
A Appendix

A.1 Proof of Theorem 4.1

Lemma A.1. By Assumption 4.1 and 4.2, we have

Ezk,εj [R(θk+1)]−R(θk) ≤ −αk
2M − αkL(m2 +M)

2M
‖∇R(θk)‖22 +

α2
kLm1

2M
. (12)

Proof. By Assumption 4.1, an important consequence is that for all {θ, θ′} ⊂ Rd, it satisfies that

R(θ) ≤ R(θ′) +∇R(θ′)T (θ − θ′) + 1

2
L‖θ − θ′‖22. (13)

Taken together, the above inequality and the parameter update equation (Eq. 6), it yields

R(θk+1)−R(θk) ≤ ∇R(θk)T (θk+1−θk)+
1

2
L‖θk+1−θk‖22 ≤ −αk∇R(θk)T g+

α2
kL

2
‖g‖22, (14)

where g = 1
M

∑M
j=1 g(zk;φk + εj , ψk). Taking expectation on both sides of Eq. 14, it yields

Ezk,εj [R(θk+1)]−R(θk) ≤ −αk∇R(θk)TEzk,εj [g] +
α2
kL

2
Ezk,εj [‖g‖22]. (15)

Ezk,εj [·] denotes the expectation w.r.t. the joint distribution of random variables zk and εj given θk.
Note that θk+1 (not θk) depends on zk and εj . Under Condition 2 of Assumption 4.2, the expectation
of g satisfies that

Ezk,εj [g] =
1

M

M∑
j=1

Ezk,εj [g(zk;φk + εj , ψk)] = ∇R(θk). (16)

Assume that we sample the noise vector εj from P (ε) without replacement. Under Condition 3 of
Assumption 4.2, we have (see [1, p. 183])

Vzk,εj [g] ≤
Vzk,εj [g(zk;φk + εj , ψk)]

M
≤ m1

M
+
m2

M
‖∇R(θk)‖22. (17)

Taken together, Eq. 16 and Eq. 17, one obtains

Ezk,εj [‖g‖22] = Vzk,εj [g] + ‖Ezk,εj [g]‖22 ≤
m1

M
+
m2 +M

M
‖∇R(θk)‖22. (18)

Therefore, by Eq. 15, 16 and 18, it yields

Ezk,εj [R(θk+1)]−R(θk) ≤ −αk
2M − αkL(m2 +M)

2M
‖∇R(θk)‖22 +

α2
kLm1

2M
. (19)

Lemma A.2. By Assumption 4.1, 4.2 and 4.3, we have

lim inf
k→∞

E[‖∇R(θk)‖22] = 0. (20)

Proof. The first condition in Assumption 4.3 ensures that limk→∞ αk = 0. Without loss of generality,
we assume that for any k ∈ N, αkL(m2 +M) ≤ M . Denote by E[·] the total expectation w.r.t.
all involved random variables. For example, θk is determined by the set of random variables
{z0, z1, ..., zk−1, ε0, ε1, ..., εk−1}, and therefore the total expectation of R(θk) is given by

E[R(θk)] = Ez0,ε0Ez1,ε1 ...Ezk−1,εk−1
[R(θk)]. (21)

Taking total expectation on both sides of Eq.12, we have

E[R(θk + 1)]− E[R(θk)] ≤ −
αk
2
E[‖∇R(θk)‖22] +

α2
kLm1

2M
. (22)
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For k = 0, 1, 2, ...,K, summing both sides of this inequality yields

R? − E[R(θ1)] ≤ E[R(θK+1)]− E[R(θ0)] ≤ −
1

2

K∑
k=0

αkE[‖∇R(θk)‖22] +
Lm1

2M

K∑
k=0

α2
k, (23)

where R? is the lower bound in Condition 1 of Assumption 4.2. Rearranging the term gives
K∑
k=0

αkE[‖∇R(θk)‖22] ≤ 2(E[R(θ1)]−R?) +
Lm1

M

K∑
k=0

α2
k. (24)

By the second condition of Assumption 4.3, we have

lim
K→∞

E[
K∑
k=0

αk‖∇R(θk)‖22] ≤ 2(E[R(θ0)]−R?) + lim
K→∞

Lm1

M

K∑
k=0

α2
k <∞. (25)

Dividing both sides of Eq. 25 by
∑K
k=1 αk and by the first condition of Assumption 4.3, we have

lim
K→∞

E[
∑K
k=1 αk‖∇R(θk)‖22∑K

k=1 αk
] = 0. (26)

