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ABSTRACT

We identify a striking phenomenon in large language models finetuned on rea-
soning tasks: as Pass@1 improves during supervised finetuning, Pass@k rapidly
deteriorates and fails to recover with reinforcement learning or self-improvement.
We formalize the relationship between expected Pass@k and Pass@1 over the test
distribution and attribute the early drop in Pass@k to diversity collapse—where
fine-tuning causes the probability mass to converge toward a single reasoning
path and final answer for test questions. We theoretically prove how the standard
finetuning strategy of SFT and RL leads to diversity collapse in reasoning models.
Finally, we estimate the optimal Pass@k performance achievable with an oracle
given access to the model’s distribution over final answers marginalized over all
rollouts and reveal a significant gap compared to current token-level diverse de-
coding methods such as temperature scale, top-k, nucleus, and min-p sampling.
We highlight the need for better decoding strategies for generating reasoning steps
during self-improvement and inference. Finally, we propose a promising solution
by model weight interpolation.

1 INTRODUCTION

Recent advances in large language models (LLMs) have showcased their remarkable ability to
perform complex mathematical reasoning (Lightman et al., 2023; Azerbayev et al., 2023), yet these
successes often hinge on test-time scaling strategies(Snell et al., 2024; Wu et al., 2024). In many
applications, particularly those involving math problems, puzzles, and logical reasoning, LLMs
employ a verifier-generator framework in which it is significantly easier for the model to verify a
candidate solution than to generate one from scratch. This distinction has given rise to strategies that
leverage multiple rollouts during inference, selecting the best answer through an outcome reward
model (ORM) (Lightman et al., 2023). Consequently, performance is typically measured using
the Pass@k metric—the probability that at least one out of k sampled answers is correct—rather
than solely relying on Pass@1. (Li et al., 2024) This shift in evaluation underscores the need for
robust decoding strategies that enhance diversity in the generated solutions while maintaining high
accuracy. Despite the impressive gains observed with test-time scaling, current training and decoding
paradigms are suboptimal with respect to maximizing Pass@k. Empirical evidence suggests that
while techniques such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) can
incrementally improve the quality of the best single rollout (Pass@1), they often lead to a degradation
in overall diversity, causing Pass@k to drop. (Cobbe et al., 2021)

In this paper, we rigorously analyze the gap between expected Pass@1 and Pass@k over the test
distribution. First, we formalize how Pass@k depends on both the mean and variance of per-
example Pass@1 probabilities. We highlight an inherent asymmetry in Pass@k where a drop in
Pass@1 for any given question is disproportionately detrimental compared to an equivalent gain
for another. Our experiments confirm prior observations (e.g., on GSM8K (Cobbe et al., 2021))
where Pass@1 improvements don’t reliably translate to Pass@k gains due to this variance asymmetry.
Furthermore, we empirically and theoretically establish that this variance in Pass@1 is caused by SFT
and RL tending to collapse the diversity of the model’s generations to a single reasoning trace: SFT
miscalibrates models toward oversampling a common response, while RL fails to restore diversity.
Finally, we estimate the optimal Pass@k achievable with an oracle given access to the model’s
distribution over final answers marginalized over all rollouts and reveal a significant gap of 10− 20%
compared to current token-level diverse decoding methods like temperature scale, top-k(Shao et al.,
2017), nucleus(Holtzman et al., 2020), and min-p(Nguyen et al., 2024) sampling. Furthermore, we
propose a method to mitigate diversity collapse during SFT by interpolating the model weights from
earlier and later checkpoints, which demonstrates superior performance in Pass@k accuracy.
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Figure 1: Pass@k for SFT and RL checkpoints of Qwen-2.5-0.5B on GSM8K. The purple solid
line is measures the performance across SFT steps, while the three dashed lines correspond to RL
with Proximal Policy Optimization (PPO) starting from different SFT checkpoints. While Pass@1
continues to improve, Pass@k for larger k oftentimes decreases, even with RL.

2 ASYMMETRY OF PASS@K

We first formalize the relationship between Pass@k and Pass@1, and why these metrics can be
anti-correlated. Given a reasoning model f(·), a decoding strategy D, and a question x, the model’s
answer ŷ is obtained by sampling a rollout r := [x, s(1), s(2), ..., s(n), ŷ] where s(i) are intermediate
steps. Then given k rollouts, Pass@k measures if one of the guesses is equal to the true answer y. If
these rollouts are sampled i.i.d., the expected per-example Pass@k is equal to

Pass@k(x) = E[ri]ki=1∼D(f(x)) [1{∃ i s.t. ŷ = y}] = 1− (1− ρx)
k (1)

where ρx = P (ŷ = y | x, f,D) is the marginal probability of sampling the ground truth answer or
what we call the “ground truth confidence”.

We now provide a straightforward upper bound of expected Pass@k over the entire test distribution
x, y ∼ D, that depends on the expectation and variance of Pass@1 (Proof in Appendix B).

Proposition 2.1. Ex,y∼D [Pass@k(x)] ≤ 1− ((1− Ex,y∼D[ρx])
2 +Var(ρx))

k/2

Notably, the upper bound of Pass@k rises with the expected Pass@1 but falls with its variance. As
we will observe, finetuning reasoning models by SFT tends to increase both the expectation and
variance of Pass@1, causing Pass@k to oftentimes decrease as Pass@1 increases.

3 EARLY DROP OF PASS@K DURING SFT-RL

In Figure 1, we plot test Pass@k (k = 1, 5, 10, 50) of Gemma-2-2B and Qwen-2.5-0.5B trained
on the rephrased augmentations of GSM8k (Cobbe et al., 2021) in MetaMathQA (?). A clear
pattern emerges across both models and datasets: during SFT, Pass@1 continues to improve,
but Pass@k for larger k peaks and then drop sharply. We then continue finetuning SFT check-
points using Proximal Policy Optimization (PPO) with a binary reward of the correctness of
the model’s final answer. Although PPO successfully recovers Pass@k for early SFT check-
points, the performance of later checkpoints often declines even further, especially for large k.
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Figure 2: Histogram of ρx of Qwen-2.5-0.5B SFT
checkpoints across GSM8k test.

Bimodal ground truth confidence Why does
Pass@k drop? We estimate the ground truth con-
fidence ρx of the GSM8k test examples empir-
ically over 100 rollouts sampled with tempera-
ture set to 1. In Figure 2, we plot the distribution
of ground truth confidences and observe that
the distribution becomes very bimodal. Conse-
quently, the variance of Pass@1 increases. This
increase in variance directly explains the drop
in Pass@k as we saw from our upper bound in
Proposition 2.1.
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Figure 3: Diversity Collapse The answer, semantic, and operation diversity of the rollouts of
Gemma-2-2B checkpoints across GSM8k test examples. Colors map to different SFT steps. As SFT
progresses, diversity of intermediate steps and final answers collapses.

3.1 DIVERSITY COLLAPSE TOWARDS A SINGLE REASONING TRACE

The bimodal nature of the distribution indicates that, for each test example, the model’s ground truth
confidence is either very high or very low. One possible explanation for this behavior is if the model
is highly confident about its predictions: if it is confidently wrong, the ground truth confidence is low,
whereas if it is confidently correct, the ground truth confidence is high.

