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Abstract

Addressing the retrieval of unsafe content from vision-
language models such as CLIP is an important step towards
real-world integration. Current efforts have relied on un-
learning techniques that try to erase the model’s knowledge
of unsafe concepts. While effective in reducing unwanted
outputs, unlearning limits the model’s capacity to discern
between safe and unsafe content. In this work, we introduce
a novel approach that shifts from unlearning to an aware-
ness paradigm by leveraging the inherent hierarchical prop-
erties of the hyperbolic space. We propose to encode safe
and unsafe content as an entailment hierarchy, where both
are placed in different regions of hyperbolic space. Our
HySAC, Hyperbolic Safety-Aware CLIP, employs entailment
loss functions to model the hierarchical and asymmetrical
relations between safe and unsafe image-text pairs. This
modelling – ineffective in standard vision-language models
due to their reliance on Euclidean embeddings – endows
the model with awareness of unsafe content, enabling it to
serve as both a multimodal unsafe classifier and a flexible
content retriever, with the option to dynamically redirect un-
safe queries toward safer alternatives or retain the original
output. Extensive experiments show that our approach not
only enhances safety recognition but also establishes a more
adaptable and interpretable framework for content moder-
ation in vision-language models. Our source code is avail-
able at: https://github.com/aimagelab/HySAC

Warning: This paper features explicit sexual content and
other material that some readers may find disturbing, dis-
tressing, or offensive.

1. Introduction
Large-scale vision-language models (VLMs) have achieved
remarkable successes in various applications, including
cross-model retrieval [58], text-to-image and image-to-text
generation [40, 60] and various downstream tasks [45, 67,
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74]. Popular VLMs like CLIP [58] and ALIGN [34] lever-
age vast amounts of web-scraped image-text data to learn
rich multimodal representations by aligning visual and tex-
tual modalities. However, most large-scale datasets sourced
from the web contain unsafe or inappropriate content, such
as violence, nudity, or hate speech [5, 6]. The presence of
such content not only raises ethical concerns but also intro-
duces risks for real-world applications [7, 30, 75], where
exposure to or misuse of this material can lead to legal
and societal repercussions. Birhane et al. [7] also show
that the increasing dataset scale can exacerbate hateful and
unsafe content, as identified in the now removed LAION-
5B [66, 69]. Addressing the issue of unsafe content in
VLMs is therefore of utmost importance to ensure respon-
sible AI practices.

Recent efforts to mitigate unsafe content in vision-
language models have led to the development of methods
specifically designed for NSFW (Not Safe For Work) con-
tent removal. Most of these works [23, 55] have focused on
unlearning (i.e., removing) the knowledge of unsafe con-
tent from the models. As a recent example, Poppi et al. [55]
develop a fine-tuned version of CLIP which unlearns toxic
concepts by redirecting their embeddings towards safe re-
gions, so that retrieval always produces safe content even
when the model is prompted with unsafe inputs.

In contrast, we propose an approach for managing un-
safe content in VLMs: emphasizing awareness over un-
learning. Rather than hiding the flaws of VLMs by ignoring
NSFW content, we aim to equip the VLMs with the ability
to distinguish between safe and unsafe content. This in turn
helps users of the model to expose or redirect NSFW con-
tent when necessary, a crucial step toward improving user
agency, understanding, and interpretability [19].

Inspired by recent hyperbolic vision-language mod-
els [17, 52], we introduce a hyperbolic framework that
leverages the geometric properties of hyperbolic space to
separate safe and unsafe content effectively. Using a paired
dataset of safe and unsafe image-text inputs [55], we adjust
the embeddings to create an entailment-based [24] struc-
ture. In this setup, safe concepts are positioned closer to the
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origin of the hyperbolic space, while unsafe concepts are
mapped further away. Specifically, we introduce a hyper-
bolic safe-to-unsafe entailment mechanism that ensures safe
content encompasses unsafe representations within conical
regions, defining clear safety boundaries and safety traver-
sals to dynamically adjust query embeddings along the hy-
perbolic space to promote safe retrievals or, alternatively,
expose relevant unsafe content when necessary. This frame-
work not only organizes data into safe and unsafe radius-
based regions but also enables controlled movement within
the space, allowing retrievals to favor safety as required.
Experiments demonstrate that HySAC achieves clear im-
provements in safety awareness, retrieval performance, and
NSFW content handling across multiple datasets, with ro-
bustness in both safe content redirection and controlled un-
safe content accessibility.

2. Related Work

Unlearning in vision-language models. Unlearning con-
cepts and content has recently received a lot of attention,
empowered by the success of vision-language models. Var-
ious approaches have been explored, such as full model re-
training, fine-tuning, machine unlearning [9, 27, 28, 56, 57],
and differential privacy [29]. Some of these efforts have fo-
cused on text-to-image models, with the goal of removing
specific styles, concepts, or objects [36, 76].

