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Abstract
Unsupervised Reinforcement Learning (RL) pro-
vides a promising paradigm for learning useful
behaviors via reward-free per-training. Existing
methods for unsupervised RL mainly conduct
empowerment-driven skill discovery or entropy-
based exploration. However, empowerment often
leads to static skills, and pure exploration only
maximizes the state coverage rather than learn-
ing useful behaviors. In this paper, we propose a
novel unsupervised RL framework via an ensem-
ble of skills, where each skill performs partition
exploration based on the state prototypes. Thus,
each skill can explore the clustered area locally,
and the ensemble skills maximize the overall state
coverage. We adopt state-distribution constraints
for the skill occupancy and the desired cluster for
learning distinguishable skills. Theoretical analy-
sis is provided for the state entropy and the result-
ing skill distributions. Based on extensive exper-
iments on several challenging tasks, we find our
method learns well-explored ensemble skills and
achieves superior performance in various down-
stream tasks compared to previous methods.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018) has
demonstrated strong abilities in decision-making for various
applications, including game AI (Schrittwieser et al., 2020;
Ye et al., 2021), self-driving cars (Wu et al., 2022), robotic
manipulation (Hansen et al., 2022; He et al., 2024b;a), and
locomotion tasks (Miki et al., 2022; Shi et al., 2024). How-
ever, most successes rely on well-defined reward functions
based on physical prior and domain knowledge (Haldar
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et al., 2022), which can be notoriously difficult to design
(Kwon et al., 2023). In contrast to RL, other research fields
like language and vision have greatly benefited from unsu-
pervised learning (i.e., without annotations or labels), such
as auto-regressive pre-training for Large Language Model
(LLM) (Han et al., 2021; Touvron et al., 2023) and unsuper-
vised representation learning for images (Chen et al., 2020a;
Clark & Jaini, 2023) that benefit various language and vi-
sion tasks. Motivated by this, unsupervised RL aims to learn
meaningful behaviors without extrinsic rewards, where the
learned behaviors can be used to solve various downstream
tasks via fast adaptation for generalizable RL.

In unsupervised RL research, previous methods often con-
duct empowerment-driven skill discovery to learn distin-
guishable skills (Gregor et al., 2016; Eysenbach et al., 2019).
Specifically, the agent learns skill-conditional policies by
maximizing an estimation of Mutual Information (MI) be-
tween skills and trajectories, which leads to discriminating
skill-conditional policies with different behaviors. However,
such an MI objective often generates static skills with poor
state coverage (Strouse et al., 2022). Recent works partially
address this problem via Lipschitz constraints (Park et al.,
2022; 2023) and random-walk guidance (Kim et al., 2023),
while they still rely on the primary MI objective. Mean-
while, estimating the MI needs variational estimators based
on sampling (Song & Ermon, 2020), which is challenging in
high-dimensional and stochastic environments (Yang et al.,
2023) and also leads to sub-optimal performance (Laskin
et al., 2021). Other methods perform pure exploration via cu-
riosity (Burda et al., 2019) and state entropy (Liu & Abbeel,
2021a;b; Yarats et al., 2021) in environments, while they
only focus on maximizing the state coverage rather than
learning meaningful behaviors for downstream tasks.

In this paper, we take an alternative perspective for unsu-
pervised RL and propose a novel skill discovery frame-
work, named Constrained Ensemble exploration for Skill
Discovery (CeSD). We adopt an ensemble of value func-
tions to learn different skills, where each value function
uses independent intrinsic rewards that encourage the agent
to explore a partition of the state space based on the as-
signed prototype, without considering the states of other
prototypes. The prototypes are learned by feature clustering
of visited states and can act as representative anchors in the
state visitation space. Based on the ensemble value func-
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tion, we obtain the corresponding skills via policy gradient
updates. Since the skills perform entropy estimation based
on non-overlapping clusters, they can perform independent
exploration to expand the boundary of the assigned cluster,
leading to diverse behaviors. To overcome the potential
overlap of the state coverage of updated skills, we adopt
additional constraints to the state distribution between skills
and the assigned clusters, which enforce skills to visit non-
overlapping states to generate more distinguishable skills.
Theoretically, we show the state entropy of each skill is
monotonically increasing with the distribution constraints,
and the ensemble skills maximize the global state coverage
via partition exploration in clusters. We conduct extensive
experiments on mazes and Unsupervised Reinforcement
Learning Benchmark (URLB) (Laskin et al., 2021), show-
ing that CeSD learns well-explored and diverse skills.

The contribution can be summarized as follows. (i) Unlike
previous empowerment-based methods, CeSD takes an alter-
native perspective on skill discovery that bypasses MI esti-
mation and also learns meaningful skills assisted by entropy-
based exploration. (ii) We propose ensemble skills that ex-
plore the environment within individual clusters and apply
additional constraints to learn distinguishable skills. (iii) We
provide theoretical analysis for the state coverage of skills.
(iv) We obtain state-of-the-art performance in various down-
stream tasks from challenging DeepMind Control Suite
(DMC) tasks of URLB. The open-sourced code is avail-
able at https://github.com/Baichenjia/CeSD.

2. Preliminaries
We consider a Markov Decision Process (MDP) with an ad-
ditional skill space, defined as (S,A,Z, P, r, γ, ρ0), where
S is the state space, A is the action space, Z is a skill space,
P (s′|s, a) is the transition function, γ is the discount factor,
and ρ0 : S → [0, 1] is the initial state distribution. We
use a discrete skill space Z since learning infinite skills
with diverse behaviors can be difficult (Jiang et al., 2022).
When interacting with the environment, the agent takes ac-
tions a ∼ π(·|s, z) by following the skill-conditional policy
π(a|s, z) with a one-hot skill vector z ∈ Rn. We use zi
to denote the vector with a 1 in the i-th coordinate and 0’s
elsewhere. For example, z3 = (0, 0, 1, 0, 0) in R5. We use
πi(a|s) and π(a|s, zi) interchangeable to denote the policy
condition on skill zi. Given clear contexts, we refer to the
‘skill-conditional policy’ as ‘skill’ for simplification.