The left-hand term of this equation is the weighed average of ‖∇R(θk)‖22, and {αk} are the weights.
Hence, a direct consequence of this equation is that ‖∇R(θk)‖22 cannot asymptotically stay far from
zero, i.e.

lim inf
k→∞

E[‖∇R(θk)‖22] = 0. (27)

We now prove Theorem 4.1, which is a stronger consequence than Lemma A.2.
Theorem 4.1. Under assumptions 4.1, 4.2 and 4.3, we further assume that the risk function R is
twice differentiable, and that ‖∇R(θ)‖22 is L2-smooth with constant L2 > 0, then we have

lim
k→∞

E[‖∇R(θk)‖22] = 0. (28)

Proof. Define F (θ) := ‖R(θ)‖22, then we have

Ezk,εj [F (θk+1)]− F (θk) ≤ ∇F (θk)TEzk,εj [(θk+1 − θk)] +
1

2
L2Ezk,εj [‖θk+1 − θk‖22]

≤ −αk∇F (θk)TEzk,εj [g] +
α2
kL2

2
Ezk,εj [‖g‖22]

≤ −2αk∇R(θk)T∇2R(θk)
TEzk,εj [g] +

α2
kL2

2
Ezk,εj [‖g‖22]

≤ 2αk‖∇R(θk)‖22‖∇2R(θk)‖2‖Ezk,εj [g]‖2 +
α2
kL2

2
Ezk,εj [‖g‖22]

≤ 2αkL‖∇R(θk)‖22 +
α2
kL2

2
(
m1

M
+
m2 +M

M
‖∇R(θk)‖22).

(29)
Taking total expectation of both sides of Eq. 29 yields

E[F (θk+1)]− E[F (θk)] ≤ 2αkLE[‖∇R(θk)‖22] +
α2
kL2

2
(
m1

M
+
m2 +M

M
E[‖∇R(θk)‖22]). (30)

Eq. 25 implies that 2αkLE[‖∇R(θk)‖22] is the term of a convergent sum. Besides, α2
kL2

2 (m1

M +
m2+M
M E[‖∇R(θk)‖22]) is also the term of a convergent sum, because

∑∞
k=1 α

2
k converges. Hence,

the bound (Eq. 30) is also the term of a convergent sum. Now, let us define

A+
K =

K−1∑
k=0

max(0,E[F (θk+1)]− E[F (θk)]), (31)

and A−K =

K−1∑
k=0

max(0,E[F (θk)]− E[F (θk+1)]). (32)
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Because the bound of E[F (θk+1)]−E[F (θk)] is positive and is the term a of convergent sum, and the
sequence A+

K is upper bounded by the sum of the bound of E[F (θk+1)]− E[F (θk)], A+
K converges.

Similarly, A−K also converges. Since for any K ∈ N, F (θK) = F (θ0) +A+
K −A

−
K , we can obtain

that F (θk) converges. By Lemma A.2 and the fact that F (θk) converges, we have

lim
k→∞

E[‖R(θk)‖22] = 0. (33)

A.2 More Experimental Details

In CIFAR-100, each class contains 500 images for training and 100 images for test, with each image
of size 32×32. In miniImageNet, each class contains 500 training images and 100 test images of size
84×84. CUB-200-2011 contains 5994 training images and 5794 test images in total with varying
number of images for each class, and we resize and crop each image to be of size 224× 224.

Since there lacks a unified standard in storing/saving exemplars for incremental few-shot learning,
we choose the setting that we consider most reasonable and practical. In real-world applications,
normally there exists a large number of base classes with sufficient training data (e.g., the base dataset
is ImageNet-1K [5]), whereas the number of unseen novel classes that lack training data is relatively
small. Therefore, for computational efficiency and efficient use of storage, it is desirable NOT saving
any exemplars for base classes but store some exemplars for new classes. In our experiments, we do
not store any exemplar for base classes, but save 5 exemplars for each new class. This will hardly cost
any storage space or slow down computation considerably due to the small number of new classes.

To ensure a fair comparison, for ICaRL [4] and Rebalance [2], we store 2 exemplars per class (for
both base classes and new classes). As a result, in each session, they store more examplars than our
method. For our re-implementation of FSLL [3], we store the same number of exemplars for each
new class as in our method. For other approaches, since the code is not available or the method is too
complex to re-implement, we directly use the results reported in their paper, which are substantially
lower than the Baseline.
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Figure 3: Our re-implementation results of Re-
balance and ICaRL are very close to those re-
ported in [2]. ∗ indicates our re-implementation.

Table 7: The average norm of the class pro-
totypes of new classes is significantly smaller
than that of old classes. The experiment is con-
ducted on CIFAR-100 with 60 base classes and
40 new classes.