A particular emphasis has been placed on removing
NSFW content, which encompasses inappropriate, unsafe,
or illegal material. Schramowsky et al. [64] steer the gen-
eration away from NSFW areas, defined by a fixed set of
concepts. The embedding of NSFW concepts is applied as
negative guidance during the text-conditioning phase, act-
ing as safety guidance. Gandikota et al. [23] erase visual
concepts using only their name, with negative guidance
serving as a teacher. Poppi et al. [55] focus on removing
NSFW concepts from CLIP-like models by fine-tuning the
entire model using ViSU, a multimodal dataset containing
Safe/NSFW Image/Texts quadruplets. Unlike earlier ap-
proaches, which target specific components, their method
fine-tunes the entire vision-and-language model, making
content removal applicable to downstream tasks.

We introduce a method for handling NSFW concepts in
CLIP-like models by fine-tuning them in hyperbolic space.
We exploit the hierarchical properties of hyperbolic geom-
etry, yielding a clear advantage: the model becomes explic-
itly aware of whether content is safe or NSFW, rather than
merely removing knowledge of unsafe content. Similarly
to our approach, safe generation works [8, 64], underscore
that a deeper understanding of (un-)safety can improve the
control of harmful content generation.

NSFW concept detection. A related area of research is
the automatic detection of NSFW content. Several meth-

ods have been proposed for detecting NSFW and toxic lan-
guage [10, 31, 44], primarily in social media contexts. Dis-
tilBERT [62] has emerged as a promising model for this
task, especially when fine-tuned for identifying adult con-
tent. Detecting inappropriate language presents a signifi-
cant challenge, and this complexity extends to visual con-
tent, where various techniques have been developed to de-
tect NSFW imagery [5, 22, 49]. In this domain, models like
NudeNet [4] specialize in detecting nudity, while Q16 [63]
serves as a broader classifier, capable of identifying a wider
range of NSFW content. However, identifying inappropri-
ate visual content remains a complex task, given the chal-
lenges posed by subtle visual cues, lack of contextual infor-
mation, and limited data availability.

While these detection methods focus solely on identi-
fying unsafe content, they do not address the problem of
retrieving relevant, safe alternatives when an unsafe input
is detected. Our method makes it possible to jointly detect
NSFW content and provide a mechanism to shift NSFW
queries towards safe but relevant alternatives.
Hyperbolic learning. A key advantage of hyperbolic
space is its inherent ability to represent hierarchical or tree-
like structures with minimal distortion [11, 50, 51, 61]. A
comprehensive list of recent advancements is documented
in surveys by Mettes et al. [46] and Peng et al. [53].
Foundational works for building neural networks in hy-
perbolic space [3, 24, 25, 35, 68] led to the use of hy-
perbolic models across multiple modalities such as im-
ages [2, 20, 21, 26, 42, 71], text [18, 38, 70, 77], graphs [12–
14, 41] and recommender systems [48, 73].

Recent work has shown the strong potential of hyper-
bolic learning for vision-language models [17, 33, 52] and
demonstrated that training with a loss function enforcing
entailment cones [24] leads to the emergence of hierarchi-
cal structures between the embeddings. While Desai et
al. [17] enforce entailment structure across modalities, Pal
et al. [52] also explicitly enforce structure within modali-
ties by leveraging object-level compositions and nouns from
text. We take inspiration from these approaches and en-
force entailment relations across safe and unsafe embed-
dings, creating an interpretable space for traversing from
unsafe regions to safe regions in CLIP models.

3. Preliminaries
Throughout this work, we operate in hyperbolic space, a
Riemannian manifold with a constant negative curvature.
Following Desai et al. [17], we use the Lorentz model, as it
is better equipped to deal with numerical instabilities asso-
ciated with the Poincaré distance metric [39, 51].

The Lorentz model Ln is an n-dimensional manifold
in which points are represented on the upper sheet of a
two-sheeted hyperboloid in (n+1)-dimensional Minkowski
spacetime. Following terminology from general relativity,
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Figure 1. Overview of our approach. HySAC builds a hyperbolic embedding that manages content safety through an entailment hierarchy.
Unsafe text and images are projected to dedicated regions of hyperbolic space, allowing for safety-aware retrieval and classification.

for each vector p ∈ Rn+1, we refer to the first dimension,
the axis of symmetry, as the time-axis, denoted by p0, and
the remaining n-dimensions as the spatial components, de-
noted p̃. The Lorentz model, Ln = (Ln, gκp) is given as

Ln :=

{
p ∈ Rn+1 : ⟨p,p⟩L = − 1

κ , p0 =

√
1/κ+ ∥p̃∥2, κ > 0

}
,

(1)
where −κ ∈ R denotes the curvature with the Rieman-

nian metric gκp = diag(−1, 1, . . . , 1). The Lorentzian inner
product ⟨., .⟩L is induced by the metric tensor gκp and is de-
fined for p,q ∈ Ln as

⟨p,q⟩L = −p0q0 + ⟨p̃, q̃⟩, (2)

where ⟨., .⟩ is the Euclidean inner product. The Lorentzian
inner product induces a norm on the Lorentzian space which
can be written as ∥p∥L =

√
⟨p,p⟩L. We now define the

common hyperbolic operations in Lorentz space.

