A Appendix

A.1 Proof of Theorem 4.1

Lemma A.1. By Assumption and we have
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Proof. By Assumption 4.1} an important consequence is that for all {0,0’} C R, it satisfies that
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Taken together, the above inequality and the parameter update equation (Eq.[6), it yields
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where g = 4 Z]]Vil 9(21; dr + €5, 1r). Taking expectation on both sides of Eq. , it yields
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E.p.e [-] denotes the expectation w.r.t. the joint distribution of random variables zj and €; given 6.
Note that 11 (not 6;) depends on z;, and €;. Under Condition 2 of Assumption @ the expectation
of g satisfies that
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Assume that we sample the noise vector €; from P(e) without replacement. Under Condition 3 of

Assumption 4.2} we have (see [1, p. 183])
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Taken together, Eq. [T6]and Eq.[T7] one obtains
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Therefore, by Eq.[I3] [[6]and[T8] it yields
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Lemma A.2. By Assumption[d.1| 4.2)and we have
lim inf B[|| VR(60))]|2] = 0. (20)

Proof. The first condition in Assumption}4.3|ensures that limy_, o, o, = 0. Without loss of generality,
we assume that for any k € N, apL(ma + M) < M. Denote by E[] the rotal expectation w.r.t.
all involved random variables. For example, 6}, is determined by the set of random variables
{20, 21, -y Zk—1, €0, €1, ..., €k—1 }, and therefore the total expectation of R(6},) is given by

E[R(9k>] = E20750EZ1~,51 "'Ezk—l,fk—l [R(ek)] 2n

Taking total expectation on both sides of Eq[T2} we have
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For k =0,1,2,..., K, summing both sides of this inequality yields
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where R* is the lower bound in Condition 1 of Assumptlon@ Rearrangmg the term gives
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k=0

By the second condition of Assumption[#.3] we have
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Dividing both sides of Eq.[25(by Zszl oy, and by the first condition of Assumption we have
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The left-hand term of this equation is the weighed average of ||V R(6y)||3, and {c } are the weights.

Hence, a direct consequence of this equation is that |V R(6y)||% cannot asymptotically stay far from
Z€ero, i.e.

(26)
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We now prove Theorem 1] which is a stronger consequence than Lemma[A.2]

Theorem 4.1. Under assumptions @2 and we further assume that the risk function R is
twice differentiable, and that ||V R(0)||5 is La-smooth with constant Ly > 0, then we have

Jim E[[VR(6))|3] = 0. (28)

Proof. Define F(0) == ||R(0)||3, then we have
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Taking total expectation of both sides of Eq.[29]yields
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Eq. 25 implies that 2ay, LE[||[VR(6)||3] is the term of a convergent sum. Besides, ‘Xisz (5 +
m2t MRV R(6)) || ) is also the term of a convergent sum, because > .-, a7 converges. Hence,
the bound (Eq.[30) is also the term of a convergent sum. Now, let us define
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Because the bound of E[F'(0;1)] — E[F(0))] is positive and is the term a of convergent sum, and the
sequence A} is upper bounded by the sum of the bound of E[F(0)+1)] — E[F(6)], A% converges.
Similarly, A} also converges. Since for any K € N, F(0x) = F () + AJ — Aj, we can obtain
that F'(6) converges. By Lemmal|A.2]and the fact that F'(6),) converges, we have

Jim E[||R(0))[[3] = 0. (33)
O

A.2 More Experimental Details

In CIFAR-100, each class contains 500 images for training and 100 images for test, with each image
of size 32x32. In minilmageNet, each class contains 500 training images and 100 test images of size
84x84. CUB-200-2011 contains 5994 training images and 5794 test images in total with varying
number of images for each class, and we resize and crop each image to be of size 224 x 224.

Since there lacks a unified standard in storing/saving exemplars for incremental few-shot learning,
we choose the setting that we consider most reasonable and practical. In real-world applications,
normally there exists a large number of base classes with sufficient training data (e.g., the base dataset
is ImageNet-1K [5]), whereas the number of unseen novel classes that lack training data is relatively
small. Therefore, for computational efficiency and efficient use of storage, it is desirable NOT saving
any exemplars for base classes but store some exemplars for new classes. In our experiments, we do
not store any exemplar for base classes, but save 5 exemplars for each new class. This will hardly cost
any storage space or slow down computation considerably due to the small number of new classes.

To ensure a fair comparison, for ICaRL [4] and Rebalance [2], we store 2 exemplars per class (for
both base classes and new classes). As a result, in each session, they store more examplars than our
method. For our re-implementation of FSLL [3], we store the same number of exemplars for each
new class as in our method. For other approaches, since the code is not available or the method is too
complex to re-implement, we directly use the results reported in their paper, which are substantially
lower than the Baseline.