Mean Standard Deviation

Base classes 7.97 0.63
New classes 7.48 0.71

A.3 Additional Experiment Results

In this section, we conduct experiments to verify the correctness of our re-implementation of state-of-
the-art methods including ICaRL∗ [4], Rebalance∗ [2] and FSLL∗ [3]. Note that we re-implement
ICaRL and Rebalance because they (and the released codes) are designed for incremental learning,
not for incremental few-shot learning. We re-implement FSLL because the code is not provided. In
addition, we present empirical evidence on the difference in the norm of the class prototypes between
new classes and base classes, which motivates the design of prototype normalization.

Correctness of our implementation. To verify the correctness of our implementation of ICaRL∗ [4]
and Rebalance∗ [2], we conduct experiments on CIFAR-100 for incremental learning. We adopt
32-layer ResNet as backbone and store 20 exemplars per class as in Rebalance [2]. The comparative
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Table 8: Our re-implementation results of FSLL are very close to those reported in [3] on CIFAR-100
for 5-way 5-shot incremental learning. ∗ indicates our re-implementation. The results are obtained
without saving any exemplars.

Method sessions
1 2 3 4 5 6 7 8 9

FSLL [3]∗ 65.18 56.37 52.59 48.39 47.46 43.44 41.37 40.17 38.56
FSLL [3] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16

results are presented in Fig 3. It can be seen that our re-implementation results of ICaRL and
Rebalance are very close to those reported in [2].

To verify the correctness of our implementation of FSLL [3], we compare the results of our imple-
mentation and those reported in [3] in Table 8. It can be seen that our implementation achieves similar
and slightly higher results than those reported in the original paper [3]. Here, the experiments are
conducted following the settings in [3] without saving any exemplars for new classes.

Norm of class prototype. In our experiments, we observe that after training on base classes with
balanced data, the norms of the class prototypes of base classes tend to be similar. However, after
fine-tuning with very few data on unseen new classes, the norms of the new class prototypes are
noticeably smaller than those of the base classes. In Table 7, we show the average norms of the
prototypes of base classes and new classes after incremental few-shot learning on CIFAR-100, where
we randomly select 60 classes as base classes and the remaining 40 classes as new classes.

Table 9: Classification accuracy for 5-way 5-shot incremental learning with the first class split on
CIFAR-100.

Method sessions The gap
with cRT

1 (Animals) 2 (Vehicles2) 3 (Flowers) 4 (Food Containers) 5 (Household Furniture)

Baseline 63.07 56.32 51.40 46.85 43.55 -19.52
ICaRL 63.30 55.10 49.12 44.46 40.95 -22.35
Rebalance 63.03 52.06 45.87 39.35 35.24 -27.29
FSLL 63.07 50.72 44.53 40.73 38.00 -25.07
F2M 62.53 56.63 51.87 47.54 44.10 -18.43

Table 10: Classification accuracy for 5-way 5-shot incremental learning with the second class split on
CIFAR-100.

Method sessions The gap
with cRT

1 (Animals+Furniture) 2 (People) 3 (Vehicles2) 4 (Flowers) 5 (Food Containers)

Baseline 63.07 54.30 50.16 46.19 43.16 -19.91
ICaRL 62.57 51.67 47.51 42.98 39.63 -22.94
Rebalance 63.50 49.62 44.67 39.68 35.64 -27.86
FSLL 63.07 49.45 46.30 41.94 39.33 -23.74
F2M 62.87 54.82 50.88 46.88 43.83 -19.04

Results on CIFAR-100 with different class splits. To analyze how difference in patterns of the
base and new classes influence our proposed method F2M, we split the classes according to the
superclasses and provide results on two different class splits. All the 100 classes of CIFAR-100 are
grouped into 20 superclasses, and each superclass contains 5 classes. For the first class split, the
base classes consist of aquatic mammals, fish, insects, reptiles, small mammals, and large carnivores
(30 classes in total). The few-shot novel classes consist of household furniture, vehicles2, flowers,
and food containers (20 classes in total). For the second class split, the base classes consist of
aquatic mammals, fish, insects, reptiles, household furniture, and small mammals (30 classes in total).
The few-shot novel classes consist of people, vehicles2, flowers, and food containers (20 classes
in total). The experimental results with the two different class splits are presented in Table 9 and
Table 10 respectively. The results show that even with a large difference between the base classes and
novel classes, our F2M still consistently outperforms other methods, indicating its robustness and
effectiveness.
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Error bars of the main results. The experimental results reported in Section 5 are the average of
10 runs. For each run, we randomly selected 5 samples for each class (for 5-shot tasks). Here, in
Table 11, Table 12 and Table 13, we report the means and 95% confidence intervals of our method
F2M, the Baseline, and the methods that we re-implemented. The confidence intervals indicate that
our method F2M achieves steady improvement over state-of-the-art methods.