Definition 3.1 (Lorentzian distance). The Lorentzian dis-
tance between two points in Ln is the length of their shortest
path (geodesic) connecting them, computed as

dL(p,q) =
√
1/κ · cosh−1(−κ⟨p,q⟩L). (3)

In our work, we use the negative of Lorentzian distance
to calculate similarities between multimodal inputs [17, 52].

Definition 3.2 (Exponential map). Since Lorentz space is a
Riemannian manifold, it is locally Euclidean. This is best
described through the tangent space TpLn, a first-order ap-
proximation of the Lorentzian manifold at a given point
p ∈ Ln. The exponential map then provides a means to
project elements from the tangent space onto the hyper-
boloid. Given a point v ∈ TpLn, the exponential map is
defined as expκp : TpLn → Ln with the expression

expκ
p(v) = cosh(

√
κ ∥v∥L)p+

sinh(
√
κ ∥v∥L)√

κ ∥v∥L
v. (4)

In practice, the reference point p is set to the origin
0 = (

√
1/κ, 0, ..., 0)T on the hyperboloid, allowing expκ0

to project Euclidean vectors from the tangent space at 0 di-
rectly onto the hyperboloid [17, 35]. In this work, the expo-
nential map is used to project the outputs of the visual and
textual encoders to a shared hyperbolic space.

4. HySAC: Hyperbolic Safety-Aware CLIP
4.1. Problem formulation and objective

Problem setup. Given a dataset D = {(Ii, Ti)}Ni=1 of N
image-text pairs, vision-language models (e.g. CLIP [58])
align the visual and textual embeddings obtained from im-
age and text encoders in a shared embedding space. Large-
scale datasets employed for training such embedding spaces
are often web-scraped and contain unsafe samples [5]. For
our problem setup, in order to differentiate between safe
and unsafe content, we denote safe image-text pairs in D as
(Ii, Ti) and unsafe image-text pairs as (I⋆i , T

⋆
i ).

To make vision-language models aware of inappropriate
contents, and enable them to avoid or redirect the represen-
tation of such content, we also require a dataset of quadru-
plets of safe and unsafe image-text pairs, denoted as D⋆ =
{(Ik, Tk, I

⋆
k , T

⋆
k )}Kk=1 [55]. This dataset is generated fol-

lowing the definition of NSFW content of Schramowski et
al. [64] containing the following twenty categories: hate,
harassment, violence, suffering, humiliation, harm, suicide,
sexual, nudity, bodily fluids, blood, obscene gestures, illegal
activity, drug use, theft, vandalism, weapons, abuse, brutal-
ity, and cruelty. The dataset is constructed such that the un-
safe image-text pairs (I⋆k , T

⋆
k ) are specific cases or modified

versions of the safe representations (Ik, Tk).
Modelling relations in the hyperbolic space. We first
consider the relationship between text and image modali-
ties in the embedding space. Like other hyperbolic vision-
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language models [17, 52], we consider text as a general ver-
sion of images to reflect the natural structure of partial order
embeddings [72]. This is enforced in the embedding space
by placing text embeddings closer to the origin and image
embeddings farther away, defining a modality entailment re-
lationship formally expressed as

gT (Tk) ≪ gI(Ik), and gT (T
⋆
k ) ≪ gI(I

⋆
k), (5)

where gI and gT denote the projections of images and text
in the hyperbolic model and ≪ indicates that one embed-
ding is closer to the origin than another. Differently from
other models, we also impose a relationship between unsafe
and safe pairs, by considering unsafe image-text pairs as
specific cases of their safe counterparts within D⋆. Hence,
we establish a safety entailment to segregate safe from un-
safe content, as follows

gI(Ik) ≪ gT (T
⋆
k ). (6)

By satisfying these inequalities, gI and gT capture both the
modal and safety hierarchies within the data, thereby en-
dowing the embedding space with safety-aware properties.
To sum up, our objective is to model a hyperbolic vision-
language model with the following inequality chain:

gT (Tk) ≪ gI(Ik) ≪ gT (T
⋆
k ) ≪ gI(I

⋆
k). (7)

Below we outline our method to create safety-aware vision-
language models in hyperbolic space.

4.2. Hyperbolic safety learning
To optimize Eq. 7 for safety-aware vision-language models,
we propose Hyperbolic Safety-Aware CLIP to rearrange the
embedding space to separate safe and unsafe regions. Our
optimization consists of two components: (1) a hyperbolic
safety contrastive component to align image-text pairs over
a mini-batch and (2) a hyperbolic safety entailment to align
safe and unsafe content. An overview is given in Figure 1.