To test this hypothesis, we sample 100 rollouts per GSM8k test example from Gemma-2-2B and mea-
sure the degree of diversity collapse between the example’s rollouts using three metrics: 1.) Answer
Diversity: the fraction of unique guesses ŷ among rollouts, 2.) Semantic Diversity: the average
cosine similarity between the text embeddings of the rollouts, computed using Stella-400M-v5 (Zhang
et al., 2024a), 3.) Operation Diversity: group rollouts by the sequence of arithmetic operations
performed and measure the fraction of unique operation sequences.

In Figure 3, we observe that longer SFT leads to a clear collapse in the model’s probability distribution.
The model places most of its probability mass on one answer and a single reasoning trace, as
evidenced by reduced semantic and operation diversity.

4 THEORETICAL LIMITATIONS OF SFT AND RL

Diversity Collapse in Supervised Finetuning Overparameterized models are well-known to
exhibit overconfidence in their predictions, an effect that has been studied extensively in classification
(Guo et al., 2017). In particular, the model’s confidence towards the most likely class P (ŷ = kmax |
x) is often much higher than the model’s accuracy. In binary classification with linear models
f(x) = σ(⟨w,x⟩) and linearly separable training data, gradient descent provably drives the norm
of the weights to infinity, causing probabilities to collapse to 0 or 1 (Soudry et al., 2018). We plot
this explicitly in Appendix Figure 6 in models trained on binary Gaussian mixture data. A similar
phenomenon likely arises in large reasoning models, which are also finetuned on relatively small
datasets by cross-entropy loss, ultimately leading to overly confident solutions in spite of limited
coverage over the space of rollouts (Cobbe et al., 2021).

Diversity Collapse in Reinforcement Learning Our analysis shows that applying standard rein-
forcement learning algorithms, such as GRPO (Ramesh et al., 2024), over reasoning models with
low initial diversity can inevitably collapses output diversity. We quantify initial diversity by the
sharpness of the bimodal ground truth confidence (i.e., accuracy) distribution: when most samples
yield either very low or very high ground truth confidence, the RL dynamics exhibit two notable
phenomena: 1.) The probability mass on incorrect rollouts decays rapidly to negligible levels, 2.)
The remaining probability mass over the correct rollouts evolves with approximately zero drift but
finite variance.

These dynamics create a winner-takes-all effect. Once one correct reasoning trace is randomly
reinforced, its probability begins to dominate while the gradient signal for other traces diminishes.
Consequently, the maximum probability among the correct traces eventually exceeds a preset thresh-
old ∆≫ 1

K (where K denotes the number of potential correct reasoning traces). This implies that
the model concentrates nearly all of its probability mass on a single correct reasoning trace for each
sample in the training set, effectively collapsing the system into an SFT-like regime.
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Theorem 4.1 (Diversity Collapse in Reinforcement Learning (Informal)). Suppose we are
training a model with GRPO with group size G on a finite set of M problems. For each
problem, there are multiple correct traces. Assume the initial accuracy distribution of the
samples is drawn from a sharp beta distribution with Beta(a, b), a, b < τ ≪ 1. We say the
model is collapse when the probability of one correct reasoning path is dominant for each
problem, and let C denote the event of collapse, then we have

Pr(C) ≥ 1−M

(
1− exp

(
− CG

η2O(τ)

))
(2)

where η is the learning rate and C is a constant.

5 LIMITATIONS OF TOKEN-LEVEL DIVERSE DECODING STRATEGIES

Furthermore, we analyze how well standard decoding strategies for diversity helps recover the Pass@k
drop and compare against the optimal Pass@k strategy. Intuitively, to achieve high Pass@k, a model’s
optimal strategy is to sample k unique and most likely guesses. In the ideal scenario where the decoder
had oracle access to the model’s marginal distribution over final answers P (ŷ = a | x) ∀a ∈ A, we
could use these probabilities to either sample answers without replacement or sample top-K answers.
This is often challenging in practice as autoregressive models do not have any foresight about the
final answer distribution of any intermediate step.

However, we can estimate the optimal Pass@k of Gemma-2-2B and Qwen-2.5-0.5B in GSM8k by
using the empirical answer distribution over 1000 sampled rollouts per example. We try decoding
with a range of temperatures T ∈ [0.8, 1.8]. First, in Figures 10 and 13, we surprisingly notice a
stark gap of 10 − 20% between the best Pass@K(K = 2, 4, 8) achieved by naive decoding with
temperature scaling and the top-K w/oracle sampling. For example, the optimal Pass@2 of Gemma-
2-2B is close to 84%. This suggests that current decoding strategies significantly underestimate a
reasoning model’s true performance. In Tables 1 and 2, we also compare standard diversity-inducing
sampling strategies min-p (Nguyen et al., 2024), nucleus (Holtzman et al., 2020), and top-k(Shao
et al., 2017). We find that these methods do not do significantly better than carefully tuning the
temperature. Token-level diversity strategies tend to have a strict trade-off between either sampling
similar rollouts with the same answer or increasing the likelihood of sampling outlier answers.

6 WEIGHT INTERPOLATION

We propose a method that could help fix the diversity issue of LLM through weight interpolation
between earlier checkpoints and later checkpoints. Specifically, we run a uniform weight averaging
(Wortsman et al., 2022) of each checkpoint with an early checkpoint at SFT Step 171. In Figure 16,
we see that decoding from a weight-interpolated model is superior to baseline decoding strategies for
Pass@k. In particular, there is no drop in the curve of pass@k during SFT. This suggests that weight
interpolation can minimize the variance of the confidence distribution in 2.1 without significantly
decreasing the expectation (i.e, Pass@1) like temperature scaling. By “mixing” these confidence
distributions, the diverisity of sampled rollouts significantly improves without oversampling outliers.

7 CONCLUSION

In conclusion, our findings shed light on the trade-off between optimizing for Pass@1 and maintaining
reasoning diversity, emphasizing that conventional finetuning and reinforcement learning strategies
inadvertently lead to diversity collapse. We also highlight the limitations of token-level decoding
strategies for generating reasoning steps during self-improvement and inference. For future work,
we believe it may be important to further investigate model weight interpolation and its efficacy for
improving Pass@k compare to other diverse decoding strategies specifically designed for reasoning.
This could hold the potential to bridge the gap between current decoding limitations and the optimal
oracle performance that could be extracted from current models.
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Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
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A LITERATURE REVIEW

We review recent works on (1) evaluation via Pass@k metrics and diverse test-time strategies and (2)
fine-tuning pipelines for reasoning that combine supervised fine-tuning (SFT) with reinforcement
learning (RL).

A.1 PASS@K EVALUATION AND TEST-TIME STRATEGIES

Recent studies have shown that allocating additional compute at test time can be as effective as
scaling model size. Snell et al. (2024) demonstrated that increasing the test-time compute budget—by
allowing more intermediate reasoning steps, employing majority voting, or using process reward
models—can substantially boost model performance. In practice, Pass@N is used as an upper bound
metric for the best-of-N performance, where a verifier, often superior to the generator, selects the best
candidate among several rollouts (Cobbe et al., 2021).