Table 11: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learning with 95%
confidence intervals. ∗ indicates our re-implementation.

Method sessions
1 2 3 4 5 6 7 8 9

Baseline 65.18 61.67
± 0.18

58.61
± 0.25

55.11
± 0.19

51.86
± 0.22

49.43
± 0.28

47.60
± 0.25

45.64
± 0.29

43.83
± 0.22

iCaRL [4]∗ 66.52 57.26
± 0.17

54.27
± 0.25

50.62
± 0.29

47.33
± 0.27

44.99
± 0.26

43.14
± 0.23

41.16
± 0.30

39.49
± 0.30

Rebalance [2]∗ 66.66 61.42
± 0.25

57.29
± 0.17

53.02
± 0.20

48.85
± 0.21

45.68
± 0.30

43.06
± 0.27

40.56
± 0.38

38.35
± 0.48

FSLL [3]∗ 65.18 56.24
± 0.35

54.55
± 0.28

51.61
± 0.36

49.11
± 0.40

47.27
± 0.29

45.35
± 0.32

43.95
± 0.28

42.22
± 0.49

F2M 64.71 62.05
± 0.19

59.01
± 0.22

55.58
± 0.21

52.55
± 0.25

49.96
± 0.21

48.08
± 0.24

46.28
± 0.24

44.67
± 0.19

Table 12: Classification accuracy on miniImageNet for 5-way 5-shot incremental learning with 95%
confidence intervals. ∗ indicates our re-implementation.

Method sessions
1 2 3 4 5 6 7 8 9

Baseline 67.30 63.18
± 0.00

59.62
± 0.12

56.33
± 0.18

53.28
± 0.27

50.50
± 0.28

47.96
± 0.30

45.85
± 0.32

43.88
± 0.27

iCaRL [4]∗ 67.35 59.91
± 0.15

55.64
± 0.20

52.60
± 0.30

49.43
± 0.32

46.73
± 0.28

44.13
± 0.33

42.17
± 0.33

40.29
± 0.31

Rebalance [2]∗ 67.91 63.11
± 0.19

58.75
± 0.29

54.83
± 0.37

50.68
± 0.38

47.11
± 0.36

43.88
± 0.33

41.19
± 0.38

38.72
± 0.39

FSLL [3]∗ 67.30 59.81
± 0.42

57.26
± 0.55

54.57
± 0.58

52.05
± 0.49

49.42
± 0.37

46.95
± 0.36

44.94
± 0.20

42.87
± 0.25

F2M 67.28 63.80
± 0.10

60.38
± 0.19

57.06
± 0.29

54.08
± 0.28

51.39
± 0.32

48.82
± 0.32

46.58
± 0.33

44.65
± 0.29

Table 13: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental learning with
95% confidence intervals. ∗ indicates our re-implementation.