In the skill-learning stage, the policy is learned by maxi-
mizing discounted cumulative reward denoted as

∑
t γ

trt,
where rt is generated by some intrinsic reward function,
such as empowerment or entropy-based methods. In the
policy-adaptation stage, we choose a specific skill vector z⋆

and fine-tune the policy π(a|s, z⋆) with the extrinsic reward
for downstream tasks. In unsupervised RL, we allow the

agent to perform sufficient interactions in the skill-learning
stage to learn meaningful skills, while only allowing a small
number of interactions in the fine-tuning stage to perform
policy adaptation. Overall, unsupervised RL aims to learn
skills in the first stage for fast adaptation to various tasks in
the second stage.

We denote I(·; ·) by the mutual information between two
random variables, and H(·) by either the Shannon entropy
or differential entropy depending on the context. We use up-
percase letters for random variables and lowercase letters for
their realizations. The empowerment objective maximizes
an MI-objective I(S;Z) estimation and the entropy-driven
objective maximizes H(S). In both objectives, s ∼ dπ(s)
is the normalized probability that a policy π encounters state
s, defined as dπ(s) ≜ (1− γ)

∑∞
t=0 γ

tP (st = s|π).

3. Method
The proposed CeSD adopts ensemble Q-functions for skill
discovery, where each skill performs partition exploration
with prototypes. We adopt constraints on state distribution
for regularizing skills. We give theoretical analyses to show
the advantage of our algorithm on state coverage.

3.1. Ensemble Skill Discovery

Previous methods learn skill-conditional policy π(a|s, z)
by maximizing the corresponding value function Qz(s, a).
However, since different skills share the same network pa-
rameters, optimizing one skill can affect learning other skills.
According to our observations, learning a single value func-
tion can have negative effects on learning diverse skills that
have significantly different behaviors.

To address this problem, we propose to use an ensem-
ble of value functions in CeSD. Specifically, we adopt
an ensemble of Q-networks for different skills, defined
as {Q1(s, a), . . . , Qn(s, a)}. The ensemble number is the
same as the number of skills. Each Q-network is learned by
minimizing the temporal-difference (TD) error as

min
ϕi

EDi
[
Qϕi(s, a)−

(
ri(s, a)+γmax

a′
Qϕ′

i
(s′, a′)

)]
, (1)

where ϕi is the parameter of i-th network, Qϕ′
i

is the corre-
sponding target network, Di is a state buffer, and ri is the
intrinsic reward and will be discussed later. Since different
skills have independent parameters for the Q-function, the
different Q-functions can emerge diverse behaviors through
optimization. In training the Q-networks in Eq. (1), we
adopt efficient parallelization for ensemble networks to min-
imize the run-time increase with the number of skills.

For learning the policy, we adopt a basic skill-conditional
actor that maximizes the corresponding value function in
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the ensemble, and the objective function is

maxψ Ea∼πψ(·|s,zi)
[
Qϕi(s, a)

]
, i ∈ [n] (2)

where we denote ψ as the policy parameters. Since the value
ensemble has already learned the knowledge of different
skills, we find that using a single network is sufficient to
model the multi-skill policy.

Although previous works have also adopted ensemble Q-
networks (Lee et al., 2021; An et al., 2021) for online and
offline RL, they are significantly different from our method.
Specifically, previous methods use the same objective for
ensemble Q-networks. Thus, the learned Q-values estimate
the approximate posterior ofQ-function in online and offline
RL (Bai et al., 2022; Li et al., 2022), essential for theoret-
ically grounded uncertainty estimation for optimism (Hao
et al., 2023; Bai et al., 2021b) or pessimism (Wang et al.,
2024; Wen et al., 2024; Bai et al., 2024; Deng et al., 2023).
In contrast, we adopt ‘ensemble’ to represent a collection
of Q-functions used for different skills. These skills are
learned in the state space via partition exploration and used
for downstream adaptation. The ensemble Q-networks in
our method have different objectives that encourage indepen-
dent exploration for separate areas with intrinsic rewards,
which makes the ensembles represent value functions of
diverse skills that optimize the policy in different directions.

3.2. Partition Exploration with Prototype

We learn state prototypes through self-supervised learning
to divide the explored states into clusters. Then, each Q-
function in the ensemble can perform independent explo-
ration based on the entropy estimation of states in the corre-
sponding cluster. Specifically, we learn discrete state pro-
totypes through soft-assignment clustering, and the learned
prototypes act as representative anchors in the state space.
Based on the prototypes, each visited state can be assigned
to a specific cluster, and each cluster corresponds to a spe-
cific value function in exploration.

The training of prototypes is given as follows. For a specific
state st, we use a neural network to map the state to a
vector ut = fθ(st) ∈ Rm. We also define n continuous
vectors {c1, . . . , cn} as prototypes, where ci ∈ Rm. Then
the probability of st being assigned to the i-th prototype is

p
(t)
i = exp

(
û⊤t ci/τ

)
/
∑n

j=1
exp

(
û⊤t cj/τ

)
, (3)

where ût is the normalized vector as ut/∥ut∥2, and τ is
the temperature factor. Similar to Eq. (3), we use a fixed
target network fθ−(·) with the same parameters as fθ(·) to
obtain a normalized target vector u−t = fθ−(st). Then,
the target probability q(t)i is obtained by running an online
clustering Sinkhorn-Knopp algorithm (Cuturi, 2013; Caron
et al., 2020) on the normalized target vector û−t . Then, we

use the cross-entropy loss to update the prototypes as

Lproto = −
∑

t

∑
i
q
(t)
i log p

(t)
i . (4)

In the unsupervised stage, the prototypes {ci} will update
with more collected states. Nevertheless, we remark that
such an update is gradual with gradient descent and will
not cause drastic changes in probability p(t)i , which makes
the cluster assignment stable for the collected states and
benefits the calculation of intrinsic rewards in exploration.

Based on the learned prototypes, each state can be as-
signed to a specific cluster by following z(t) ∼ p(t), where
p(t) = [p

(t)
1 , . . . , p

(t)
n ] represents a categorical distribution.

In practice, we adopt a small temperature value in Eq. (3)
to obtain a near-deterministic cluster assignment. We de-
note the set of collected states by S, and then partition S
into n disjoint clusters as {S1,S2, . . . ,Sn} according to
the categorical distribution. For convenience, we slightly
abuse Si to include the whole transition {(s, a, s′)} for each
state. Based on the clusters, the skill policies can conduct
partition exploration by maximizing the state entropy of
the corresponding cluster. Specifically, we adopt a simple
cluster-skill correspondence mechanism by assigning the
cluster Si to the value function Qi with the same skill in-
dex. Since the state entropy of each cluster can be estimated
separately, we can calculate the intrinsic rewards for each
value function independently to encourage partition explo-
ration without considering states from other clusters. For
example, the value function Qi will use {s, a, s′} ∈ Si and
the corresponding intrinsic rewards rcesdi calculated in Si
for TD-learning, which encourages policy π(a|s, zi) to ex-
plore the state space based on Si without considering other
clusters (i.e., Sj , j ̸= i), thus leading to diverse behaviors
for different skills.

