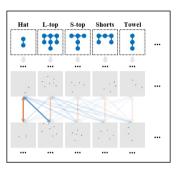
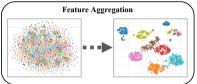
Generalizable Category-Level Topological Structure Learning for Clothing Recognition in Robotic Grasping

HANGZHOU 2025

Xingyu Zhu^{1,2}, Yan Wu³, Zhiwen Tu^{1,2}, Haifeng Zhong^{1,2}, Yixing Gao^{1,2,*}

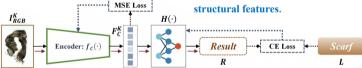

¹School of Artificial Intelligence, Jilin University, China. ²Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, Ministry of Education, China. ³Robotics and Autonomous Systems Division, Institute for Infocomm Research (I²R), A*STAR, Singapore. *Corresponding author. Email: gaoyixing@jlu.edu.cn

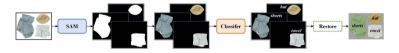
Motivation



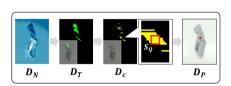
- Clothing deformation features are highly coupled and rely on color and texture.
- Lack of clothing category-level structural feature learning process, low model generalization.

Topological Structure Representation and Optimization


Encoder: $f_{\mathcal{D}}(\cdot)$

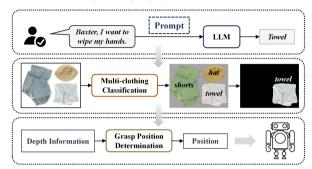

Training Process:

① Extract the topological structure features of clothing based on contrastive learning;


② Using topological structural features for supervision to extract color-texture-independent

> Multi-clothing Classification Framework

Grasping Position Estimation

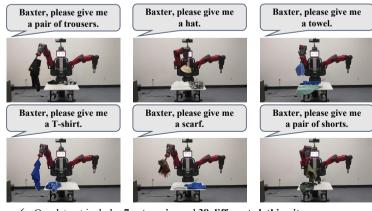


- Depth-Image Protrusion Filtering
- Max-Square Grasp Point Lock-on

Humans are accustomed to looking for raised wrinkles on the clothing surface to achieve suitable grasping.

The core of our method is to search for suitable wrinkles on the clothing surface.

Robotic Clothing Grasping System


- System Inputs: Text data entered by the user; RGB images for multi-clothing classification; depth information for grasp position estimation.
- □ LLM is used to analyze user instructions; regional category information is output based on a Multi-Clothing Classification Framework; and based on the proposed Grasping Position Estimation Method, grasping position information is output and sent to the robot to complete the user-specified clothing grasping task.

Comparative Analysis

	Methods	Seen 🕇	Unseen 🕇	Methods	Seen 🕇	Unseen 1
	Shehawy et al.[3]	76.67%	74.52%	Co-Fooiss [2]	76.67%	65.00%
	Chen et al.[4]	53.81%	52.86%	GarFusion [2]		
ľ	Ours	89.29%	79.29%	Ours	89.29%	79.29%

Methods	Classif	ication	Grasping		
	Seen 1	Unseen 🕇	Seen 🕇	Unseen 1	
MobileNetV2 [1]	97.11%	53.48%	90.72%	53.57%	
Ours	94.84%	84.01%	89.29%	79.29%	

Real-World Robotic Grasping

- Our dataset includes 7 categories and 38 different clothing items.
- This system enables the Baxter to grasp any clothing item based on user instructions while demonstrating strong generalization to unseen targets.

[1] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520, 2018. [2] L. Huang, T. Yang, R. Jiang, X. Tian, F. Zhou, and Y. Chen, "Deforming garment classification with shallow temporal extraction and tree-based fusion," IEEE Robotics and Automation Letters, pp. 1114–1121, 2023.

[2] L. Tudang, 1. Tang, K. Jiang, A. Tian, F. Zhou, and 1. T. Jenh, Denothing gammen cassineation with sharlow temporal extraction and use-based tisson, IEEE Robosius and Autonation Letters, pp. 111 [3] H. Shehawy, P. Rocco, and A. M. Zanchettin, "Estimating a garment grasping point for robot," in IEEE International Conference on Advanced Robotics (ICAR), pp. 707—714, 2021.

[4] W. Chen, D. Lee, D. Chappell, and N. Rojas, "Learning to grasp clothing structural regions for garment manipulation tasks," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4889–4895, 2023.