Recently, several works have proposed methods to optimize best-of-N strategies. Sessa et al. (2024)
proposes a Best-of-N-aware finetuning strategy that explicitly trains models to output diverse rollouts.
Similarly, Muennighoff et al. (2025) found that linear search encourages diversity and tends to
perform much better than parallel decoding. To improve diversity during parallel decoding, Beeching
et al. proposes a diverse beam search decoding strategy and Li et al. (2023) appends curated prompts
to the generation. In some cases, when models are trained to work with formal languages (e.g., Lean),
methods such as Monte Carlo tree search can explicitly diversify reasoning steps in rollouts, such as
in AlphaProof (AlphaProof and AlphaGeometry teams, 2024).

Outside the direct reasoning framework, efforts to achieve a more diffuse output distribution include
methods based on diverse fine-tuning (Zhang et al., 2024b) and decoding strategies. Techniques such
as min-p sampling (Nguyen et al., 2024) and nucleus sampling (Holtzman et al., 2020) have been
studied to maintain realistic language outputs while still promoting creative diversity. Moreover,
prompting strategies that append either random or manually curated prompts to the original question
have been shown to enforce varied solutions (Samvelyan et al., 2024; Renda et al., 2023).

A.2 FINE-TUNING PIPELINES FOR REASONING

The conventional pipeline for enhancing reasoning in LLMs involves an initial phase of supervised
fine-tuning (SFT) followed by reinforcement learning (RL). SFT is critical for instilling interpretable
reasoning chains and ensuring that the model adheres to a consistent rollout template. However,
recent work has raised concerns regarding SFT’s potential pitfalls. Yeo et al. (2025) critically examine
the necessity of SFT, showing that while it guides reasoning, it may also induce overfitting to the
training distribution. This overfitting can limit a model’s ability to generalize, as further evidenced by
Chu et al. (2025), who report that SFT-trained models tend to memorize training data, resulting in
higher out-of-distribution (OOD) failures compared to those refined via RL. Notably, Cobbe et al.
(2021) similarly observe that Pass@k can drop before Pass@1 in GSM8k.

In parallel, the Deepseek-r1 approach proposed by Guo et al. (2025) leverages RL to directly
incentivize reasoning capability, challenging the assumption that SFT is always beneficial. Despite
these critiques, SFT continues to play a foundational role in many reasoning models, as it provides an
interpretable and structured chain-of-thought that remains crucial during early training stages. In our
work, we extend these findings by analyzing how early-stopping SFT based on Pass@1 validation
metrics can lead to suboptimal performance on Pass@k, and establish a formal relationship between
these evaluation metrics. We further compare current decoding strategies against an oracle Pass@k
approach that utilizes full knowledge of the model’s final answer distribution.
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B EXPECTED PASS@K

Proposition B.1.

E [Pass@k(ρx)] ≤ 1− ((1− E[ρx])2 +Var(ρx))
k/2

Proof.

E
[
(1− ρx)

k
]
≤ E

[
(1− ρX)2

]k/2
(3)

= (1− 2E [ρx] + E
[
ρ2x
]
)k/2 (4)

= ((1− 2E [ρx] + E [ρx]
2
) + (E

[
ρ2x
]
− E [ρx]

2
))k/2 (5)

= ((1− E [ρx])
2 + Var(ρx))

k/2 (6)

C SFT IN BINARY CLASSIFICATION

Data and Model Setup We train a linear classifier f(x) = ⟨w,x⟩ from random initialization over
a binary Gaussian mixture distribution:

x | y ∼ N (yµ, Id×d) (7)
y ∈ {1,−1} uniformly (8)

Given a model, we sample predictions, namely ŷ = 1 with probability σ(⟨w,x⟩) = (1 +
exp(−⟨w,x⟩))−1, or ŷ = 0. Then, per-example Pass@1 is equal to ρx = σ(y · ⟨w,x⟩). Sim-
ilarly, the expected Pass@k is equal to 1− (1− ρx)

k.
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Figure 4: Weight Norm

In our experiment, we train an overparametrized linear classifier over
binary Gaussian data mixture x | y ∼ N (y· 1√

d
1, 1

2I) where y = {−1, 1}
and d = 1000. We then evaluate ρx of 400 test samples. As training
progresses, the distribution of ρx over the test data become bimodal due
to the norm of w monotonically increasing once it separates the training
examples. Similarly, we observe that this leads to a drop in Pass@k while
Pass@1 continues to improve.
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D RL THEORY

Overview. We refine the analysis of how Proximal Policy Optimization (PPO) can collapse into
an SFT-like regime when the policy starts with inadequate diversity. The core idea remains that
initially polarized probabilities prevent large-scale exploration of new correct paths. However, we
now incorporate gradient interference and token-wise similarity among paths in a neural network,
showing that these effects can reinforce or hinder probability updates and ultimately sharpen the
same collapse phenomenon.

D.1 DETAILED ANALYSIS OF DIVERSITY COLLAPSE IN GRPO

D.1.1 SETTING AND NOTATION

Consider a (K + 1)-armed bandit with K “good” arms and 1 “bad” arm (labeled K + 1). Let pi be
the probability of selecting arm i, so

∑K+1
i=1 pi = 1. Denote the bad arm probability by

pK+1 = 1− α,

where α =
∑K

i=1 pi is the total probability of all good arms. Each iteration of training proceeds as
follows:

1. Sample G arms {I(1)t , . . . , I
(G)
t } i.i.d. from the current policy p(·).

2. Observe rewards r(g)t = 1{I(g)t ≤ K}, where 1 indicates a good arm.
3. Compute

µt =
1

G

G∑
g=1

r
(g)
t , σt =

√√√√ 1

G

G∑
g=1

(
r
(g)
t − µt

)2
,

and define the normalized advantage

r̃
(g)
t =

r
(g)
t − µt

σt
, σt ̸= 0,

0, σt = 0.

4. Update each parameter θi via

θi ← θi +
η

G

G∑
g=1

r̃
(g)
t

(
1{I(g)t = i} − pi

)
.

5. Stop training when pK+1 = 1− α drops below a threshold β > 0.

We denote the stopping time by

Tstop = inf{ t : pK+1(t) < β}.

We analyze the probability that some good arm probability pi (with 1 ≤ i ≤ K) exceeds a given
threshold ∆ > 1

K . Define the collapse event

C =

{
max

1≤i≤K
pi ≥ ∆

}
.

In what follows, we derive both upper and lower bounds on Pr(C) under GRPO.

D.1.2 BAD ARM DRIFT AND STOPPING TIME

Lemma D.1 (Bad Arm Drift). Let mt be the number of bad arms (arm K + 1) sampled in the group
at iteration t. Then the update increment of θK+1 satisfies

∆θK+1 =
η

G

G∑
g=1

r̃
(g)
t

(
1{I(g)t = K + 1} − pK+1

)
.

9
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If mt ∼ Binomial(G, 1− α), then

E
[
∆θK+1

]
=

η

G
E[X],

where

X =

G∑
g=1

r̃
(g)
t

(
1{I(g)t = K + 1} − pK+1

)
.

Moreover, a more precise conditional analysis shows that

E[X] ≈ −G
√
α (1− α),

thus
E
[
∆θK+1

]
≈ − η

√
α (1− α).