CIFAR-100 (5 phases)

T
—@- Rebalance
—- Rebalance”

70 - ICaRL

—¥- ICaRL" |
N Table 7: The average norm of the class pro-
»\N totypes of new classes is significantly smaller
\\ than that of old classes. The experiment is con-

ducted on CIFAR-100 with 60 base classes and

Accuracy(%)
D
S

30 4 40 new classes.
Mean Standard Deviation
4
0 50 60 70 80 90 100 Base classes  7.97 0.63
Number of classes New classes  7.48 0.71

Figure 3: Our re-implementation results of Re-
balance and ICaRL are very close to those re-
ported in [2]. * indicates our re-implementation.

A.3 Additional Experiment Results

In this section, we conduct experiments to verify the correctness of our re-implementation of state-of-
the-art methods including ICaRL* [4], Rebalance* [2] and FSLL* [3]. Note that we re-implement
ICaRL and Rebalance because they (and the released codes) are designed for incremental learning,
not for incremental few-shot learning. We re-implement FSLL because the code is not provided. In
addition, we present empirical evidence on the difference in the norm of the class prototypes between
new classes and base classes, which motivates the design of prototype normalization.

Correctness of our implementation. To verify the correctness of our implementation of ICaRL* [4]
and Rebalance* [2], we conduct experiments on CIFAR-100 for incremental learning. We adopt
32-layer ResNet as backbone and store 20 exemplars per class as in Rebalance [2]. The comparative
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Table 8: Our re-implementation results of FSLL are very close to those reported in [3] on CIFAR-100
for 5-way 5-shot incremental learning. * indicates our re-implementation. The results are obtained
without saving any exemplars.

sessions
1 2 3 4 5 6 7 8 9

FSLL [3]* 65.18 5637 5259 4839 4746 43.44 4137 40.17 38.56
FSLL [3] 64.10 5585 51.71 4859 4534 4325 4152 3981 38.16

Method

results are presented in Fig [3] It can be seen that our re-implementation results of ICaRL and
Rebalance are very close to those reported in [2].

To verify the correctness of our implementation of FSLL [3], we compare the results of our imple-
mentation and those reported in [3] in Table It can be seen that our implementation achieves similar
and slightly higher results than those reported in the original paper [3]. Here, the experiments are
conducted following the settings in [3] without saving any exemplars for new classes.

Norm of class prototype. In our experiments, we observe that after training on base classes with
balanced data, the norms of the class prototypes of base classes tend to be similar. However, after
fine-tuning with very few data on unseen new classes, the norms of the new class prototypes are
noticeably smaller than those of the base classes. In Table [/| we show the average norms of the
prototypes of base classes and new classes after incremental few-shot learning on CIFAR-100, where
we randomly select 60 classes as base classes and the remaining 40 classes as new classes.

Table 9: Classification accuracy for 5-way 5-shot incremental learning with the first class split on
CIFAR-100.

Method sessions "I:h; g;?r
1 (Animals) 2 (Vehicles2) 3 (Flowers) 4 (Food Containers) 5 (Household Furniture) with ¢
Baseline 63.07 56.32 51.40 46.85 43.55 -19.52
ICaRL 63.30 55.10 49.12 44.46 40.95 -22.35
Rebalance 63.03 52.06 45.87 39.35 35.24 -27.29
FSLL 63.07 50.72 44.53 40.73 38.00 -25.07
F2M 62.53 56.63 51.87 47.54 44.10 -18.43

Table 10: Classification accuracy for 5-way 5-shot incremental learning with the second class split on
CIFAR-100.

Method sessions T'hlel gia{?l‘
1 (Animals+Furniture) 2 (People) 3 (Vehicles2) 4 (Flowers) 5 (Food Containers) with ¢
Baseline 63.07 54.30 50.16 46.19 43.16 -19.91
ICaRL 62.57 51.67 47.51 42.98 39.63 -22.94
Rebalance 63.50 49.62 44.67 39.68 35.64 -27.86
FSLL 63.07 49.45 46.30 41.94 39.33 -23.74
F2M 62.87 54.82 50.88 46.88 43.83 -19.04

Results on CIFAR-100 with different class splits. To analyze how difference in patterns of the
base and new classes influence our proposed method F2M, we split the classes according to the
superclasses and provide results on two different class splits. All the 100 classes of CIFAR-100 are
grouped into 20 superclasses, and each superclass contains 5 classes. For the first class split, the
base classes consist of aquatic mammals, fish, insects, reptiles, small mammals, and large carnivores
(30 classes in total). The few-shot novel classes consist of household furniture, vehicles2, flowers,
and food containers (20 classes in total). For the second class split, the base classes consist of
aquatic mammals, fish, insects, reptiles, household furniture, and small mammals (30 classes in total).
The few-shot novel classes consist of people, vehicles2, flowers, and food containers (20 classes
in total). The experimental results with the two different class splits are presented in Table [9] and
Table[I0]respectively. The results show that even with a large difference between the base classes and
novel classes, our F2M still consistently outperforms other methods, indicating its robustness and
effectiveness.
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Error bars of the main results. The experimental results reported in Section [S|are the average of
10 runs. For each run, we randomly selected 5 samples for each class (for 5-shot tasks). Here, in
Table[TT] Table[I2]and Table[T3] we report the means and 95% confidence intervals of our method
F2M, the Baseline, and the methods that we re-implemented. The confidence intervals indicate that
our method F2M achieves steady improvement over state-of-the-art methods.