Particle Estimation To calculate the entropy-based intrin-
sic reward rcesdi , we adopt a popular particle-based entropy
estimation algorithm in previous methods (Liu & Abbeel,
2021b; Laskin et al., 2022), and the entropy is estimated
by a sum of the log distance between each particle and its
k-th nearest neighbor. Following this method, the particle
entropy estimation for i-th cluster Si is calculated as,

Hk(Si) ∝
∑

st∈Si
ln
∥∥ut −NNk,fθ (ut)

∥∥, (5)

where the distance is calculated in the feature space of states.
Then the intrinsic reward for (st, at, st+1) ∈ Si is set to

rcesdi (st, at) =
∥∥ut+1 −NNk,fθ (ut+1)

∥∥. (6)

For each value functionQi in the ensemble, we perform clus-
tering based on prototypes and obtain Si = {(st, at, st+1)}.
We follow Eq. (6) to calculate the intrinsic reward for each
example in Si, and obtain the reward-augmented cluster
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Figure 1. The partition exploration process. We adopt Sinkhorn-Knopp algorithm to learn prototypes and perform clustering for states.
The intrinsic reward is calculated by entropy estimation within each cluster and then used for training a specific Q-network.

set as Ŝi = {(st, at, st+1, r
cesd
i )}. Then, we minimize the

TD-error of Qi by following Eq. (1) with experiences sam-
pled from Ŝi. We adopt the same training process for all
clusters i ∈ [n], which can be practically implemented via a
masking technique to determine whether a transition should
be used for training a specific Qi network. We illustrate the
whole process of partition exploration in Figure 1.

Entropy Analysis We give a simple analysis for entropy
estimation based on clusters. The state entropy of partition
exploration is calculated in each cluster Si, while in global
exploration is calculated in S. Given fixed state sets, we
denote policies that obtain the maximum entropy in the clus-
ter Si and the overall state set S by π∗

i and π∗, respectively.
Then the following Theorem holds.

Theorem 3.1. Let each cluster have the same number of
samples, for i ∈ [n], the relationship between the maximum
entropy of π∗ in the state set S and π∗

i in the cluster set Si is

H
(
dπ

∗
(s)
)
= H

(
dπ

∗
i (s)

)
+ C(n), (7)

where C(n) = log n depends on the number of clusters n.

The assumption holds since the Sinkhorn-Knopp algorithm
constrains assigning each cluster to the same number of
samples. We refer to Appendix A for a proof. Theorem 3.1
shows the optimal policies {π∗

i } with uniform visitation
in cluster sets {Si} also obtains the maximum entropy in
the global state set S. Thus, performing partition explo-
ration in clusters also maximizes the global state coverage.
Meanwhile, we can obtain diverse skills through partition
exploration rather than a single exploratory policy in global
exploration (Liu & Abbeel, 2021b; Laskin et al., 2022).

3.3. Skill Distribution Constraint

We delve into the learning process of partition exploration
and propose a state-distribution constraint for generating
distinguishable skills. In Figure 2, we show the information
diagrams of the learning process of CeSD. For a clear illus-
tration, we only show three skills in each sub-figure, while
we may adopt more skills in practice for complex tasks.

The randomly initialized skills often have small entropy
(i.e.,H(dπi(s))), which signifies each skill only visits states
around the start point, as shown in Figure 2(a). Considering
in a tabular case, we use {Siniti ,Sinit2 ,Sinit3 } to represent col-
lected state sets for three skills and assume Siniti ∩ Sinitj = ∅.
Specifically, we assume each skill has an independent ex-
plored area initially since the corresponding value function
in the ensemble has different initialized parameters.

Problem Statement In partition exploration, each skill
uses the state entropy as intrinsic rewards defined in Eq. (6).
Then, each skill π(·|s, zi) will learn to (i) assign uniform
occupancy probability for the visited states, which increases
the entropy with a fixed state set. More importantly, (ii) each
skill will learn to explore the environment to collect new
states that do not occur in Siniti . As more states are added to
Siniti , the corresponding state entropy H(dπi(s)) increases
and the skill explores more unknown areas. As shown in
Figure 2(b), the state coverage of each skill increased in
partition exploration. We denote the new state sets after a
round of partition exploration as {Spei }, and the overall state
set is defined as Spe = ∪i{Spei }.

Nevertheless, since different skills perform independent
exploration based on their previous state visitation, they
may explore the same intersection area after policy update
and collect the same states in the updated sets {Spei }, which
makes Spei ∩Spej ̸= ∅, where i ̸= j. As shown in Figure 2(b),
the visitation area of each skill overlaps with other skills,
which does not hurt exploration but reduces the distinguisha-
bility of different skills. For example, in locomotion and
manipulation tasks, different skills generate similar behavior
if their state distributions overlap significantly.

State Distribution Constraint To address this challenge,
we propose an explicit distribution constraint for the updated
state distribution to regularize skill learning. To achieve this,
we first perform clustering to divide the overlapping area
and assign different parts to different skills. We denote the
different state set after clustering as {Sclui }, then we have
Sclui ∩ Scluj = ∅ (i ̸= j) since each state will be assigned to
a unique cluster. As shown in Figure 2(c), different colors
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Figure 2. The learning process of CeSD. After initializing skills, we conduct entropy-based exploration for each skill and perform
clustering to obtain non-overlapping clusters. Then the state distribution constraint is applied to enhance the diversity of skills. The
regularized skills are used for partition exploration in the next round of iteration.

represent the non-overlapping state sets after clustering,
and Spe = ∪i{Sclui } holds since the overall state set does
not change. In most cases, we have Sclui ⊆ Spei since the
clustering algorithm will keep the cluster-index of existing
states fixed and re-assign the newly added states to different
clusters. Nevertheless, it does not always hold since the
prototypes can be sub-optimal in training.