Method sessions
1 2 3 4 5 6 7 8 9 10 11

Baseline 80.87 77.15
± 0.18

74.46
± 0.22

72.26
± 0.26

69.47
± 0.35

67.18
± 0.27

65.62
± 0.38

63.68
± 0.25

61.30
± 0.22

59.72
± 0.27

58.12
± 0.27

iCaRL [4]∗ 79.58 67.63
± 0.25

64.17
± 0.30

61.80
± 0.35

58.10
± 0.33

55.51
± 0.38

53.34
± 0.32

50.89
± 0.25

48.62
± 0.29

47.34
± 0.33

45.60
± 0.31

Rebalance [2]∗ 80.94 70.32
± 0.28

62.96
± 0.31

57.19
± 0.30

51.06
± 0.37

46.70
± 0.29

44.03
± 0.40

40.15
± 0.27

36.75
± 0.32

34.88
± 0.35

32.09
± 0.39

FSLL [3]∗ 80.83 77.38
± 0.30

72.37
± 0.25

71.84
± 0.45

67.51
± 0.42

65.30
± 0.50

63.75
± 0.39

61.16
± 0.28

59.05
± 0.37

58.03
± 0.35

55.82
± 0.33

F2M 81.07 78.16
± 0.14

75.57
± 0.24

72.89
± 0.32

70.86
± 0.25

68.17
± 0.39

67.01
± 0.32

65.26
± 0.26

63.36
± 0.24

61.76
± 0.27

60.26
± 0.28

Results with the same class splits as in TOPIC [6]. The experimental results of our F2M and some
other methods (our re-implementations) presented in Table 1, Table 2, and Table 3 are on random
class splits with random seed 1997. Here, we conduct experiments using the same class split as
in TOPIC [6]. The experimental results on CIFAR-100, miniImageNet, and CUB-200-2011 are
presented in Table 14, Table 15, and Table 16 respectively. The results show that the Baseline and
our F2M still consistently outperform other methods. Note that on CUB-200-2011, joint-training
outperforms the Baseline and our F2M. The reasons may include: 1) The data imbalance issue is
not very significant since the average number of images per class of this dataset is relatively small
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(about 30); and 2) During the base training stage, we use a smaller learning rate (e.g., 0.001) for the
embedding network (pretrained on ImageNet) and a higher learning rate (e.g., 0.01) for the classifier.

Table 14: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learning with the same
class split as in TOPIC [6]. ∗ indicates our re-implementation.

Method sessions The gap
with cRT1 2 3 4 5 6 7 8 9

cRT [8]∗ 72.28 69.58 65.16 61.41 58.83 55.87 53.28 51.38 49.51 -
Joint-training∗ 72.28 68.40 63.31 59.16 55.73 52.81 49.01 46.74 44.34 -5.17
Baseline 72.28 68.01 64.18 60.56 57.44 54.69 52.98 50.80 48.70 -0.81

iCaRL [4]∗ 72.05 65.35 61.55 57.83 54.61 51.74 49.71 47.49 45.03 -4.48
Rebalance [2]∗ 74.45 67.74 62.72 57.14 52.78 48.62 45.56 42.43 39.22 -10.29
FSLL [3]∗ 72.28 63.84 59.64 55.49 53.21 51.77 50.93 48.94 46.96 -2.55
iCaRL [4] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 -35.78
Rebalance [2] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 -35.97
TOPIC [6] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 -20.14
FSLL [3] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16 -11.35
FSLL+SS [3] 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 -9.94

F2M 71.45 68.10 64.43 60.80 57.76 55.26 53.53 51.57 49.35 -0.16

Table 15: Classification accuracy on miniImageNet for 5-way 5-shot incremental learning with the
same class split as in TOPIC [6]. ∗ indicates our re-implementation.

Method sessions The gap
with cRT1 2 3 4 5 6 7 8 9

cRT [8]∗ 72.08 68.15 63.06 61.12 56.57 54.47 51.81 49.86 48.31 -
Joint-training∗ 72.08 67.31 62.04 58.51 54.41 51.53 48.70 45.49 43.88 -4.43
Baseline 72.08 66.29 61.99 58.71 55.73 53.04 50.40 48.59 47.31 -1.0

iCaRL [4]∗ 71.77 61.85 58.12 54.60 51.49 48.47 45.90 44.19 42.71 -5.6
Rebalance [2]∗ 72.30 66.37 61.00 56.93 53.31 49.93 46.47 44.13 42.19 -6.12
FSLL [3]∗ 72.08 59.04 53.75 51.17 49.11 47.21 45.35 44.06 43.65 -4.66
iCaRL [4] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 -31.10
Rebalance [2] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 -34.14
TOPIC [6] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 -23.89
FSLL [3] 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28 -6.03
FSLL+SS [3] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92 -4.39

F2M 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 -0.43

Table 16: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental learning with the
same class split as in TOPIC [6]. ∗ indicates our re-implementation.

Method sessions The gap
with cRT1 2 3 4 5 6 7 8 9 10 11

cRT [8]∗ 77.16 74.41 71.31 68.08 65.57 63.08 62.44 61.29 60.12 59.85 59.30 -
Joint-training∗ 77.16 74.39 69.83 67.17 64.72 62.25 59.77 59.05 57.99 57.81 56.82 -2.48
Baseline 77.16 74.00 70.21 66.07 63.90 61.35 60.01 58.66 56.33 56.12 55.07 -4.23

iCaRL [4]∗ 75.95 60.90 57.65 54.51 50.83 48.21 46.95 45.74 43.21 43.01 41.27 -18.03
Rebalance [2]∗ 77.44 58.10 50.15 44.80 39.12 34.44 31.73 29.75 27.56 26.93 25.30 -34.00
FSLL [3]∗ 77.16 71.85 66.53 59.95 58.01 57.00 56.06 54.78 52.24 52.01 51.47 -7.83
iCaRL [4] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 -39.92
Rebalance [2] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 -41.21
TOPIC [6] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 -34.80
FSLL [3] 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 -6.87
FSLL+SS [3] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 -5.26

F2M 77.13 73.92 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89 -3.41
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