Table 11: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learning with 95%
confidence intervals. * indicates our re-implementation.

Method sessions
1 2 3 4 5 6 7 8 9
Baseli s1g 6167 5861 5511 5186 4943 4760 4564 4383
aseline A% 4018 £025 +£0.19 +£022 +028 +£025 +029 +022

57.26 54.27 50.62 47.33 44.99 43.14 41.16 39.49
+0.17 +£025 £029 +£027 +£026 £023 +£030 =+£0.30

61.42 57.29 53.02 48.85 45.68 43.06 40.56 38.35
+025 +£017 £020 £021 £030 =£027 +£038 £0.48

56.24 54.55 51.61 49.11 47.27 45.35 43.95 42.22
+035 +£028 £036 +040 £029 £032 028 £049

62.05 59.01 55.58 52,55 4996  48.08  46.28  44.67
+019 £022 +£021 +£025 £021 +024 £024 £0.19

iCaRL [4]* 66.52
Rebalance [2]*  66.66
FSLL [3]* 65.18

F2M 64.71

Table 12: Classification accuracy on minilmageNet for 5-way 5-shot incremental learning with 95%
confidence intervals. * indicates our re-implementation.

Method sessions
1 2 3 4 5 6 7 8 9
Baseli 6730 6318 5962 5633 5328 5050 4796 4585  43.88
aseline SY 1000 +£012 +£018 +£027 +£028 +£030 +£032 +£027
iCaRL [4]° 6735 9991 5564 5260 4943 4673 4413 4217 4029

+0.15 +£020 £030 $£032 +£028 £033 $£033 +£0.31

67.91 63.11 58.75 54.83 50.68 47.11 43.88 41.19 38.72
: +019 +£029 +£037 +£038 =£036 =+£033 =£038 +0.39

59.81 57.26 54.57 52.05 49.42 46.95 44.94 42.87
+042 +055 £058 +£049 =£037 £036 +020 =£0.25

63.80 6038 57.06 54.08 5139 48.82  46.58  44.65
+010 £019 £029 +£028 +032 032 £033 1029

Rebalance [2]*

FSLL [3]* 67.30

F2M 67.28

Table 13: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental learning with
95% confidence intervals. * indicates our re-implementation.

sessions

Method
1 2 3 4 5 6 7 8 9 10 11
Bascline 80.87 77.15 74.46 72.26 69.47 67.18 65.62 63.68 61.30 59.72 58.12
: +0.18 +022 4+026 +035 +£027 +£038 +025 4022 4027 +0.27
iCaRL [4]* 7958 67.63 64.17 61.80 58.10 55.51 53.34 50.89 48.62 47.34 45.60

+£025 £030 +£035 £033 £038 £032 £025 £029 £033 031

70.32 62.96 57.19 51.06  46.70  44.03 40.15 36.75 34.88 32.09
+£028 £031 +£030 £037 £029 £040 +£027 £032 £035 +£0.39

77.38 72.37 71.84 67.51 65.30 63.75 61.16 59.05 58.03 55.82
+£030 £025 +£045 £042 £050 £039 +028 £037 £035 033

7816 7557 7289 7086 6817  67.01 6526 63.36 6176  60.26
+014 4024 £032 +025 +039 £032 +026 +024 £027 +0.28

Rebalance [2]*  80.94
FSLL [3]* 80.83

F2M 81.07

Results with the same class splits as in TOPIC [6]. The experimental results of our F2M and some
other methods (our re-implementations) presented in Table [T} Table[2] and Table [3]are on random
class splits with random seed 1997. Here, we conduct experiments using the same class split as
in TOPIC [6]. The experimental results on CIFAR-100, minilmageNet, and CUB-200-2011 are
presented in Table[14] Table[T3] and Table[T6|respectively. The results show that the Baseline and
our F2M still consistently outperform other methods. Note that on CUB-200-2011, joint-training
outperforms the Baseline and our F2M. The reasons may include: 1) The data imbalance issue is
not very significant since the average number of images per class of this dataset is relatively small
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(about 30); and 2) During the base training stage, we use a smaller learning rate (e.g., 0.001) for the
embedding network (pretrained on ImageNet) and a higher learning rate (e.g., 0.01) for the classifier.