Based on the above analyses and Figure 2(b), we denote
the state distribution lying on the state set Spei as dπi . How-
ever, a more desired state set is Sclui in Figure 2(c), which
has non-overlapping states with other clusters and leads to
more diverse skills. Thus, we define a desired policy π̂i
based on πi, where dπ̂i(s) = 0 for s ∈ Spei − Sclui that
represents the difference between two sets, and dπ̂i(s) =
dπi(s)/

∑
s∈Sclui

dπi(s) for other states by re-normalizing
dπi in the cluster states. Ideally, our constraint for regulariz-
ing the skill behavior is defined as

Lreg(πθ(s, zi)) =
1

2

∑
s∈Spe

i

∣∣dπ̂i(s)− dπi(s)
∣∣. (8)

However, it can be computationally expensive to minimize
the Total Variation (TV) distance Lreg via density estimation
of states (Lee et al., 2020; Zhang et al., 2021). Alternatively,
we propose to approximately reduce such a gap by minimiz-
ing Es∼dπi [DTV(π̂i(·|s)∥π(·|s))], which servers an upper
bound of the density discrepancy (as shown in Lemma 3.2
below). The main difference between π̂i(·|s) and π(·|s) is
that, the desired policy π̂i has zero visitation probability
for states s ∈ Spei − Sclui , while the policy π(·|s) has some
probability to visit states in the intersection set of skills.
Thus, we propose a heuristic intrinsic reward to prevent the
current policy πi from visiting states in Spei − Sclui , as

rregi = 1/
(∣∣Spei − Sclui

∣∣+ λ
)
. (9)

This reward is maximized when |Spei −Sclui | = 0, which sig-
nifies πi only visits state in its assigned cluster set Sclui that
has no overlap to other clusters. As shown in Figure 2(d),
maximizing rregi will force skill πi to reduce the visitation
probability of states lied in clusters of other skills, which

makes policy πi closer to π̂i that only visits states in Sclui .
We illustrate the regularized skills in Figure 2(e).

Qualitative Analysis In the next, we give a qualitative
analysis of the state entropy of skills in the learning process.
We start with a lemma to show that minimizing the policy
divergence can also reduce the constraint term Lreg(πi).

Lemma 3.2. The divergence between state distribution is
bounded on the average divergence of policies π̂i and πi, as

DTV

(
dπ̂i∥dπi

)
≤ γ

1− γ
Es∼dπi

[
DTV(π̂i(·|s)∥πi(·|s))

]
,

(10)
where DTV(·∥·) is the total variation distance.

We refer to Appendix A for a proof. According to
Lemma 3.2, by minimizing the policy divergence (i.e.,
DTV(π̂i∥πi)) via the intrinsic reward, the difference
between state distribution (i.e., DTV(d

π̂i∥dπi)) can be
bounded. Then we have the following theorem for the en-
tropy of state distributions.

Theorem 3.3. Assuming the distance between state dis-
tribution is bounded by DTV

(
dπ̂i∥dπi

)
≤ δ, the entropy

difference between state distribution can be bounded by∣∣H(dπ̂i)−H(dπi)
∣∣ ≤ δ log

(
|Spei | − 1

)
+ h(δ). (11)

where h(x) := −x log(x)−(1−x) log(1−x) is the binary
entropy function.

The proof follows the coupling technique (Barbour, 2001)
and Fano’s inequality (Fano, 2008), as given in Appendix A.

Corollary 3.4. The state entropy of each πi is monotoni-
cally increasing with partition exploration and constraints.

Proof. Assuming that DTV

(
dπ̂i ||dπi

)
≤ δ, we have

|H(dπ̂i) − H(dπi)| ≤ f(δ), where f(δ) = δ log(|Spei | −
1)+h(δ) is a constant determined by the state cluster and the
state distribution bound. Then we haveH(dπi) ≥ H(dπ̂i)−
f(δ). Corollary 4.4 holds since we maximize the state en-
tropy (i.e., we set the intrinsic reward to rcesdi = H(dπ̂i) in
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policy learning. The state entropy of the skill policy (i.e.,
H(dπi)) also increases since f(δ) is a positive constant
given a fix δ and the state set.

In each iteration of CeSD, since we maximize the state
entropy in each cluster (i.e., H(dπ̂i)) via particle estima-
tion, the state entropy of current policy (i.e., H(dπi)) is also
forced to be increased according to Theorem 3.3. As a result,
the state entropy of each skill πi is monotonically increasing
with partition exploration and distribution constraints. Fur-
ther, according to Theorem 3.1, since the maximum entropy
in each cluster (i.e., H(dπ̂i)) has a constant gap with the
maximum entropy in the overall state set (i.e., H(dπ̂)), our
method monotonically increases the global state coverage
in exploration.

4. Related Works
Unsupervised Pretraining of RL Unsupervised Pretrain-
ing methods in RL aim at obtaining prior knowledge from
unlabeled data or reward-free interactions to facilitate down-
stream task learning (Xie et al., 2022). The methods pri-
marily fall into three categories: Unsupervised Skill Dis-
covery (USD) (Eysenbach et al., 2019; Sharma et al., 2020;
Park et al., 2022; Ajay et al., 2020; Park et al., 2023; Laskin
et al., 2022), Data Coverage Maximization (Liu & Abbeel,
2021b;a; Yarats et al., 2021; 2022; Lee et al., 2020), and
Representation Learning (Mazoure et al., 2021; Yang &
Nachum, 2021; Yuan et al., 2022; Ghosh et al., 2023). Our
work falls into the first category and intersects the data
coverage maximization methods. To obtain skills with dis-
criminating behaviors, existing USD research mainly re-
lies on the MI objectives (Gregor et al., 2016; Eysenbach
et al., 2019). However, the recent study (Strouse et al.,
2022) has revealed the pessimistic exploration problem of
the MI paradigm. Thus, several works try to enhance the
state coverage via Euclidean distance constraint (Park et al.,
2022), recurrent training (Jiang et al., 2022), discriminator
disagreement (Strouse et al., 2022), controllability-aware
objective (Park et al., 2023), and guidance skill (Kim et al.,
2023). However, they still rely on MI objectives for skill
discrimination (Strouse et al., 2022; Kim et al., 2023) and
require variational estimators based on sampling (Song &
Ermon, 2020). In contrast, CeSD simultaneously enhances
state coverage and skill discrimination by performing parti-
tion exploration and clustering-based skill constraint, with-
out requiring inefficient recurrent training and state distance
functions. Concerning the clustering method, a similar
technique has also been utilized in prior RL pretraining
works (Yarats et al., 2021; Mazoure et al., 2021). Motivated
by different purposes, we perform clustering to guarantee
distinct exploration regions of skills, instead of estimating
state visitation or learning generalizable representation.

