
which is equivalent to one million function evaluations. Before commencing policy optimization, we
pre-train it for 500 iterations to match an isotropic standard Gaussian prior.

Supplementary Figures [I] (off-policy) and [2] (on-policy) shows how different choices of « affect
coverage of the worst-, average-, and best-case modes during the course of policy optimization. We
run all models for a total of 10M parameter updates, equating to IM (cf. 10M) function evaluations
for the off-policy (cf. on-policy) setting. We observed qualitative similarities in model performance
as a function of « in both regimes, but observe slower convergence and greater variability in the
on-policy setting as a result of the poorer sample efficiency from the lack of replay.

All of the mass-covering choices @ > 1 demonstrate progress in covering the various modes of the
reward function relative to the initialized policy. As o > 1 increases, these curves progressively
flatten, suggesting that policy iterations at higher « values redistribute probability density more
gradually. This aligns with the mass-covering inductive bias, which aims to avoid completely zero-ing
out policy density in any region.

At lower values of a > 1, coverage of worst- and average-case modes is sacrificed in the early stages
of policy optimization at the expense of progress on the best-case modes. Moderate values like
a = 2 manage a good balance of this trade-off by ensuring the gap Siax (1) — Smin(7) remains fairly
small over the course of policy optimization. We note that the expression for the derived divergence
when o = 2 has, as one of its terms, the (scaled) Chi-squared divergence, which is relevant in the
importance sampling literature due to its variance reduction characteristics [14], and may purportedly
explain its more balanced behavior across the worst-, average-, and best-case modes relative to the
forward KL at a = 1, but we have not investigated this rigorously. For mode-seeking choices of
a < 1, the policy iterates show largely divergent behavior. In the case of « = 1/2, we observe that
on-policy training is able to quickly identify one of the modes but in comparison to its nearest mass-
covering relative at « = 1 dramatically sacrifices in its worst- and average-case coverage; in contrast,
the policy iterates exhibit highly non-stationary behavior in the off-policy regime. These observations
are consistent with prior work that has demonstrated some of the challenges in optimizing policies
using mode-seeking divergences and of training instabilities introduced through importance sampling
formulations of off-policy objectives in the absence of protections such as clipping [14} (19} 20].

Supplementary Figure [3|shows pairplots for samples drawn from z ~ 7, (z|7 = 0) and their induced
x := Wz for the model trained in the off-policy setting using the o = 2 divergence. We note that the
policy has successfully learned a correlated and multi-modal distribution over the latent space which
induces an approximately uniform distribution (i.e., Spax () — Smin(77) = 0) via decoding with W to
the constraint-satisfying region of the design space (namely, the vertices of the signed hypercube).
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Supplementary Figure 1: Off-policy optimization in the synthetic example (d = 10). Policy iterations
= 10, replay buffer size = 10. Dashed line corresponds to T}, for o = 0.05.
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Supplementary Figure 2: On-policy optimization for the synthetic example (d = 10). Policy iterations
= 1, replay buffer size = 1. Dashed line corresponds to 7, for o = 0.05.

B.2 Satisfying multiple molecular property constraints in an ultra-large CSL

We provide additional details concerning the section of the same name in the body of the paper. The
hierarchical enumeration baseline was adapated from the V-SYNTHES method [18] but with some
important differences. The V-SYNTHES method is effectively an approach for optimizing a docking
score over large compound libraries using a beam search that exploits the library’s hierarchical
structure. In our experiment, we apply such a beam search but rather than use a docking score as the
optimization target, we instead define the optimization target to be the log of the tempered reward as
defined in the paper, where we set the temperature sufficiently low, e.g., 7 = 0.001. This allows us
to compare the performance of our proposed algorithm with a V-SYNTHES-like beam utilizing a
similarly defined reward for guiding expansion.

For the library that we consider in this exercise, the minimal enumeration set is comprised of 260K
compounds. This set represents "fragment-like compounds representing all possible scaffold-synthon
combinations for all reactions" in the library and serves as a basis for expansion in subsequent
steps of the algorithm. The entirety of the minimal enumeration set is scored, representing a one-time
cost of 260K function evaluations that can be re-used across different runs. Given a particular set of
constraints, we compute the corresponding log (tempered) reward for the compounds in the minimal
enumeration set and select the top £ compounds by reward. Each of these compounds will have a
number of caps, representing placeholders in need of synthon assignment. In the subsequent step
of the algorithm, for the top £ compounds, we sample m eligible synthons to use in place of each
cap, and we evaluate the log reward on all of the resulting compounds. We again select the top
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Supplementary Figure 3: Pairplot for the synthetic example (d = 10, « = 2, off-policy). Left:
Latent space samples generated by z ~ m,(z|7 = 0). Right: Design space samples generated by
transformation x := W z of latent space samples.

k compounds from that iteration and continue until we finally arrive at capless compounds (i.e.,
products with all synthons assigned). The choice of k£ and m affects the total number of function
evaluations performed, and it is worth remembering that many function evaluations are performed
in the presence of caps, indicating incomplete molecules; thus, in Table 1, we distinguish between
the total number of function evaluations and the number without caps (i.e., of complete molecules).
We set k to be sufficiently large so as to attain sufficient diversity (indeed, k£ can be considered a
kind of upper bound on the diversity attainable by such a hierarchical approach) and then adjust m
accordingly so that, across the experiments considered, we allow the hierarchical approach and our
proposed policy optimization a similar number of function evaluations (roughly 100K).

We believe that the apparently poor performance of the hierarchical approach in this setting is likely
due to the pre-mature optimization of the reward when building the molecule in a synthon-by-synthon
fashion. Such a greedy selection procedure can lead to intermediate states that are constraint-satisfying
but where all remaining cap replacements would lead to constraint violation (thereby earning a lower
reward in the terminal iteration). In the absence of protocols for back-tracking, these situations can
be very difficult to remedy. We made attempts to address this by initially tightening the constraints
and then relaxing when there are fewer caps remaining. However, given that different filters will have
different numbers of constraints, and the corresponding functions vary in units, among a host of other
considerations, it was our experience that an obvious/general approach to codify iterative constraint
relaxation proved elusive, and our best attempts to tune such a schedule did not reliably improve
performance.

Supplementary Table[I] provides details on the constraints used by the filters in Table 1. We use the
RDKit [9] implementation of all of the referenced properties.



Name Constraints

Lipinski [12] Molecular weight < 500
CLogP <5
No. hydrogen bond donors < 5
No. hydrogen bond acceptors < 10

Ghose [6]] 160 < Molecular weight < 480
-0.4 < CLogP <5.6
20 < No. atoms < 70

40 < Molar refractivity < 130

Lee [10] 300 < Molecular weight < 400
1.8 < CLogP <23
Rule-of-3 [3]] Molecular weight < 300
CLogP <3

No. hydrogen bond donors < 3
No. hydrogen bond acceptors < 3
No. rotatable bonds < 3

Macrocycles [5] Molecular weight < 982
2.2 < CLogP
No. hydrogen bond donors < 7
No. rotatable bonds < 11
12 < Max ring size
Topological PSA < 292

QED (1] 0.8 < QED

Supplementary Table 1: Filters used for experiments recorded in Table 1.
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