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1 Evidence of Human Preferences in fling Action1

Fig. 1 and Fig. 2 show grasping point distribution (showed in NOCS[1] space) of human demonstra-2

tion data collected by VR. We can see that humans frequently grasp shoulders, collars, and waists3

in the earlier stage of the unfolding process when the garment is usually more crumpled. Humans4

will probably grasp shoulders at the later stage of the unfolding process when the garment is more5

flattened and recognizable.6

Figure 1: The grasping point distribution (showed in NOCS[1] space) for fling action in human
demonstration data through VR. These points are from earlier steps of the unfolding process.

Figure 2: The grasping point distribution (showed in NOCS[1] space) for fling action in human
demonstration data through VR. These points are from later steps of the unfolding process.

2 How RC and RA are Calculated7

Intuitively speaking, RC encourages actions that make the garment more flattened and more similar8

to the canonical pose, and RA encourages actions that make the garment more aligned with the9
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target pose in planar position and rotation. Please refer to ClothFunnels[2] for the detailed definition10

of RC and RA.11

3 Details of Human Demonstration Data Collection in VR12

VR Recording System We build a real-time data recording system for collecting human demon-13

stration data for garment manipulation in Virtual Reality. This system is based on the VR-Garment14

system implemented in GarmentTracking[3]. It is driven by Unity, and the physics engine for cloth15

simulation is based on Obi. In practice, this system can effectively collect large amounts of human16

demonstration data for thousands of garments with different shapes and sizes.17

Data Recording Pipeline The data recording pipeline is similar to that in GarmentTracking[3].18

Firstly, the volunteer will put on an HTC Vive Pro VR Headset and VRTRIX VR gloves. Secondly, a19

virtual garment from CLOTH3D[4] dataset will randomly drop on the table in virtual space. Thirdly,20

the volunteer will use his hands to perform the action primitives defined in the main paper for21

multiple steps to fully smooth and fold the garment. On average, the whole multi-step manipulation22

process for one garment only takes about 20s in VR.23

Data Post-processing The raw data generated by the data recording pipeline are videos that con-24

tain the garment mesh vertices and hand poses of each frame. We use a simple method to automati-25

cally convert hand poses into robot gripper poses, please see the supplementary files for more details.26

After data recording, We will perform the following data post-processing steps to generate data that27

are available for network training: Firstly, we automatically divide the whole video of the garment28

manipulation process into multiple valid action intervals. The start and ending of each action inter-29

val are decided by the grasping and releasing states of both human hands. Secondly, we use simple30

rules to automatically generate labels of action primitive type for all valid action intervals based on31

patterns of human actions. Thirdly, we re-render the garment mesh in Unity and generate RGB-D32

image, mask, NOCS[1] map, and gripper poses for the starting frame of each action interval.33

4 Details of Human Preference Annotation and Learning34

In practice, we generate 8 comparisons from selected keypoint candidates with a fixed threshold35

RCA > c for each data sample, which can filter out most of the bad keypoint candidates. We invite36

two volunteers to annotate the same data samples and drop those annotations where two volunteers37

do not agree, which can increase data annotation quality.38

5 Keypoint Prediction for fling action39

The dense features generated by the Transformer model will be used for the pose prediction branch40

for fling action. This branch will predict two grasp points for fling action. The grasp point indicates41

the location on the garment where the robot should grip and perform the flinging action.42

Keypoint Candidate Prediction After analyzing the statistics of human demonstration data in43

VR, we find that humans will frequently grasp recognizable keypoints on the garment (e.g. cuff,44

shoulder, waist) for fling action (please see the supplementary file for more details). Motivated45

by this observation, we choose to directly learn possible keypoint candidates purely from human46

demonstration data. However, the distribution of these keypoint candidates on the garment is multi-47

modal, so we firstly predict K possible keypoint candidates P = {P 1, . . . ,PK} , then supervise48

them with the variety (Minimum-over-N) loss[5] in Eq. 1:49

Lkp(P,P ∗) = min
{P 1,...,PK}∈P

{d (P ∗,P 1) , d (P
∗,P 2) , . . . , d (P

∗,PK)} (1)

where P ∗ is the ground-truth keypoint, and d(·, ·) is the distance metric. Intuitively, Lkp only50

supervises the predicted keypoint closet to the ground-truth keypoint, which encourages the variety51
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of the K predicted keypoints. For fling action, we have two ground-truth keypoints {P ∗
left,P