Policy Regularization in RL Policy regularization has
played diverse roles in RL algorithms, including constrain-
ing the policy to close to the behavior policy in offline
RL (Nair et al., 2020; Wang et al., 2020; Fujimoto & Gu,
2021), enhancing the exploration ability for online explo-
ration (Haarnoja et al., 2018; Flet-Berliac et al., 2020;
Chane-Sane et al., 2021), and reducing the policy distance
to demonstrations (Ho & Ermon, 2016; Brown et al., 2019;
Xu et al., 2022; Ma et al., 2022). Formally, policy regular-
ization regularizes the current policy to some target policy
with a specific probabilistic form, or the target policy can be
estimated via limited interactions (Rajeswaran et al., 2018)
or offline datasets (Ma et al., 2022). In contrast, the target
skill policy in our work does not have a specific form and is
characterized by clustered states Sclui sampled from the state
distribution dπ̂i(s). Meanwhile, the target policy changes
in each iteration with more sampled states, which makes
our setting different from prior ones and particularly chal-
lenging. Thus, we propose a simple but effective reward to
encourage each skill to visit fewer states lying in clusters of
other skills, which regularizes the policy learning.

Value Ensemble To capture the epistemic uncertainty (Bai
et al., 2021a; Qiu et al., 2022) induced by the limited training
data in RL, the value ensemble has been proposed to ap-
proximately estimate the posterior distribution of the value
function in online (Fujimoto et al., 2018; Chen et al., 2020b;
Lee et al., 2021; Hao et al., 2023) and offline RL (Bai et al.,
2022; Li et al., 2022; An et al., 2021). Recent works (Xu
et al., 2024; Wen et al., 2023) also adopt an ensemble for
cross-domain policy adaptation and reuse (Xu et al., 2023).
Different from these works, we utilize value ensemble to
estimate the expected returns of different skills. To con-
front the non-stationary objective and mutual interference
between skills, we adopt an independent value function for
each skill.

5. Experiments
In this section, we compare the performance of unsupervised
RL methods in challenging URLB tasks (Laskin et al., 2021).
We also conduct experiments in a maze to illustrate the
learned skills in a continuous 2D space. We finally conduct
visualizations and ablation studies of our method.

5.1. Skill Learning in 2D maze

We conduct experiments for skill discovery in a 2D maze
environment from Campos et al. (2020). The observation
of the agent is the current position S ∈ R2, and the action
A ∈ R2 controls the velocity and direction. We consider
several strong baselines for unsupervised training, including
DIAYN (Eysenbach et al., 2019), DADS (Sharma et al.,
2020), and CIC (Laskin et al., 2022). In these methods,
DIAYN and DADS perform skill discovery by maximiz-
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CeSD (ours)DADSDIAYN CIC
Figure 3. Visualization of skill discovery in Maze. Different colors represent the state trajectories with different skill vectors. We let the
agent start moving from the black dot in the upper left corner and sample 20 trajectories for each skill for visualization.

ing the MI term of states and skills (i.e., I(S;Z)) via a
reverse form (i.e., H(Z)−H(Z|S)) and forward form (i.e.,
H(S) − H(S|Z)), respectively, to construct a variational
estimation of the MI objective. CIC is a data-based method
that maximizes the state entropy estimation (i.e., H(S))
for pure exploration. For a fair comparison, we use a 10-
dimensional one-hot vector for skills in all methods.

In Figure 3, we visualize the learned skills by sampling
trajectories from the skill-conditional policies of CeSD
and other baselines. (i) Concerning the discriminability
of skills, we find empowerment-based methods like DIAYN
and DADS learn distinguishable skills, where each skill can
generate trajectories that are different from those of other
skills. In contrast, entropy-driven methods like CIC cannot
generate discriminable skills due to the lack of mechanisms
to distinguish different skills. (ii) Concerning state coverage,
both DIAYN and DADS have limited state coverage since
they rely on the MI objective without encouraging explo-
ration. The entropy-based CIC algorithm obtains the best
state coverage since the entropy maximization encourages
exploration of the environment and also leads to a uniform
state visitation within the whole state space. (iii) The pro-
posed CeSD performs the best in both skill discriminability
and state coverage. CeSD takes the theoretical advantage
of monotonic entropy increasing (as Theorem 3.3), and the
ensemble skills obtain well global coverage. Meanwhile,
CeSD learns distinguishable skills with approximately non-
overlapping coverage via state distribution constraints.

5.2. URLB Benchmark Results

We evaluate CeSD in the URLB benchmark (Laskin et al.,
2021). Walker domain contains biped locomotion tasks
with S ∈ R24 and A ∈ R6; Quadruped domain contains
quadruped locomotion tasks with high-dimensional state
and action space as S ∈ R78 and A ∈ R16, which have
much larger space in exploration and is more challenging;
and Jaco Arm domain contains a 6-DoF robotic arm and a
three-finger gripper with S ∈ R55 and A ∈ R9. In experi-
ments, each method performs unsupervised skill learning

with intrinsic rewards and adapts the skills to downstream
tasks with extrinsic rewards. There are 3 downstream tasks
for each domain, including Stand, Walk, Run, and Flip tasks
for Walker domain, Stand, Walk, Run, and Jump tasks for
Quadruped domain, and move the objective to Bottom Left,
Bottom Right, Top Left, and Top Right for Jaco Arm.

We compare CeSD to several strong baselines. Specifically,
we compare CeSD to (i) the skill discovery methods, in-
cluding DIAYN (Eysenbach et al., 2019), SMM (Lee et al.,
2020), and APS (Liu & Abbeel, 2021a); (ii) the entropy-
based exploration methods, including APT (Liu & Abbeel,
2021b), ProtoRL (Yarats et al., 2021), and CIC (Laskin
et al., 2022); and (iii) curiosity-driven exploration methods,
including ICM (Pathak et al., 2017), RND (Burda et al.,
2019), and Disagreement (Pathak et al., 2019); (iv) the re-
cently proposed BeCL (Yang et al., 2023) algorithm that
performs contrastive skill discovery. Most implementations
of baselines follow URLB (Laskin et al., 2021) and the of-
ficial code of baselines. We refer to Appendix C for the
hyper-parameters and implementation details.