Proof. Condition on having m bad arms in the group, where m ∼ Binomial(G, 1 − α). One
computes (since a “bad arm” has reward 0, and a “good arm” has reward 1, so the sample average
reward is µt =

G−m
G , and sample variance is tied to m and G−m):

r̃bad = −
√

G−m

m
, r̃good = +

√
m

G−m
.

For each bad arm sample, the factor 1{I(g) = K + 1} − pK+1 = α, and for each good arm sample,
the factor equals −(1− α). Summing yields

X = m r̃bad α + (G−m) r̃good
[
−(1− α)

]
.

Substituting the expressions for r̃bad and r̃good, one obtains

X = −
√
m(G−m)

[
α+ (1− α)

]
= −

√
m(G−m).

Hence
E[X] = −E

[√
m(G−m)

]
.

Since m ∼ Binomial(G, 1−α) has mean G(1−α) and variance Gα(1−α), a standard Delta-method
or Taylor expansion around m = G(1− α) shows

E
[√

m(G−m)
]
≈ G

√
α(1− α),

for large G. Consequently,
E[X] ≈ −G

√
α(1− α).

Multiplying by η
G yields

E
[
∆θK+1

]
≈ − η

√
α(1− α),

as claimed.

Lemma D.2 (Bad Arm Probability Decay). Under the GRPO dynamics, the expected change in the
bad arm probability satisfies:

E[∆pK+1] ≈ −η · α3/2(1− α)3/2,

where α = 1− pK+1. The continuous-time approximation leads to the differential equation:
dp

dt
= −η · (1− p)3/2p3/2.

The exact stopping time to reach pK+1 < β is given by:

Tstop =
1

η

∫ 1−α

β

dp

(1− p)3/2p3/2
.

Evaluating this integral yields:

Tstop =
2

η

[
(2p− 1)√
p(1− p)

]p=1−α

p=β

.

Expanding for general α and β, this contains all α-dependent terms. For small β (β → 0), the
dominant term is:

Tstop ∼
2

η
√
β
(1 +O(β))− 2

η
√

α(1− α)
+O(1).

Thus, the stopping time retains explicit dependence on initial conditions α through the second term.

10
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Proof. From Lemma D.1, the expected parameter update is:

E[∆θK+1] ≈ −η
√
α(1− α).

Using the softmax derivative relationship ∆pK+1 ≈ pK+1(1− pK+1)∆θK+1 = α(1− α)∆θK+1,
we get:

E[∆pK+1] ≈ −η · α3/2(1− α)3/2.

Treating the discrete updates as a continuous process:

dp

dt
= −η · (1− p)3/2p3/2.

Separating variables and integrating:∫ β

1−α

dp

(1− p)3/2p3/2
= −η

∫ Tstop

0

dt.

Using the substitution p = sin2 θ:∫
dp

(1− p)3/2p3/2
= 2

∫
csc2(2θ)dθ = − 2(2p− 1)√

p(1− p)
+ C.

Applying limits:

Tstop =
2

η

[
(2p− 1)√
p(1− p)

]p=1−α

p=β

.

For small β (β ≪ 1):
(2β − 1)√
β(1− β)

≈ − 1√
β

(
1 +

3β

2
+ · · ·

)
.

For general α:
(2(1− α)− 1)√

(1− α)α
=

(1− 2α)√
α(1− α)

.

Combining terms preserves all α-dependence:

Tstop =
2

η

(
1√
β
− 1− 2α√

α(1− α)

)
+O(β1/2).

This shows explicit dependence on both α and β.

D.1.3 GOOD ARM DYNAMICS AND VARIANCE

Lemma D.3 (Centered Good Arm Dynamics). Let θ̄ = 1
K

∑K
i=1 θi, and define the centered parame-

ters xi = θi − θ̄ for i = 1, . . . ,K. If pK+1 = 1− α is small, then one can show

E[∆xi] = 0, Var(∆xi) ≈
η2

G
α
(
1− α

K

)
×
(

K

K − 1

)
to account for the negative correlation among the xi’s (due to the constraint

∑K
i=1 xi = 0). In

particular, for large K this factor is close to 1, so effectively

Var(∆xi) ≈
η2

G
α
(
1− α

K

)
.

Hence, the vector x = (x1, . . . , xK) experiences an (approximately) isotropic diffusion with effective
coefficient

Deff ≈
η2

G
α
(
1− α

K

)
.
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Proof. When pK+1 ≈ 0, almost all arms in the group are among the K good arms. By symmetry
among the K good arms, one deduces that

K∑
i=1

∆xi = 0 and E[∆xi] = 0.

The variance calculation follows from standard batch policy gradient variance formulas. One finds
that each ∆θi is of order η

G times a random variable with variance proportional to
√
αβ. Since∑

∆xi = 0, the xi’s have a small negative correlation factor of K
K−1 in the variance. For large K,

this factor is nearly 1, yielding the claimed approximate variance.

D.1.4 UPPER BOUND ON GOOD ARM COLLAPSE

Theorem D.4 (Upper Bound on Collapse Probability). Define the collapse event

C =
{

max
1≤i≤K

pi ≥ ∆
}
,

for a threshold ∆ > 1
K . Suppose GRPO runs until pK+1 < β at time Tstop. Under the update

variance in Lemma D.3, one obtains

Pr
(
C by Tstop

)
≤ exp

(
−C

K∆

G
ln
(
1−α
β

))
,

where C > 0 depends on ∆,K, and α. Hence, as G increases, the probability of collapse decays
exponentially in G.

Proof. By Lemma D.1 and Lemma D.2, the bad arm probability reduces below β within O( 1√
β
)

steps. Condition on pK+1 < β and apply Lemma D.3 to see that x = (x1, . . . , xK) can be viewed
(in a discrete-to-diffusion approximation) as a zero-drift process with variance on the order of
η2

G . Using standard hitting-time or concentration bounds (e.g. Freedman’s inequality or reflection
principles for Brownian motion), the probability that maxi xi reaches the level d = ln( (K−1)∆

1−∆ )

(which corresponds to maxi pi ≥ ∆) decays exponentially in G
η2 times the inverse of the time horizon

Tstop. Since Tstop = O( 1√
β
), the net effect introduces a factor depending on ln( 1−α

β ). Combining
constants proves the stated bound.

D.1.5 LOWER BOUND ON GOOD ARM COLLAPSE VIA HITTING TIMES

Theorem D.5 (Lower Bound on Collapse Probability). Let ∆ > 1
K , and define

d = ln
( (K − 1)∆

1−∆

)
.

Assume that for t beyond some T0 (i.e. after the bad arm is mostly suppressed) the good-arm centered
parameters xi = θi − θ̄ satisfy

E[∆xi] = 0, Var(∆xi) ≥ Deff =
η2

G
α
(
1− α

K

)
.

Then there exists a constant C1 > 0 such that

Pr
(
max

1≤i≤K
pi ≥ ∆ by Tstop

)
≥ exp

(
−C1

G d2

η2 α
(
1− α

K

)
Tstop

)
∼ exp

(
−C2

Gd2

η2
√
αβ

)
.

If Tstop is on the order of 1√
β
− 1√

α(1−α)
, this becomes

Pr(C) ≥ exp
(
−C2

Gd2
√

β(1− α)

η2
√
α
(
1− α

K

)(√
α(1− α)−

√
β
)).