Hyperbolic safety contrastive learning. CLIP [58] and
Safe-CLIP [55] rely on contrastive objectives to align and
distribute the multimodal data. We utilize hyperbolic em-
beddings to align the visual and textual data. Specifi-
cally, we project the visual and textual embeddings from a
pre-trained vision-language model onto a hyperboloid [17]
through an exponential map (Eq. 4). Let fI(.) and fT (.)
represent any Euclidean encoders for image and text. Then,
gI(Ik) = expκ0(αimg · fI(Ik)) and gT (Tk) = expκ

0(αtxt ·
fT (Tk)) represent the hyperbolic representations of a safe
image-text pair, (Ik, Tk). Similarly, gI(I⋆k) = expκ0(αimg ·
fI(I

⋆
k)) and gT (T

⋆
k ) = expκ

0(αtxt · fT (T ⋆
k )) represent

the hyperbolic representations of an unsafe image-text pair
(I⋆k , T

⋆
k ). αimg and αtxt are learnable projection scalars.

To align representations in hyperbolic space, the simi-
larity for the image-text and text-image contrastive loss is

based on negative Lorentzian distance (Eq. 3) between gI(.)
and gT (.). We compute the hyperbolic safety contrastive
loss over safe image-text pairs (Ik, Tk) in a batch B as

L∗
cont(I, T ) = −

∑
i∈B log exp(dL(gI(Ii),gT (Ti))/τ)∑B

k=1,k ̸=i exp(dL(gI(Ii),gT (Tk))/τ)
,

(8)
where τ denotes a temperature hyperparameter. A simi-

lar contrastive loss is employed to preserve the multimodal
structure between unsafe image-text pairs (I⋆k , T

⋆
k ). Two

additional contrastive losses between cross-safety modali-
ties ensure the alignment of quadruplets in the embedding
space. The final contrastive loss is formulated as

LhSC(I, T, I
⋆, T ⋆) = L⋆

cont(I, T ) + L⋆
cont(I

⋆, T ⋆)

+L⋆
cont(I, T

⋆) + L⋆
cont(I

⋆, T ).
(9)

Hyperbolic safety entailment learning. Hyperbolic entail-
ment cones, introduced by Ganea et al. [24], generalize par-
tial ordered embeddings [72] to any Riemannian manifold.
Entailment cones induce a partial order between concepts in
a dataset X such that for any pair (p,q) ∈ X , if p is a sub-
concept of q, then q entails p within a conical region Sq

defined by q. For the Lorentz model, Ln, the half-aperture
of each conical region Sq is defined as [17, 38]

ω(q) = sin−1

(
2K√
κ ∥q̃∥

)
, (10)

where −κ is the curvature of space, and the constant
K = 0.1 limits values near the origin [24]. To preserve
partial order between image-text relationships, we add en-
tailment from safe text to safe image and from unsafe text
to unsafe images, effectively implementing Eq. 5. Specif-
ically, a safe image Ik must lie within the cone defined by
its corresponding safe text, Tk, characterized by the half-
aperture ω(Tk). Similarly, an unsafe image I⋆k must lie
within the cone defined by its corresponding unsafe text T ⋆

k .
This is enforced through an entailment loss formulated for
image-text representations by Le et al. [38] and Desai et
al. [17], as

L⋆
ent(I, T ) = max(0, ϕ(Ik, Tk)− ηω(Tk)) and
L⋆
ent(I

⋆, T ⋆) = max(0, ϕ(I⋆k , T
⋆
k )− ηω(T ⋆

k )),
(11)

where ϕ is the exterior angle (between lines IkTk and 0Tk

or between lines I⋆kT
⋆
k and 0T ⋆

k ) given by

ϕ(Ik, Tk) = cos−1

 Ik0 + Tk0κ⟨Ik, Tk⟩L∥∥∥T̃k

∥∥∥√(κ⟨Ik, Tk⟩L)2 − 1

 . (12)

Here, η is a threshold for the half-aperture, ω(Tk) [52].
Intuitively, the entailment loss L⋆

ent penalizes images Ik

4225



that lie outside the cone STk
defined by their corresponding

text caption Tk. Finally, to model the safety hierarchy, we
enforce that safe concepts entail unsafe ones, reflecting that
safe data are more general and unsafe data are more specific.
Specifically, we enforce that a safe image Ik entails an un-
safe text T ⋆

k , meaning that the unsafe text T ⋆
k must lie within

the cone defined by the safe image Ik, characterized by the
half-aperture ω(Ik). This gives us the safety-entailment de-
fined in Eq. 6. This is implemented as

L⋆
ent(T

⋆, I) = max(0, ϕ(T ⋆
k , Ik)− ηω(Ik)). (13)

The overall entailment loss to satisfy Eq. 7 is defined as

LhSE(I, T, I
⋆, T ⋆) = L⋆

ent(I, T ) + L⋆
ent(T

⋆, I) + L⋆
ent(I

⋆, T ⋆).

(14)

Combined loss function. We integrate the contrastive with
the entailment losses to obtain the total loss used to fine-
tune the model on the dataset D⋆:

L(I, T, I⋆, T ⋆) = LhSC(I, T, I
⋆, T ⋆) + LhSE(I, T, I

⋆, T ⋆).
(15)

Our proposal allows the model to differentiate between safe
and unsafe embeddings based on their distance from the
origin. Safe content is closer to the center, while NSFW
content is farther away. This geometric arrangement not
only enables the model to detect unsafe content but also al-
lows dynamic manipulation of embeddings. NSFW queries
can be redirected toward the safe region, effectively retriev-
ing outputs that prioritize safety and providing more precise
control over content retrieval.