We do not include DISCO-DANCE (Kim et al., 2023) as a
baseline since it does not open-source the code. Meanwhile,
Dyna-MPC (Rajeswar et al., 2023) Dyna-MPC is a model-
based finetuning method with extrinsic rewards, while our
method focuses on unsupervised pertaining. Choreographer
(Mazzaglia et al., 2023) is learned in an offline dataset col-
lected by exploration algorithms, while CeSD and baselines
are all learned from scratch via exploring the environment.
Thus, we do not use Dyna-MPC and Choreographer as base-
lines. The recently proposed methods like LSD (Park et al.,
2022), CSD (Park et al., 2023), and Metra (Park et al., 2024)
are evaluated on different benchmarks other than URLB. We
tried to re-implement these methods in URLB tasks based on
the official code, and the results are given in Appendix D.6.

In the unsupervised training stage, each method is trained
for 2M steps with its intrinsic reward. Then we randomly
sample a skill as the policy condition and fine-tune the
policy for 100K steps in each downstream task for fast adap-
tation. Rather than choosing the best skill in the fine-tuning
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Figure 4. Comparison of performance in 12 downstream tasks of URLB benchmark. We report the aggregate statistics of 10 seeds by
following Agarwal et al. (2021) after finetuning. CeSD achieves the new state-of-the-art results in the URLB benchmark.

Figure 5. An illustration of the rolling skill learned in Quadruped.
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Figure 6. An ablation study of the ensemble skills in Quadruped.

stage, we comprehensively evaluate the generalizability of
all skills for adaptation in downstream tasks. We run 10 ran-
dom seeds for each baseline, which results in 11 algorithms
× 10 seeds × 12 tasks = 1320 runs. We follow reliable
(Agarwal et al., 2021) to evaluate the aggregated statistics,
including mean, median, interquartile mean (IQM), and opti-
mality gap (OG) with the 95% bootstrap confidence interval.
The expert score in calculating the metrics is adopted from
Laskin et al. (2021), which is obtained by an expert DDPG
agent. According to the results in Figure 4, our CeSD al-
gorithm achieves the best results in the URLB benchmark.
Compared to the entropy-based baselines, our method out-
performs CIC (with 75.18% IQM) and achieves 91.05%
IQM. The results show that partition exploration and distri-
bution constraints in CeSD benefit skill learning and lead to
more efficient generalization in downstream tasks compared
to the global exploration performed in CIC. Compared to
the expert score, CeSD achieves the best OG result with
15.47%, significantly outperforming the previous state-of-
the-art BeCL algorithm (with 25.44% OG). We also report
the evaluation scores of all methods in Appendix C.6.

5.3. Visualization of Skills

In URLB, we visualize the behaviors of skills learned in
the unsupervised training stage. We find many interesting
locomotion and manipulation domain skills emerging in the
pretraining stage with our method. Specifically, CeSD can
learn various locomotion skills, including standing, walking,
rolling, moving, somersault, and jumping in Walker and
Quadruped. In Jaco, the agent learns various manipulation
skills, including moving the arm to explore different areas
and controlling the gripper to grasp objects in different loca-
tions. An example of rolling skills in the Quadruped domain
is shown in Figure 5. We provide more visualizations of
skills in DMC domains in Appendix C.5.

Through partition exploration and distribution constraint,
our method learns dynamic and non-trivial behavior during
the unsupervised training stage. In contrast, previous skill-
discovery methods usually learn distinguishable posing or
yoga-style skills but are often static and lack exploration
ability, which has been visualized in previous works (Laskin
et al., 2022; Yang et al., 2023). Since our method can learn
meaningful behaviors during the unsupervised stage, it ob-
tains superior generalization performance in the fine-tuning
stage in various downstream tasks, as shown in Figure 4.

5.4. Ablation Study

In this section, we provide ablation studies on the ensemble
number of skills and state distribution constraints in CeSD.
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Figure 7. An ablation study of different factors of the regularization reward for distribution constraint in the maze task.

Ensemble Value Function We conduct an ablation study
of ensemble value functions in the Quadruped domain. We
reduce the ensemble number of value functions while keep-
ing the skill number unchanged, which makes a single
Q-network responsible for the learning of several skills.
As shown in Figure 6, as we reduce the ensemble num-
ber, the generalization performance of skills also decreases.
Since the different skills are enforced to explore independent
space, reducing the number of skills will enlarge the explo-
ration space of each value function, reducing the uniqueness
of each skill. As an extreme case, reducing the ensemble
size to 1 resembles CIC (Laskin et al., 2022) that only per-
forms exploration without learning distinguishable skills.

Distribution Constraints The final intrinsic reward of
CeSD is rcesdi (s, a) + α · rregi (s, a), where rregi (s, a) per-
forms distribution constraint for different skills. We conduct
an ablation study of distribution constraints using different
values for α, as shown in Figure 7. (i) When α is very small
(e.g., α = 0.1), the trajectories of different skills are mixed
and CeSD is very similar to CIC. Nevertheless, since we
adopt an ensemble network and partition exploration for
different skills, the state coverage of skills also has slight
differences. (ii) As we increase α (e.g., α ∈ [1.0, 2.0]),
the regularized reward will force each skill to reduce the
visitation probability of states lying in clusters of other
skills, which makes the different skills more distinguishable.
(iii) When the value of α becomes extremely large (e.g.,
α ≥ 10.0), the distribution constraints will dominate the
reward function, which may hinder the exploration of skills.

6. Conclusion
We have introduced CeSD, a novel skill discovery method
assisted by partition exploration and state distribution con-
straint. We perform self-supervised clustering for collected
states and constrain the exploration of each skill based on the
assigned cluster, which leads to diverse skills with strong
exploration abilities. Extensive experiments in the maze
and URLB benchmark show that CeSD can explore com-
plex environments and obtain state-of-the-art performance
in adaptation to various downstream tasks. The main lim-
itation of our method is that the ensemble value functions

cannot be generalized to the continuous skill space. A future
direction is to adopt a randomized value function (Azizzade-
nesheli et al., 2018) or hyper Q-network (Li et al., 2022) for
implicit ensembles with an infinite number of networks.
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A. Theoretical Analysis
A.1. Proof of Theorem 3.1

Theorem (Restate of Theorem 3.1). Let each cluster have the same number of samples, for i ∈ [n], the relationship between
the maximum entropy of π∗ in the state set S and π∗

i in the cluster set Si is

H
(
dπ

∗
(s)
)
= H

(
dπ

∗
i (s)

)
+ C(n), (12)

where C(n) = log n depends on the number of clusters n.