Proof. One-dimensional hitting-time formulas for zero-drift (Brownian-like) processes with variance
Deff t imply that the probability a single coordinate xi(t) reaches d > 0 by time T is bounded below
by a term exp

(
− c d2

Deff T

)
. Taking a union bound over K good arms affects only polynomial factors

(hence not the leading exponent). Since Tstop is at most on the order of 1√
β

, we substitute Tstop and

Deff = η2

G

√
αβ, which yields the exponent exp

(
−c Gd2 √

β
η2 α(1− α

K )

)
. This completes the proof.
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D.1.6 MAIN THEOREM

Theorem D.6 (Combined Bounds on Good Arm Collapse). Let C = {max1≤i≤K pi ≥ ∆} be the
collapse event. Suppose that the assumptions of Theorems D.4 and D.5 hold. Then there exist
constants C, C1, C2 > 0 such that:

exp
(
−C1

G (ln( (K−1)∆
1−∆ ))2

η2
√
αβ

)
≤ Pr(C) ≤ exp

(
−C

K∆

G
ln
(1− α

β

))
,

where ∆ > 1
K is the collapse threshold and β > 0 is the stopping criterion for pK+1. If Tstop ∼ 1√

β
,

then the lower bound exponent incorporates an additional factor of
√
β in place of Tstop.

Proof. Combine Theorem D.4 (upper bound) with Theorem D.5 (lower bound). Both rely on
Lemmas D.1, D.2, and D.3 for controlling the time scale Tstop and the variance structure of the good
arms. The final exponents involve the group size G, the threshold ∆, the initial bad arm probability
1− α, and the stopping threshold β, producing the stated bounds.

D.2 ANALYSIS ON RL COLLAPSE TO SFT REGIME

D.2.1 PROBLEM SETUP & NOTATION

• We have a finite set of queries (prompts)

S = {s1, s2, . . . , sM}, M <∞.

• For each si, there are Ni correct answer paths:

Ai = { ai1, . . . , aiNi
}.

Let N = maxi Ni be the maximum number of correct paths for any query.
• A policy πθ(a | s) is parameterized by a (Transformer) neural network with parameters θ.

For each si, define the accuracy:

xi =

Ni∑
j=1

πθ

(
aij | si

)
.

• Poor Diversity Initialization. We assume that the initial accuracies (x1, . . . , xM ) are drawn
i.i.d. from

Beta(ϵx, ϵy)

with
ϵx, ϵy ≤ τ ≪ 1.

Thus, with high probability each xi is extremely close to either 0 or 1, indicating a lack of
diversity.

D.2.2 BETA TAIL BOUND

We first restate a refined tail bound for the Beta distribution. This result justifies the claim that most
queries start with an accuracy extremely close to 0 or 1.
Lemma D.7 (Beta Tail Bound). Let x ∼ Beta(ϵx, ϵy) with ϵx, ϵy ≤ τ ≪ 1. Then for every ε ∈ (0, 1

2 )
there exists a constant C1 > 0 (depending only on τ ) such that

Pr
(
x ∈ (ε, 1− ε)

)
≤ C1 ε.

Equivalently,
Pr
(
x ≤ ε or x ≥ 1− ε

)
≥ 1− C1 ε.

Proof. Let

f(x) =
xϵx−1(1− x)ϵy−1

B(ϵx, ϵy)
, 0 < x < 1,

13
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be the density of x ∼ Beta(ϵx, ϵy) and

B(ϵx, ϵy) =
Γ(ϵx) Γ(ϵy)

Γ(ϵx + ϵy)
.

When ϵx, ϵy ≪ 1, using Γ(z) ∼ 1/z for z ≪ 1 we have

B(ϵx, ϵy) ∼
1/(ϵx ϵy)

1/(ϵx + ϵy)
=

ϵx + ϵy
ϵx ϵy

.

Thus, the normalization is very large and the density is sharply peaked near 0 and 1.

Denote by

I(x) =
1

B(ϵx, ϵy)

∫ x

0

tϵx−1(1− t)ϵy−1 dt,

the cumulative distribution function. Standard estimates for the Beta function (Abramowitz & Stegun,
1964) show that for ε ∈ (0, 1/2) one may choose a constant C1 > 0 (depending only on τ ) so that

F (ε) = I(ε) ≥ 1− C1 ε,

and by symmetry
1− F (1− ε) ≥ 1− C1 ε.

It follows that the total tail probability satisfies

Pr
(
x ≤ ε or x ≥ 1− ε

)
= F (ε) +

[
1− F (1− ε)

]
≥ 1− C1 ε,

or equivalently,
Pr
(
x ∈ (ε, 1− ε)

)
≤ C1 ε.

This completes the proof.

D.2.3 MAIN THEOREM

We now state our main result. It shows that under GRPO training the policy for each query eventually
collapses to a single dominant correct answer path—thus effectively entering a supervised fine-tuning
(SFT) regime. Importantly, the only dependence on the initialization appears via the parameter τ .
Theorem D.8 (RL Collapse to SFT Regime). Assume that the GRPO training is applied independently
to each query si ∈ S (with |S| = M <∞), where for each query the set of correct answer paths is
identified with the K good arms of a (K + 1)-armed bandit. Suppose that the initial accuracy

xi =

Ni∑
j=1

πθ(aij | si)

is drawn i.i.d. from Beta(ϵx, ϵy) with
ϵx, ϵy ≤ τ ≪ 1.

Then by Lemma D.7 most queries are initialized with either xi ≤ cτ or xi ≥ 1−cτ for some constant
c > 0. In the low-accuracy case xi ≤ cτ , the total probability α on the K good arms satisfies α ≤ cτ .
By applying Theorem D.6 (Combined Bounds on Good Arm Collapse) with the substitution α ≤ cτ
and absorbing the stopping criterion β into the universal constants, we deduce that the collapse event

Ci =
{

max
1≤j≤K

πθ(aij | si) ≥ ∆
}
, ∆ > 1

K ,

satisfies

Pr
(
Ci
)
≥ exp

(
− C̃1

G
(
ln
( (K−1)∆

1−∆

))2
η2 τ

)
,

where C̃1 > 0 is a constant independent of τ . (In the high-accuracy case xi ≥ 1 − cτ the policy
is already collapsed.) Hence, by a union bound over all M queries, the probability that the policy
collapses to a single dominant correct answer path for every query (i.e., that the RL training
degenerates into an SFT regime) satisfies

Pr
( M⋂
i=1

Ci
)
≥ 1 − M

1− exp

(
− C̃1

G
(
ln
( (K−1)∆

1−∆

))2
η2 τ

) .

gIn particular, for sufficiently small τ the collapse occurs with high probability.
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D.3 COLLAPSE ANALYSIS OF REINFORCE

In this section, we provide an analysis of the diversity collapse for REINFORCE update in the
multi-armed bandit settings (both discrete and continuous). Our main results are two theorems, one
for the discrete bandit (Theorem D.10) and one for the continuous bandit (Theorem D.11).