4.3. Safety traversals and evaluation
The hyperbolic safety-aware training results in a restructur-
ing of the shared embedding space of the vision-language
model. To obtain safe but relevant retrieval outputs from
unsafe queries or vice-versa, we introduce a traversal mech-
anism to adjust query embeddings in hyperbolic space, en-
hancing their similarity with either safe or unsafe content,
depending on the retrieval task. This traversal involves
moving the query embeddings along the line connecting
them to the origin of the hyperboloid, altering their hyper-
bolic distance from the root. By adjusting the embeddings’
positions, we align them with regions in the embedding
space that correspond to the desired content type.
Traversal Definition. Given an embedding q, our method
computes the distance from a predefined root feature r in
hyperbolic space using the Lorentzian distance function
dL(q, r). For each type of content X ∈ {T, I, T ⋆, I⋆},
we compute the mean distance µX from the root feature r
based on the distribution of each category. The boundary
for each type is then defined as

τX = µX + tanh

(
µX − α

κ

)
+ 1, (16)

where κ is the negative curvature, and α is a constant set
empirically to 0.8. This shift accounts for the curvature of
space, ensuring the boundaries are appropriately adjusted
for effective traversal. Defining four bounds allows more
nuanced control over traversal depending on the retrieval
task. To retrieve a content type X , the query is moved along
the Euclidean direction vector vdir = q− r toward the root
feature r until it reaches the corresponding boundary τX
(e.g. τT for safe text). The target position q∗ is given as

q∗ = r+ τX · vdir

∥vdir∥
(17)

allowing the embeddings to be repositioned to match the
target content type while maintaining semantic alignment.

5. Experiments
5.1. Training Details
Datasets. Our experiments are mainly conducted on the
ViSU dataset [55], containing 165k quadruplets of safe
and unsafe image-text pairs. We also evaluate our model
on three real-world NSFW image datasets: NudeNet [4],
NSFW data source URLs1 and SMID [15].
Baselines. Our safety comparisons include the original
CLIP [58] and the state-of-the-art Safe-CLIP [55]. CLIP
was trained using a private dataset of 400M image-text
pairs [66] which has unsafe data [5]. Safe-CLIP is fine-
tuned on the ViSU dataset [55] to redirect unsafe content
to safe correspondent one via contrastive losses and cosine
similarities, aiming to unlearn NSFW concepts.
Models. Our visual and textual encoders are the same as
CLIP [58], with VIT-L/14 as visual encoder, to maintain
fair comparison to Safe-CLIP [55]. During training, both
the visual and textual encoder are fine-tuned using low-rank
decomposition [32] with low-rank factor r = 16.
Optimization. We use AdamW [43] with weight decay 0.2
and (β1, β2) = (0.9, 0.98). We disable weight decay for all
gains, biases, and learnable scalars. The model is finetuned
for 20 epochs with batch size 256. The maximum learning
rate is 8× 10−4. We use mixed precision [47] to accelerate
training, except computing exponential map and losses for
HySAC in FP32 precision for numerical stability.
Initialization. We initialize image and text encoders akin
to CLIP, along with pre-trained weights. We initialize the
softmax temperature as τ = 0.07 and clamp it to a mini-
mum value of 0.01. For HySAC, we initialize the learnable
projection scalars αimg = αtxt = 1/

√
512, the curvature

parameter c = 1.0 and clamp it in [0.1, 10.0] to prevent
training instability. All scalars are learned in logarithmic
space as log(1/τ), log(c), log(αimg) and log(αtxt).

Further details on the training setup are provided in the
supplementary B.

1https://github.com/EBazarov/nsfw data source urls
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Text-to-Image (T -to-I) Image-to-Text (I-to-T ) Text-to-Image (T ⋆-to-I ∪ I⋆) Image-to-Text (I⋆-to-T ∪ T ⋆)

Model R@1 R@10 R@20 R@1 R@10 R@20 R@1 R@10 R@20 R@1 R@10 R@20

CLIP [58] 36.8 71.6 81.5 39.8 74.2 83.5 2.0 24.8 33.2 4.6 32.9 40.6
MERU [17] 14.9 43.0 54.2 14.7 42.3 53.8 2.2 15.2 21.5 4.4 22.6 29.4
HyCoCLIP [52] 34.3 71.2 80.6 34.4 71.3 82.2 2.8 25.3 33.2 8.2 37.8 45.7
Safe-CLIP [55] 45.9 81.8 89.7 45.3 82.3 89.8 8.0 46.9 58.0 19.1 62.9 71.1

MERU⋆ 50.0 84.1 91.1 51.2 85.3 92.3 2.3 39.9 49.4 5.7 47.9 54.7
HyCoCLIP⋆ 47.7 81.9 89.1 46.7 82.7 90.4 1.5 32.7 42.3 6.9 45.2 53.6

HySAC 49.8 84.1 90.7 48.2 84.2 91.2 30.5 62.8 71.8 42.1 73.3 79.8

Table 1. Safe content retrieval performance on ViSU test set. Across all tasks and recall rates, HySAC improves over existing safety
unlearning CLIP and hyperbolic CLIP models, highlighting that our approach is able to navigate unsafe image or text inputs towards
relevant but safe retrieval outputs. ⋆ CLIP fine-tuned in hyperbolic space on ViSU training set with MERU/HyCoCLIP losses.