Proof. According to the assumption, each Si should have the same number of samples as |Si| = N
n , where we denote the

total samples as |S| = N . For a set of states, the entropy obtains its maximum when the policy uniformly visits each state,
as dπ

⋆
i (s) = 1

|Si| =
n
N in partition exploration, and dπ

⋆

(s) = 1
|S| =

1
N in global exploration.

For policy π⋆i in partition exploration, the corresponding entropy of state distribution is

H(dπ
⋆
i (s)) = −

∑
s∈Si

dπ
⋆
i (s) log dπ

⋆
i (s) = −

∑
s∈Si

n

N
log

n

N
= logN − log n. (13)

Similarly, for policy π⋆ in global exploration, the corresponding entropy of state distribution is

H(dπ
⋆

) = −
∑
s∈S

dπ
⋆

(s) log dπ
⋆

(s) = −
∑
s∈S

1

N
log

1

N
= logN. (14)

Then we have the following relationship as

H
(
dπ

∗
(s)
)
= H

(
dπ

∗
i (s)

)
+ C(n), (15)

where C(n) = − log n that depends on the number of skills.

The primary purpose of Theorem 3.1 is to relate the entropy of the global optimal policy π∗ and local optimal policies
{π∗

i }i∈[n], thus showing that maximizing the entropy of each local policy will effectively maximize the entropy of the global
policy. In many scenarios where uniform distributions over the state space S and subsets of state space Si are realizable,
the maximum entropy policies π∗ and π∗

i are exactly equal to these uniform distributions. Thus we have the relation
H(dπ

∗
(s)) = H(dπ

∗
i (s)) + log n for any i ∈ [n] (as stated in Theorem 3.1). We highlight this fact because it provides a

simple yet clear insight into why performing partition exploration in clusters also maximizes global state coverage.

Meanwhile, there are scenarios where uniform distributions are not realizable. In this case, let d(s) be a distribution over S
that is composed by the local state distributions {dπ∗

i (s)}i∈[n], such that

d(s) = αi · dπ
∗
i (s) if and only if s ∈ Si,

where
∑
i∈[n] αi = 1 and each αi represents the probability that a state belongs to Si. Then, we have

H(d(s)) =

(
n∑
i=1

αi ·H(dπ
∗
i (s))

)
+H({α1, α2, . . . , αn}), (16)

where H({α1, α2, . . . , αn}) is the entropy of the probability vector (α1, α2, . . . , αn). Thus, increasing/maximizing
each local entropy H(dπ

∗
i (s)) will lead to an increase of the global entropy of the distribution d(s). Eqn. (16) is also

consistent with our current Theorem 3.1, where H(dπ
∗
i (s)) = logN − log n is the entropy of the uniform distribu-

tion over Si, H(d(s)) = logN is the entropy of the uniform distribution over S, and αi = 1/n for all i ∈ [n] (i.e.,
H({α1, α2, . . . , αn}) = log n).

Although we do not know the maximum entropy policy π∗, but it must satisfy

H(dπ
∗
(s)) ≥ max

αi∈[0,1],
∑n
i=1 αi=1

(
n∑
i=1

αi ·H(dπ
∗
i (s))

)
+H(α1, α2, . . . , αn). (17)
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Proof of (16):

H(d(s)) = −
∑
s∈S

d(s) log d(s) (18)

= −
n∑
i=1

∑
s∈Si

d(s) log d(s) (19)

= −
n∑
i=1

∑
s∈Si

αid
π∗
i (s) · log(αidπ

∗
i (s)) (20)

= −
n∑
i=1

∑
s∈Si

αid
π∗
i (s) · [log(dπ

∗
i (s)) + log(αi)] (21)

=

(
n∑
i=1

−αi
∑
s∈Si

dπ
∗
i (s) log dπ

∗
i (s)

)
+

(
n∑
i=1

−αi
∑
s∈Si

dπ
∗
i (s) log(αi)

)
(22)

=

n∑
i=1

αiH(dπ
∗
i (s)) +

n∑
i=1

−αi log(αi) (23)

=

n∑
i=1

αiH(dπ
∗
i (s)) +H({α1, α2, . . . , αn}). (24)

This inequality shows that maximizing the entropy of each local policy H(dπ
∗
i (s)) will maximize the lower bound on

H(dπ
∗
(s)), which effectively maximizes global state coverage.

A.2. Proof of Lemma 3.2

Lemma (Restate of Lemma 3.2). The divergence between state distribution is bounded on the average divergence of policies
π̂i and πi, as

DTV

(
dπ̂i∥dπi

)
≤ γ

1− γ
Es∼dπi

[
DTV(π̂i(·|s)∥πi(·|s))

]
, (25)

where DTV(·∥·) is the total variation distance.

Proof. In our proof, we consider finite MDPs, although we can apply the divergence minimizing algorithm for large-scale
MDPs. We recall the definition of discounted future state distribution as follows,

dπ(s) = (1− γ)

∞∑
t=0

γtPtπ(s). (26)

We take a vector form of dπ in a given state set S, then Ptπ ∈ R|S| denotes a vector with components Ptπ(s) = P (st = s|π).
Further, we denote Pπ ∈ R|S|×|S| as the transition matrix from s to s′ with components Pπ(s′|s) =

∫
P (s′|s, a)π(a|s)da.

Then we have
Ptπ = PπP

t−1
π = (Pπ)

2Pt−2
π = . . . = (Pπ)

tµ, (27)

where the µ ∈ R|S| is the initial state distribution. Then we can derive the vector form of state distribution as

dπ = (1− γ)

∞∑
t=0

(γPπ)
tµ = (1− γ)(I − γPπ)

−1µ. (28)

Then we build the relationship between dπ̂i and dπi , we have

dπ̂i − dπi = (1− γ)
(
(I − γPπ̂i)

−1 − (I − γPπi)
−1
)
µ (29)

In the following, we denote Ĝ ≜ (I − γPπ̂i)
−1 and G ≜ (I − γPπi)

−1, then we have

Ĝ−G = Ĝ(G−1 − Ĝ−1)G = Ĝ(I − γPπi − I − γPπ̂i)G

= γĜ(Pπ̂i − Pπi)G.
(30)
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Plugging (30) into (29), we obtain

dπ̂i − dπi = γĜ(Pπ̂i − Pπi)(1− γ)Gµ = γĜ(Pπ̂i − Pπi)d
πi . (31)

where dπi = (1− γ)Gµ. Then, we can bound the L1-norm of dπ̂i − dπi as

∥dπ̂i − dπi∥1 = γ∥Ĝ(Pπ̂i − Pπi)d
πi∥1

≤ γ∥Ĝ∥1∥(Pπ̂i − Pπi)d
πi∥1.