D.3.1 DISCRETE BANDIT SETTING

Setup. We consider a (K + 1)-armed bandit, with arms {1, 2, . . . ,K,K + 1}. Arms 1, . . . ,K
are “good,” each yielding reward 1, and arm K + 1 is “bad,” yielding reward 0. We use a softmax
parameterization:

pi =
eθi∑K+1

j=1 eθj
, i = 1, . . . ,K + 1.

At each step:

1. We sample an arm It according to p(·) = (p1, . . . , pK+1).

2. The reward is rt = 1 if It ≤ K (a good arm), and rt = 0 otherwise.

3. We update using policy gradient from REINFORCE

θi ← θi + η rt
(
1{It = i} − pi

)
, i = 1, . . . ,K + 1,

where η > 0 is the step size.

4. We stop once the bad arm’s probability mass pK+1 drops below some fixed β > 0. Denote
this (random) stopping time by

Tstop = min
{
t | p(t)K+1 < β

}
.

Let α ∈ (0, 1) be the initial total probability mass on the K good arms so that pi(0) = α
K for

i = 1, . . . ,K and pK+1(0) = 1 − α. Our goal is to show that, once the bad arm is essentially
removed (i.e. pK+1 < β), the policy can collapse among the remaining good arms with significant
probability; in other words, it eventually concentrates almost all of its mass on one of the K arms.

Formally, define

p
(g)
i =

eθi∑K
j=1 e

θj
for i = 1, . . . ,K.

This p(g)(·) is simply the softmax restricted to the good arms. We say that a collapse event occurs if

max
1≤i≤K

p
(g)
i ≥ ∆,

for some fixed threshold ∆ ∈ (0, 1). We will show that with nontrivial probability, the policy has
already collapsed among the good arms by the time Tstop at which the bad arm’s probability mass
goes below β.

Dynamics of the Bad Arm. We first estimate the time Tstop needed for pK+1 to drop below β.
The update for θK+1 at step t is:

∆θK+1 = η rt
(
1{It = K + 1} − pK+1

)
.

Since the reward is rt = 0 whenever It = K + 1, the actual increment can be broken down into two
cases each step:

∆θK+1 =

{
0, if It = K + 1,

−η pK+1, if It ̸= K + 1.

Hence the expected increment in θK+1 at step t is

E[∆θK+1 | state at t] = − η pK+1

K∑
i=1

pi = − η pK+1

(
1− pK+1

)
.
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This negative drift in θK+1 causes pK+1 to decay. A standard approximation (treating the update as
continuous) suggests

pK+1(t+ 1) ≈ pK+1(t) exp
(
− η (1− pK+1(t))

)
,

which is close to a nearly-exponential decay when pK+1 is not too large.

To make this rigorous, one can apply a concentration argument (e.g. Freedman’s inequality or
Azuma–Hoeffding) to the sum of increments

∆θK+1(1) + ∆θK+1(2) + · · ·+∆θK+1(t).

This ensures that with high probability, pK+1 indeed decreases from (1− α) to β within a time on
the order of

1

η
ln
(1− α

β

)
.

Thus we get the following high-probability bound:

Tstop = min{t : pK+1(t) < β} ≲
1

η
ln
(1− α

β

)
. (9)

Centering the Good-Arms Parameters. Once pK+1 is small, most draws are from the K good
arms. It is helpful to define

θ̄ =
1

K

K∑
i=1

θi, xi = θi − θ̄, i = 1, . . . ,K.

Clearly,
∑K

i=1 xi = 0, so x = (x1, . . . , xK) lives in a (K − 1)-dimensional subspace {x :
∑

i xi =
0}. We also define

p
(g)
i =

exi∑K
j=1 e

xj

,

which is just the good-arm softmax re-expressed in terms of x. A collapse event means maxi p
(g)
i >

∆, i.e., equivalently xi > ln(∆/(1−∆)) for some i. Let us set

∆θ = ln
(

∆
1−∆

)
,

and denote by D the set

D =
{
x ∈ RK : max

1≤i≤K
xi < ∆θ,

K∑
i=1

xi = 0
}
.

We interpret D as the “no-collapse” domain in the (x1, . . . , xK)-space. Once x /∈ D, we have a
collapse.

Martingale CLT and Diffusion Approximation. Next, we show that the evolution of xi = θi − θ̄
behaves roughly like a (K − 1)-dimensional Brownian motion on moderate time intervals, provided
η is chosen so that η2N stays of order 1 over relevant horizons N .

Observe that the update to each θi has magnitude of order η, since rt ∈ {0, 1} and |1{It = i}−pi| ≤
1. Hence

Var
(
∆θi

)
= O(η2).

Moreover,

∆xi = ∆θi −
1

K

K∑
j=1

∆θj .

When the probability mass is mostly on the K good arms and not overly concentrated on any
single good arm, pi is roughly 1/K for each i = 1, . . . ,K. In that regime, (∆x1, . . . ,∆xK)
acts like a mean-0 increment with variance on the order of η2. By a standard martingale central
limit argument (Karatzas & Shreve, 1991), summing ∆xi over N steps is close in distribution to a
(K − 1)-dimensional Gaussian with covariance ∝ N η2.

Scaling time continuously, one views t = Nη−2 (or ensures η2N is O(1)), then x(·) converges to a
diffusion with generator 1

2Deff∆, for some effective diffusion coefficient Deff > 0. One can regard

Deff = αC η2

for some constant C > 0 (depending on K), and one should keep track of the explicit factor α (the
initial probability mass on good arms) to avoid absorbing it as a mere constant.
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Exit-Time Bounds via Elliptic PDEs. In order to show that x(t) (the centered good-arm parame-
ters) escapes the domainD by a certain time, we rely on a standard exit-time bound for Brownian-like
diffusions in a bounded domain. Concretely, let Xt be a (K−1)-dimensional diffusion with generator

L = 1
2 Deff ∆ on a bounded domain D.

Define τD = inf{t ≥ 0 : Xt /∈ D}. Then one has an exponentially small upper bound on the
probability that τD is large. The heart of the argument comes from solving or bounding the heat
equation with Dirichlet boundary. For completeness:
Lemma D.9 (Exit-Time Bound). Let Xt be the (K − 1)-dimensional diffusion solving dXt =√
Deff dWt, starting in a bounded convex domain D ⊂ RK−1 with smooth boundary. Define

τD = inf{t ≥ 0 : Xt /∈ D}. Then there exist constants c1 > 0 and R > 0 (depending on D and K)
such that for all T > 0,

P
(
τD > T

)
≤ exp

(
− c1

Deff

R2
T
)
.

Proof. Step 1. Consider the backward heat equation with Dirichlet boundary condition on D:
∂tu = 1

2 Deff ∆u, x ∈ D,
u(x, t) = 0, x ∈ ∂D,
u(x, 0) = 1, x ∈ D.

By expanding u in an orthonormal basis of Dirichlet eigenfunctions {ϕk} of −∆ with eigenvalues
{λk} > 0, we have

−∆ϕk = λk ϕk, ϕk

∣∣∣
∂D

= 0.