Text-to-Image (T ⋆-to-I⋆) Image-to-Text (I⋆-to-T ⋆) Text-to-Image (T ⋆-to-I⋆ ∪ I) Image-to-Text (I⋆-to-T ⋆ ∪ T )

Model R@1 R@10 R@20 R@1 R@10 R@20 R@1 R@10 R@20 R@1 R@10 R@20

CLIP [58] 73.1 94.9 97.6 72.8 95.2 97.7 68.4 92.3 95.9 67.1 93.3 96.7
MERU [17] 29.4 62.4 72.2 25.8 57.7 67.8 23.5 54.0 64.3 19.5 51.1 61.2
HyCoCLIP [52] 69.5 93.1 95.8 65.0 91.1 95.0 63.7 89.7 93.7 55.2 88.0 92.7
Safe-CLIP [55] 58.0 86.2 91.4 56.0 85.1 91.0 47.7 80.0 85.8 32.1 77.1 84.6

HySAC 81.4 98.4 99.4 82.2 97.8 99.2 81.1 98.4 99.4 80.5 97.2 98.9

Table 2. Unsafe content retrieval performance on ViSU test set. Akin to safe content retrieval, our approach performs best. This is a
result of our objective, as we assign different content to different regions, enabling us to maintain valuable safety information.

5.2. Experimental Results
To assess the performance of our proposed model, HySAC,
we measure its safety awareness and its ability to handle un-
safe content effectively, while retaining both safe and unsafe
knowledge. In the supplementary D, we report the zero-shot
generalization of our method.

5.2.1. Safety retrieval comparison
We evaluate our model on the capability of retrieving
safe and unsafe items, in comparison to CLIP [58] and
Safe-CLIP [55]. We also provide a comparison to re-
cent hyperbolic VLMs, namely MERU [17] and HyCo-
CLIP [52]. Safe-CLIP and HySAC fine-tuned from CLIP
on ViSU [55], MERU trained on RedCaps [16], and HyCo-
CLIP on GRIT [54]. For a fair comparison, we additionally
fine-tuned the CLIP model on the ViSU dataset in hyper-
bolic space, using MERU and HyCoCLIP2 losses. All the
models are evaluated on the ViSU test set.

Retrieval tasks are defined as text-to-image and image-
to-text, where the goal is to find the most relevant coun-
terpart for a given query. Recall@K measures the fraction
of queries where the correct item appears in the top-K re-
trieved results. To assess the safe retrieval performance of
HySAC, we measure recall exclusively on safe content in
both visual and textual elements (T -to-I and I-to-T ). This
step is crucial to verify that the original CLIP model’s re-
trieval capabilities are retained after finetuning in hyper-
bolic space with our training method. Then, to evaluate

2The box data needed for HyCoCLIP was extracted using Kosmos-2.

the safety-awareness capabilities of HySAC, we introduce a
distinct setup in which NSFW elements are used as queries,
while the retrievable items include both safe and unsafe el-
ements (T ∗-to-I ∪ I∗ and I∗-to-T ∪ T ∗). During these ex-
periments, a retrieval is deemed correct only if the query
retrieves its safe counterpart, thereby validating the model’s
ability to redirect unsafe queries towards safe items.

When retrieving with HySAC, the threshold τ for mov-
ing query embeddings is computed using the mean distance
of safe embeddings from the origin, adjusting the query em-
bedding towards the safe region. Results are reported in
Table 1, where we observe that HySAC consistently im-
proves over both unlearning and existing hyperbolic models
and features the highest recalls across all settings and rates.
CLIP hyperbolic models finetuned on ViSU data (MERU⋆

and HyCoCLIP⋆) perform well on safe-only retrieval, while
our method achieves high performance on both safe-only
and unsafe-safe retrieval, due to our safety-aware design.

In Table 2, we instead perform analyses for unsafe con-
tent retrieval. First, this involves the text-to-image and
image-to-text retrieval on only unsafe elements (T ∗-to-I∗

and I∗-to-T ∗). Second, instead, we perform retrieval by
using unsafe elements as queries and both safe and unsafe
items as retrievable items (T ∗-to-I∗ ∪ I and I∗-to-T ∗ ∪ T ),
and deem the retrieval correct only if the query retrieves
its corresponding unsafe one. This setup tests the model’s
ability to function as a content moderator and also show-
cases its capacity to provide user autonomy in content re-
trieval decisions. In these tests, the traversal mechanism in
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Figure 2. Distributions of embedding distances from the root.
We embed all ViSU training samples and visualize their distance
distribution from the root. While CLIP and Safe-CLIP do not sep-
arate between texts and images, MERU does. HySAC, instead,
also differentiates between safe and unsafe content.