∗
right}52

for dual-arm robots, so the final loss is shown in Eq. 2:53

Lkp(P,P ∗
left,P

∗
right) = (Lkp(P,P ∗

left) + Lkp(P,P ∗
right))/2 (2)

As for the prediction of keypoint candidates P , an intuitive way is to use attention-based offset54

voting[] to directly regress keypoints in 3D task space (the coordinate frame of the input point55

cloud) as shown in Eq. 3:56

P j =
1

N

N∑
i=1

ai,j (xi + oi,j) , s.t.

N∑
i=1

ai,j = 1 (3)

where P j is the j-th keypoint prediction, ai,j ∈ [0, 1] is the attention score, xi ∈ X is the i-th57

point in the input point cloud X , and oi,j is the 3D offsets of the j-th keypoint P j respective to58

the i-th point xi. The attention score ai,j and offsets oi,j are predicted by MLP with dense features59

generated by Transformer as input.60

Prediction in Canonical Space In practice, we find that regressing keypoint candidates in canon-61

ical space (Normalized Object Coordinate Space, NOCS[1]) is much easier than regressing them62

directly in task space. So we additionally predict per-point NOCS coordinate ci ∈ C for the in-63

put point cloud with dense features generated by the Transformer. Due to the bilateral symmetry64

property of most garments, we use the symmetric Huber loss defined in Eq. 4 to supervise NOCS65

prediction C:66

Lnocs(C,C∗) = min{ 1

N

∑
i=1,...,N

Huber(ci, c
∗
i ),

1

N

∑
i=1,...,N

Huber(ci, c
∗sym
i )} (4)

where c∗i ∈ C∗ is the original ground-truth NOCS coordinate of i-th point, and c∗symi is the sym-67

metrical ground-truth NOCS target of i-th point.68

Then we can modify Eq. 3 by replacing xi with ci to generate K keypoint predictions Pnocs in69

canonical space instead of task space, which is shown in Eq. 5:70

P nocs
j =

1

N

N∑
i=1

ai,j (ci + oi,j) , s.t.

N∑
i=1

ai,j = 1 (5)

Nextly, we need to find the corresponding 3D location P j in task space for j-th keypoint from71

NOCS coordinate P nocs
j in canonical space. Due to the local similarity of the NOCS coordinates,72

we can calculate P j by weighted sum defined in Eq. 6:73

P j =

∑N
i=1 wi,jxi∑N
i=1 wi,j

, wi,j = exp (−α ·
∥∥P nocs

j − ci
∥∥
2
) (6)

Intuitively, wi,j is the weight based on the L2-distance between j-th keypoint P nocs
j and i-th point74

ci in canonical space. The larger wi,j is, the more likely j-th keypoint P j is closer to the i-th point75

xi in task space. We set α = 50 by default.76

Finally, we can supervise K keypoint candidate predictions both in canonical space and task space77

by Eq. 7:78

Lkp all(Pnocs,P,P ∗nocs,P ∗) = Lkp(Pnocs,P ∗nocs) + Lkp(P,P ∗) (7)

6 Additional Garment Details79

This section presents the parameters of the garments that are used in our experiment. We use a total80

of 60 garments, divided into two sets: a test set of 10 long-sleeved and 10 short-sleeved garments,81

and a training set of 20 long-sleeved and 20 short-sleeved garments. The garments cover various82

materials and textures. Each garment is assigned a unique ID, and its size and material are also listed83
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in the table. The size information indicates the height and width of the garment when fully unfolded.84

In addition, we capture an RGB image of each garment from a top-down view.85

Figure 3: Long-sleeve Shirts (Test Set)
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Figure 4: Short-sleeve T-Shirts (Test Set)

5



Figure 5: Long-sleeve Shirts (Train Set)
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Figure 6: Short-sleeve T-Shirts (Train Set)
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