Thus

u(x, t) =

∞∑
k=1

(∫
D
ϕk(y) dy

)
ϕk(x) exp

(
− 1

2 Deff λk t
)
.

Since λ1 > 0 is the smallest (principal) eigenvalue, and ϕ1 can be chosen nonnegative on D, there
exists a uniform positive lower bound on ϕ1(x) for x ∈ D. Consequently,

u(x, t) ≤
[
sup
y∈D

ϕ1(y)
]
ϕ1(x) exp

(
− 1

2 Deffλ1 t
)
.

After a suitable normalization of ϕ1, we conclude

u(x, t) ≤ exp
(
− 1

2 Deffλ1 t
)
.

Step 2. By optional stopping (applied to the martingale u(Xt∧τD , t ∧ τD)), we get

u(x, 0) = 1 = Ex

[
u
(
Xt∧τD , t ∧ τD

)]
≥ Px(τD > t) min

y∈D
u(y, t).

Since u(·, t) is nonnegative, we obtain

Px(τD > t) ≤ maxy∈D u(y, 0)

miny∈D u(y, t)
≤ exp

(
− 1

2 Deffλ1 t
)
.

Step 3. By a domain-geometric (Faber–Krahn type) bound or explicit PDE estimates for bounded
convex sets in RK−1, one obtains λ1 ≥ c′1/R

2 for some c′1 > 0. Let R be, for instance, the minimal
radius of an inscribed ball in D. Combining, we get

Px(τD > t) ≤ exp
(
− 1

2 c
′
1

Deff

R2 t
)
.

Renaming c1 = 1
2 c

′
1, the result follows.

In our application, D = {x : maxi xi < ∆θ,
∑

i xi = 0} is an intersection of K half-spaces, hence
a bounded convex domain within that (K − 1)-dimensional subspace. We let R > 0 be a suitable
diameter or inradius for D.
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Main Result for the Discrete Bandit.
Theorem D.10 (Discrete Bandit Collapse). Consider the (K + 1)-armed bandit with K good arms
and 1 bad arm, using the softmax policy gradient update. Let α ∈ (0, 1) be the initial total probability
mass on the K good arms. Fix parameters β > 0 and ∆ ∈ (0, 1). Suppose the step size η is chosen
such that η2 N remains of order 1 over the relevant horizons N . Then there exists a constant c > 0
(depending on K and the geometry of D) such that:

1. With high probability, the probability mass on the bad arm decays to below β by time

Tstop ≲
1

η
ln
(1− α

β

)
.

2. With the diffusion approximation in the good-arms subspace, the probability of not collapsing
(i.e. staying inside D) for all times up to Tstop is at most

exp
(
− c

Deff

(∆θ)2
Tstop

)
≈ exp

(
− c α η ln

(
1−α
β

))
,

where Deff ≈ αη2 and ∆θ = ln(∆/(1−∆)). Consequently,

P
(
τD ≤ Tstop

)
≥ 1 − exp

(
− c α η ln

(
1−α
β

))
,

implying that with non-negligible probability, the policy has collapsed onto a single good
arm (i.e. maxi p

(g)
i > ∆) by the time the bad arm is essentially removed.

Proof. (1) Time to remove the bad arm. From the update rule for θK+1, we see that every time a
good arm is selected (which happens with probability 1− pK+1), θK+1 decreases by approximately
η pK+1. Summing these increments shows that pK+1 decays nearly exponentially from (1 − α)
to below β. A standard Azuma–Hoeffding or Freedman-style inequality applied to the martingale
increments ensures that this decay happens with high probability in time on the order of 1

η ln
(
1−α
β

)
;

see equation 9.

(2) Collapse among the good arms. Once pK+1 is sufficiently small, most updates occur on the
K good arms. In that regime, one can approximate p

(g)
i ≈ 1/K for each good arm, implying the

increments ∆xi have mean near zero and variance of order η2. By the martingale CLT, x(t) behaves
approximately like a Brownian motion with diffusion Deff ≈ αη2. Applying Lemma D.9 on the
“no-collapse” domain D, we see that the probability of remaining inside D up to Tstop is at most

exp
(
− c′′

Deff

(∆θ)2
Tstop

)
≈ exp

(
− c′′

αη2

(∆θ)2
1

η
ln
(
1−α
β

))
= exp

(
− c′′ αη ln

(
1−α
β

))
.

Hence, with probability at least 1− exp(· · · ), the process exits D (i.e. experiences maxi p
(g)
i > ∆)

before Tstop. This exit event is precisely the definition of collapse.

D.3.2 CONTINUOUS BANDIT SETTING

Setup. In many cases, the number of correct traces is exponential to the input size, and in those cases,
discrete bandit setting may not be proper to describe the situations. We now consider a continuum-
armed bandit with action space [0, 1]. Let G ⊆ [0, 1] be a measurable “good” set (reward 1) and its
complement [0, 1] \G be “bad” (reward 0). We use a softmax policy parameterized by v ∈ Rd and a
feature map Φ : [0, 1]→ Rd. Concretely,

pv(a) =
exp
(
v⊤Φ(a)

)∫ 1

0

exp
(
v⊤Φ(x)

)
dx

,

and at each iteration:

1. Sample a ∼ pv(·),
2. Reward r(a) = 1 if a ∈ G, else 0,
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3. Update
v ← v + η r(a)

(
Φ(a)− Epv [Φ(·)]

)
.

4. Stop once the bad-region mass
∫
[0,1]\G pv(a) da is below β. Denote this stopping time by

Tstop.

Let α =
∫
G
pv(a) da be the initial mass on the good set G. We wish to show that once [0, 1] \ G

is nearly pruned (< β mass), the distribution in G can collapse onto a small subregion of G with
nontrivial probability.

Dynamics of the Bad Region. Define

mB(v) =

∫
[0,1]\G

pv(a) da.

Initially mB(v(0)) = 1−α. The gradient update for v on [0, 1] \G receives reward 0. Hence the net
effect is to push v so as to decrease mB(v) in expectation. A concentration argument again shows an
approximate exponential decay:

mB

(
v(t)

)
≲ (1− α) exp

(
− η t

)
,

so the time to reach mB(v) ≤ β is on the order of

Tstop ≲
1

η
ln
(1− α

β

)
.

Diffusion Approximation Within G. Decompose v as (vG, vB) according to features supported
on G versus [0, 1] \ G. Once mB < β, the sampling is mostly from G, making the updates to vG
predominantly come from that region. If pv(·) is near-uniform on G, then E[Φ(a) | a ∈ G] ≈ Φ̄G

and the mean increment of vG is small, while the variance remains of order η2. As in the discrete
case, a martingale CLT argument shows

vG(t) ≈ Brownian motion with diffusion Deff ≈ αη2 ΣG,

where ΣG depends on the feature covariance over G. Again, the factor α is kept explicit.

Defining Collapse in the Continuous Setting. Inside G, define the restricted policy

p̃v(a) =
pv(a)∫

G
pv(x) dx

, a ∈ G.

We say collapse occurs if
sup
a∈G

p̃v(a) > ∆,

for some ∆ > 1/µ(G) (assuming G has positive Lebesgue measure µ(G)). Intuitively, if p̃v(·)
becomes very peaked on a small subset of G, the exploration collapses.