(T -to-I) (I-to-T ) (T ⋆-to-I ∪ I⋆) (I⋆-to-T ∪ T ⋆)

Model R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10
w/o Ent 52.3 84.9 50.8 84.7 4.1 49.0 5.5 64.5
w/o S-Ent 51.0 84.2 49.8 84.3 1.4 39.1 7.4 63.7
HySAC 49.8 84.1 48.2 84.2 30.5 62.8 42.1 73.3

Table 3. Ablation study on loss components. We evaluate
HySAC against two ablations that remove loss components. Re-
sults are in the same setting of Table 1.

HySAC uses adjusted parameters to move in the unsafe di-
rection, targeting the retrieval of NSFW content. Here too,
HySAC achieves the best recall across all settings, demon-
strating that HySAC not only prioritizes safety by navigat-
ing away from NSFW content when required but also en-
sures that users can access NSFW content under controlled
conditions, better than existing competitors.

5.2.2. Analysis of HySAC
Assessing HySAC embedding space. Further, we vali-
date the organization of the embedding space as outlined
in Equation 7. Our goal is to confirm that the embeddings
for safe content are positioned closer to the origin of hy-
perbolic space, while those for unsafe content are further
away, following the proposed hierarchy. Specifically, for
each X ∈ {T, I, T ⋆, I⋆} of the training-set of D⋆, we com-
pute the distances dL(X, r) from the root feature r.

A visualization is reported in Figure 2, where we show
the distribution of embeddings in terms of their distance
to the root feature. The comparative analysis is done
across four different models: HySAC, CLIP, Safe-CLIP, and
MERU. For both the hyperbolic models the root feature is
the origin of the hyperboloid. For the Euclidean models,
since the origin does not lie on the hypersphere, the root is
empirically estimated as the embedding that has the least

% Safe (Text-to-Image) % Safe (Image-to-Text)

Model NudeNet NSFW URLs SMID NudeNet NSFW URLs SMID

CLIP 78.2 79.7 55.2 33.3 44.0 59.1
Safe-CLIP 92.6 92.6 83.4 75.2 76.4 65.6
HySAC 96.2 93.9 80.1 84.4 95.1 97.9

Table 4. Retrieval performance on real NSFW images. Rate of
safe images retrieved using unsafe prompts from the ViSU test set.
The retrievable set includes safe and unsafe real images, with the
latter from LAION-400M and the former from NSFW sources.

distance from all embeddings of the training set, i.e. the ℓ2
normalization of the average of all embeddings. As it can
be seen, the distribution clearly shows four peak distribu-
tions for HySAC, each one representing one of the X con-
tent types, elucidating the efficacy of our approach in main-
taining a clear separation between safe, unsafe, textual, and
visual content within the embedding space.
Ablation Study. In Table 3, we validate the effectiveness of
the key components in HySAC, by comparing its full con-
figuration with variants where specific losses are disabled.
In particular, we employ one variant which only keeps con-
trastive losses (denoted as “w/o Ent”) and one that omits
the safety-entailment loss (“w/o S-Ent”). Results show that
while removing these components slightly improves perfor-
mance in scenarios involving only safe content, likely due to
reduced spatial constraints, their absence significantly un-
dermines the model’s effectiveness in dealing with unsafe
content, especially in unsafe-to-safe retrieval. These results
underscore the essential roles that both the modality- and
safety-entailment losses play in enhancing the safety aware-
ness of the proposed model.
Retrieval on real NSFW datasets. To further analyze
the safety of HySAC, we conduct retrieval tests using
NudeNet [4], NSFW data source URLs and SMID [15].
The first two datasets primarily contain nudity and porno-
graphic content, whereas SMID includes a broader range of
inappropriate content, such as violence, harm, and discrim-
ination. We randomly select 1000 images from each dataset
to serve as visual elements and use 5k NSFW captions from
the ViSU test set. Both the image-to-text and text-to-image
retrieval tasks also incorporate 10,000 randomly chosen re-
trievable safe items from LAION-400M [66].

Results, displayed in Table 4, contrast the performance
of HySAC with that of CLIP [58] and Safe-CLIP [55]. We
report the proportion of safe retrieval outputs when NSFW
queries are used, highlighting the capability of HySAC
to enhance safety in retrieval results. Traversing the em-
bedding space towards safety prioritizes safer alternatives,
which may adjust relevance in some cases. Due to the ab-
sence of datasets with real unsafe data and correlated safe
alternatives, this aspect could not be evaluated. Notably,
HySAC demonstrates improved performance in securing
safer content compared to Safe-CLIP across most datasets
for both text-to-image and image-to-text scenarios.
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Figure 3. Qualitative traversal results. HySAC traverses towards the root feature, retrieving the top-1 text at each interpolation point.
This traversal effectively transitions from unsafe to safe captions, demonstrating the model’s ability to ensure safety-aware content retrieval.