Table 14: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learning with the same
class split as in TOPIC [6]. * indicates our re-implementation.

i The gap
Method sessions .

1 2 3 4 5 6 7 8 g  WithcRT
cRT [8]" 7228 69.58 6516 6141 5883 5587 5328 5138 4951 -
Joint-training® 7228 6840 6331 59.16 5573 52.81 49.01 4674 4434  -5.17
Baseline 7228 6801 6418 60.56 57.44 5469 5298 5080 4870  -0.81
iCaRL [4]* 7205 6535 6155 5783 5461 5174 4971 4749 4503  -448
Rebalance [2]* 7445 6774 6272 57.14 5278 48.62 4556 4243 3922  -10.29
FSLL [3]* 7228 6384 59.64 5549 5321 5177 5093 4894 4696  -2.55
iCaRL [4] 6410 5328 41.69 34.13 2793 2506 2041 1548 1373  -35.78
Rebalance [2]  64.10 53.05 4396 3697 3161 2673 2123 1678 13.54  -35.97
TOPIC [6] 64.10 5588 47.07 4516 40.11 3638 3396 3155 2937  -20.14
FSLL [3] 6410 5585 5171 4859 4534 4325 41.52 3981 38.16  -1135
FSLL+SS [3] 6676 55.52 5220 49.17 4623 4464 4307 4120 39.57  -9.94
F2M 7145 6810 6443 60.80 5776 5526 53.53 5157 4935  -0.16

Table 15: Classification accuracy on minilmageNet for 5-way 5-shot incremental learning with the
same class split as in TOPIC [6]. * indicates our re-implementation.

sessions The gap
Method .

1 2 3 4 5 6 7 8 g  WithcRT
cRT [8]* 72.08 68.15 63.06 61.12 5657 5447 51.81 49.86 48.31 -
Joint-training®  72.08 67.31 62.04 58.51 5441 5153 48.70 4549 43.88 -4.43
Baseline 72.08 66.29 6199 5871 5573 53.04 5040 48.59 47.31 -1.0
iCaRL [4]* 71.77 61.85 58.12 5460 51.49 4847 4590 44.19 42.71 -5.6
Rebalance [2]* 7230 66.37 61.00 56.93 5331 4993 4647 44.13 42.19 -6.12
FSLL [3]* 72.08 59.04 5375 51.17 49.11 4721 4535 44.06 43.65 -4.66
iCaRL [4] 61.31 4632 4294 37.63 3049 24.00 20.89 18.80 17.21 -31.10
Rebalance [2]  61.31 47.80 39.31 3191 25.68 21.35 18.67 1724 14.17 -34.14
TOPIC [6] 61.31 50.09 45.17 41.16 37.48 3552 32.19 29.46 2442 -23.89
FSLL (3] 66.48 61.75 58.16 54.16 51.10 4853 46.54 4420 42.28 -6.03
FSLL+SS [3] 68.85 63.14 5924 5523 5224 49.65 47774 4523 43.92 -4.39
F2M 72.05 6747 63.16 59.70 56.71 53.77 S51.11 49.21 47.84 -0.43

Table 16: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental learning with the
same class split as in TOPIC [6]. * indicates our re-implementation.

sessions The gap

Method i

1 2 3 4 5 6 7 8 9 10 11 VitheRT
CRT [8]* 77.16 7441 7131 68.08 6557 63.08 6244 6129 60.12 59.85 59.30 -
Joint-training*  77.16 74.39 69.83 67.17 6472 6225 5977 59.05 57.99 57.81 56.82  -2.48
Baseline 77.16 7400 7021 66.07 6390 6135 60.01 58.66 5633 56.12 5507  -4.23
iCaRL [4]* 7595 6090 57.65 5451 50.83 4821 4695 4574 4321 4301 4127  -18.03
Rebalance [2]*  77.44 58.10 50.15 44.80 39.12 3444 3173 2975 27.56 2693 2530  -34.00
FSLL [3]* 77.16 71.85 66.53 59.95 5801 57.00 56.06 5478 5224 5201 5147  -7.83
iCaRL [4] 68.68 52.65 48.61 44.16 36.62 2952 27.83 2626 2401 2389 21.16  -39.92
Rebalance [2]  68.68 57.12 4421 2878 2671 2566 24.62 21.52 20.12 2006 19.87  -41.21
TOPIC [6] 68.68 6249 5481 4999 4525 4140 3835 3536 3222 2831 2628  -34.80
FSLL [3] 7277 6933 6551 62.66 61.10 58.65 5778 5726 5559 5539 5421  -6.87
FSLL+SS [3]  75.63 71.81 68.16 6432 6261 60.10 58.82 5870 5645 5641 5582  -5.26
F2M 7713 7392 7027 6637 6434 6169 60.52 5938 5715 5694 5589  -3.41
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