Let U ⊂ Rd be the set of vG for which supa∈G p̃v(a) ≤ ∆. Define τU = inf{t : vG(t) /∈ U}, the
first exit time from the “no-collapse” set U . As before, the PDE-based exit-time bound implies that
for a diffusion dXt =

√
Deff dWt,

P
(
τU > T

)
≤ exp

(
− c1

Deff

R2 T
)
,

provided U is bounded and sufficiently regular. Here, R is a diameter or inradius of U .

Main Result for the Continuous Bandit.
Theorem D.11 (Continuous Bandit Collapse). Consider the continuum-armed bandit on [0, 1] with
reward 1 on a measurable subset G ⊂ [0, 1] and reward 0 elsewhere. Let α =

∫
G
pv(a) da be the

initial mass on G. Suppose β > 0 and choose a collapse threshold ∆ > 1/µ(G). Assume the step
size η is chosen so that η2 N remains of order 1 over relevant horizons N . Then there is a constant
c > 0 (depending on U and the feature covariance on G) such that:
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1. With high probability, the mass on [0, 1] \G decays below β by time

Tstop ≲
1

η
ln
(1− α

β

)
.

2. The probability of remaining in the no-collapse set U up to Tstop is exponentially small in
Tstop:

P
(
τU > Tstop

)
≤ exp

(
− c

Deff Tstop

(∆′
θ)

2

)
,

where Deff ≈ αη2 λmax(ΣG), and ∆′
θ depends on ∆ and Φ. Therefore,

P
(
τU ≤ Tstop

)
≥ 1 − exp

(
− c α η ln

(
1−α
β

))
,

implying that with non-negligible probability, the policy collapses onto a narrow subregion
of G by the time the bad region is essentially pruned.

Proof. (1) Pruning the bad region. Because actions in [0, 1]\G yield zero reward, the corresponding
coordinates of v have negative drift in expectation, thus mB(v(t)) decays nearly exponentially from
(1− α) to β. A high-probability concentration argument shows

Tstop = min{ t : mB(v(t)) < β} ≲
1

η
ln
(1− α

β

)
.

(2) Collapse within G. Once mB < β, sampling is mainly from G, so vG accumulates small-mean,
O(η2)-variance increments. By the martingale CLT, vG(t) is well-approximated by a diffusion
dvG =

√
Deff dWt. Let U be the set of vG that keep maxa∈G p̃v(a) ≤ ∆. Applying the exit-time

argument (as in Lemma D.9 but now in Rd) shows

P
(
τU > Tstop

)
≤ exp

(
− c1

Deff

(∆′
θ)

2 Tstop

)
≈ exp

(
− c1 αη ln

(
1−α
β

))
.

Hence, with probability at least 1 − exp(· · · ), we exit U (i.e. have supa∈G p̃v(a) > ∆) by Tstop,
which is the desired collapse event.

Thus, in both discrete and continuous settings, simple policy-gradient updates exhibit a pronounced
“diversity collapse” behavior: once the bad actions are pruned away, the algorithm can rapidly
concentrate all remaining probability mass onto a single action (or a very narrow region), despite the
existence of multiple equally good actions. Crucially, the probability of collapse scales exponentially
in αη ln

(
1−α
β

)
, so the effect is not negligible when α, β are held fixed and η is suitably chosen.
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E MEASURING DIVERSITY OF TRACES

We measure the diversity of the 100 sampled rollouts of Gemma-2-2B across GSM8k test. We
measure diversity in terms of 3 different measures.

Output Diversity The cardinality or number of unique answers in the set of all model outputs
|{ŷ1, ŷ2, . . . , ŷn}| over the total number of traces.

Operation Diversity In GSM8k, each intermediate step consists of basic arithmetic operations, e.g.
5 + 3 = 8. We may simply map each of the rollouts to the sequence of arithmetic operations
the model steps through, i.e. ri → [o1, o2, . . . , ot]. This mapping is extracted by code. Then,
given this set, we measure unique sequence of operations over the number of total rollouts.

Semantic Diversity We measure the similarity of trace using cosine similarities between the text-
embeddings (Bilmes, 2022; Yu et al., 2023).

In Figure 7, we plot the histogram of these metrics evaluated over the GSM8k test set. Interestingly,
we observe a clear trend where the answer diversity decreases and the semantic diveristy and the
diversity of approaches in terms of sequence of operations collapses.

E.1 DOES TEMPERATURE INCREASE DIVERSITY?

Temperature does increase diversity, however also increases the chances of sampling outlier answers
as we saw in Section 5.
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Figure 7: Diversity of Rollouts Sampled w/ Temperature=[0.8, 1.0, 1.5] of Gemma-2-2B SFT
checkpoints on GSM8k
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E.2 HOW WELL DO TOKEN-LEVEL DIVERSE DECODING STRATEGIES COMPARE WITH OPTIMAL
STRATEGY WITH ORACLE?

Decoding Strategy Pass@2 Pass@4 Pass@8
Naive 0.565 0.666 0.760

Nucleus 0.566 0.668 0.757
Min-p 0.566 0.668 0.760
Top-k 0.563 0.666 0.756

Top-k w/Oracle 0.760 0.832 0.901

Table 1: Best Pass@k of Sampling Strategies for Qwen-2.5-0.5B over SFT checkpoints

Decoding Strategy Pass@2 Pass@4 Pass@8
Naive 0.547 0.648 0.737

Nucleus 0.528 0.617 0.694
Min-p 0.550 0.655 0.744
Top-k 0.538 0.646 0.738

Top-k w/Oracle 0.730 0.814 0.878

Table 2: Pass@k of Sampling Strategies for Qwen-2.5-0.5B at Last SFT Checkpoint

Hyperparameter Tuning Details We grid search for optimal temperature for all baselines over
T = [0.8, 1.0, 1.2, 1.5, 1.8]. For nucleus, we choose the best cutoff threshold between [0.8, 0.9, 0.95].
For min-p, we choose the best probability threshold between [0.01, 0.05, 0.1]. For tokenwise top-k,
we choose best k between [12, 25, 50].
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Figure 8: Pass@k of Gemma-2-2B GSM8k Naive Sampling with Replacement
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Figure 9: Pass@k of Gemma-2-2B GSM8k Oracle Sampling without Replacement
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Figure 10: Pass@k of Gemma-2-2B GSM8k Oracle Top K Sampling
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Figure 11: Pass@k of Qwen-2.5-0.5B GSM8k Naive Sampling with Replacement
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Figure 12: Pass@k of Qwen-2.5-0.5B GSM8k Oracle Sampling without Replacement
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Figure 13: Pass@k of Qwen-2.5-0.5B GSM8k Oracle Top K Sampling
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E.3 WHY MIGHT INCREASING TEMPERATURE MAY NOT LEAD TO A “MEANINGFUL”
INCREASE IN DIVERSITY?

While the variance of the distribution of expected accuracies decreases after temperature scaling
(Good for Pass@k), the overall expected accuracy also monotonically decreases.
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Figure 14: Histogram of ρx over GSM8k of Gemma-2-2B Sampled with Temperatures 0.8 to 2.0
after SFT Step 1710
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Figure 15: Histogram of ρx over GSM8k of Qwen-2.5-0.5B Sampled with Temperatures 0.8 to 1.8
after SFT Step 1710
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E.4 WEIGHT INTERPOLATION

Figure 16: Pass @k for Qwen-2.5-0.5B GSM8k weight interpolation
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