NudeNet Mixed NSFW

Model Acc FPR FNR Acc FPR FNR

NSFW-CNN [37] 85.3 0.0 14.7 66.5 4.5 35.9
CLIP-classifier [65] 97.3 0.0 2.7 76.9 0.1 11.0
CLIP-distance [59] 86.4 0.0 13.6 77.8 2.0 22.1
NudeNet [4] 91.2 0.0 8.8 76.9 4.5 24.6
Q16 [63] 28.5 0.0 71.5 65.3 8.3 29.4
HySAC 99.5 0.0 0.5 78.9 16.5 6.8

Table 5. NSFW classification. Comparison between HySAC and
other NSFW classifiers. Metrics reported in percentages.

Classifying NSFW content. The structure of the embed-
ding space in HySAC also supports the classification of
NSFW content. We evaluate this using the NudeNet [4]
and Mixed NSFW datasets, comparing against classifiers
such as NSFW-CNN [37], CLIP-classifier [65], CLIP-
distance [59], NudeNet [4], and Q16 [63]. NudeNet only
contains nudity, while Mixed NSFW includes different
NSFW categories from various online sources and safe im-
ages from PASS [1]. We sample a 1,000-image subset from
NudeNet and 442 images from Mixed NSFW, balanced be-
tween safe and unsafe. Further details of these datasets are
provided in the supplementary C.

Results in Table 5 show that HySAC achieves competi-
tive or superior results in NSFW content classification, de-
spite not being explicitly designed for safety classification.
The norm threshold, set to the ViSU dataset mean (Fig-
ure 2), differentiates safe from unsafe content.

5.2.3. Visualizing the safety traversals
We examine traversal paths for safe text retrievals, starting
with an unsafe image embedding as the query. The traver-
sals are along the geodesic of hyperbolic space from the
image to the origin of the hyperboloid, denoted [ROOT].

The input query is an unsafe image taken from ViSU test
set and the text retrieval space consists of a mix of safe and
unsafe captions of ViSU test set, metadata-based caption

from pexels.com, and a curated list of unsafe words3. To
create visualization shown in Figure 3, each retrieved text
output is selected only once across all interpolation points,
ensuring unique retrievals. Results show that, with HySAC,
as the query nears the origin, retrieved content shifts from
unsafe to safe while preserving semantic relevance. This
progression illustrates the model’s capability to effectively
navigate the embedding space along relevant paths. For
more on the experimental setup and traversal visualizations,
see the supplementary E.

Other ablation studies. For additional ablations on em-
bedding space geometry and hyperparameter evaluation, we
refer the reader to the supplementary D.

6. Conclusion

This paper introduces hyperbolic safety-aware vision-
language models. Where recent literature focuses on re-
moving or unlearning unsafe image-text content, we bring a
perspective of awareness. By modelling unsafe image-text
content as specific cases of their safe counterparts, we can
divide the space into safe and unsafe regions. We show that
hyperbolic space is a natural solution for this hierarchical
relation, and propose a hyperbolic CLIP model with safety
entailment learning and traversal. Our approach not only
results in better retrieval of relevant safe outputs given un-
safe inputs but also provides more robustness and comes
with an NSFW classifier as a free by-product. Dealing with
NSFW data in vision-language models is an important open
research problem with real-world implications, from ethi-
cal to legal and societal concerns. By opting for awareness,
we find that safety recognition improves. Given the impor-
tance of the ethical implications of this work, we provide a
thorough discussion in the supplementary A.

3github.com/LDNOOBW/
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perbolic knowledge graph embeddings. arXiv preprint
arXiv:2005.00545, 2020. 2

[13] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik
Subbian, and Chandan K Reddy. Self-supervised hyper-
boloid representations from logical queries over knowledge

graphs. In Proceedings of the Web Conference 2021, pages
1373–1384, 2021.

[14] Nurendra Choudhary, Nikhil Rao, and Chandan Reddy. Hy-
perbolic graph neural networks at scale: a meta learning ap-
proach. NeurIPS, 36, 2024. 2

[15] Damien L Crone, Stefan Bode, Carsten Murawski, and Si-
mon M Laham. The socio-moral image database (smid): A
novel stimulus set for the study of social, moral and affective
processes. PloS one, 13(1):e0190954, 2018. 5, 7

[16] Karan Desai, Gaurav Kaul, Zubin Aysola, and Justin John-
son. RedCaps: Web-curated image-text data created by the
people, for the people. In NeurIPS Datasets and Bench-
marks, 2021. 6

[17] Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin
Johnson, and Shanmukha Ramakrishna Vedantam. Hyper-
bolic image-text representations. In ICML, pages 7694–
7731. PMLR, 2023. 1, 2, 3, 4, 6

[18] Bhuwan Dhingra, Christopher J Shallue, Mohammad
Norouzi, Andrew M Dai, and George E Dahl. Embedding
text in hyperbolic spaces. arXiv preprint arXiv:1806.04313,
2018. 2

[19] Upol Ehsan, Q Vera Liao, Samir Passi, Mark O Riedl, and
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