(32)

In (32), the first term ∥Ĝ∥1 is bounded by

∥∥Ĝ∥∥
1
=
∥∥(I − γPπ̂i)

−1
∥∥
1
≤

∞∑
t=0

γt ∥Pπ̂i∥
t
1 =

1

1− γ
. (33)

The second term ∥(Pπ̂i − Pπi)d
πi∥1 of (32) is bounded by

∥(Pπ̂i − Pπi)d
πi∥1 =

∑
s′

∣∣∣∣∣∑
s

(
Pπ̂i(s

′|s)− Pπi(s
′|s)
)
dπi(s)

∣∣∣∣∣ ≤∑
s,s′

∣∣∣(Pπ̂i(s′|s)− Pπi(s
′|s)
)∣∣∣ dπi(s)

=
∑
s,s′

∣∣∣∣∣∑
a

P (s′|s, a) (π̂i(a|s)− πi(a|s))

∣∣∣∣∣ dπi(s) ≤ ∑
s,a,s′

P (s′|s, a)
∣∣∣π̂i(a|s)− πi(a|s)

∣∣∣dπi(s)
≤
∑
s,a

∣∣∣π̂i(a|s)− πi(a|s)
∣∣∣dπi(s) = 2Es∼dπi [DTV (π̂i∥πi)[s]] .

(34)

Then, we obtain

DTV

(
dπ̂i∥dπi

)
=

1

2
∥dπ̂i − dπi∥1 ≤ 1

2
γ

1

1− γ
2Es∼dπi [DTV (π̂i∥πi)[s]]

=
γ

1− γ
Es∼dπi [DTV (π̂i∥πi)[s]] .

(35)

A.3. Proof of Theorem 3.3

Theorem (Restate of Theorem 3.3). Assuming the distance between state distribution is bounded by DTV

(
dπ̂i∥dπi

)
≤ δ,

the entropy difference between state distribution can be bounded by∣∣H(dπ̂i)−H(dπi)
∣∣ ≤ δ log

(
|Spei | − 1

)
+ h(δ). (36)

where h(x) := −x log(x)− (1− x) log(1− x) is the binary entropy function.

Proof. We first introduce two random variables X and Y on the state space S̄ = Spei , such that X follows from the
distribution dπ̂i , while Y follows from the distribution dπi . Next, we use a coupling technique to construct a joint probability
distribution of X and Y , denoted by gXY ∈ ∆(S̄ × S̄), such that:

1. The marginal distributions of gXY , denoted by gX and gY , satisfy gX = dπ̂i and gY = dπi respectively. More
precisely, we have

gX(s) :=
∑
s′∈S

gXY (s, s
′) = dπ̂i(s), ∀s ∈ S̄, (37)

gY (s) :=
∑
s′∈S

gXY (s
′, s) = dπi(s), ∀s ∈ S̄. (38)

2. For all s ∈ S̄, gXY (s, s) = min{dπ̂i(s), dπi(s)}.
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For s, s′ ∈ S̄ such that s ̸= s′, we can choose the value of gXY (s, s′) arbitrarily, as long as the conditions in (37) and (38)
are satisfied. Based on this joint probability distribution gXY , we can calculate the probability that X does not equal Y :

Pr(X ̸= Y ) = 1−
∑
s∈S

gXY (s, s)

= 1−
∑
s∈S̄

min{dπ̂i(s), dπi(s)}

=
1

2

∑
s∈S̄

dπ̂i(s) + dπi(s)− 2min{dπ̂i(s), dπi(s)}


=

1

2

∑
s∈S̄

|dπ̂i(s)− dπi(s)|

= DTV(d
π̂i∥dπi). (39)

Since the random variable X follows from the distribution dπ̂i , the entropy of X , denoted by H(X), is equivalent to the
entropy H(dπ̂i). Similarly, the entropy H(Y ) is equivalent to H(dπi). Using standard information-theoretic inequalities,
we have {∣∣H(dπ̂i)−H

(
dπi
)∣∣ = H(X)−H(Y ) ≤ H(X)− I(X;Y ) = H(X|Y ), if H(X) ≥ H(Y );∣∣H(dπ̂i)−H

(
dπi
)∣∣ = H(Y )−H(X) ≤ H(Y )− I(X;Y ) = H(Y |X), if H(X) < H(Y );

(40)

where I(X;Y ) is the mutual information of X and Y (with respect to the joint probability distribution gXY ), and H(X|Y )
and H(Y |X) denote the conditional entropy. Applying Fano’s inequality yields that

H(X|Y ) ≤ Pr(X ̸= Y ) · log(|S̄| − 1) + h(Pr(X ̸= Y )), (41)
H(Y |X) ≤ Pr(X ̸= Y ) · log(|S̄| − 1) + h(Pr(X ̸= Y )). (42)

Combining Eqns. (39)-(42), we eventually obtain that

|H(dπ̂i)−H(dπi)| ≤ DTV

(
dπ̂i∥dπi

)
· log(|S̄| − 1) + h(DTV

(
dπ̂i∥dπi)

)
, (43)

which concludes our proof under the assumption that DTV(d
π̂i∥dπi) ≤ δ.

Theorem 3.3 shows that if the distance between two probability distributions is bounded, then their entropy difference can
also be bounded. A similar proof of Theorem 3.3 was first appeared in Zhang (2007) and Csiszár & Körner (2011) (Ex 3.10).
The proof relies on a coupling technique (used to relate two random variables), standard information-theoretic inequalities
in Cover (2006) (Sec 2.3), and Fano’s inequality in Cover (2006) (Sec 2.10).
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B. Additional Experiments in Maze
B.1. Tree Map

We conducted an additional experiment on a Tree-like map. This map is more challenging since the agent needs to explore
the deepest branches to maximize the state coverage. According to Figure 8, empowerment-based methods can learn
distinguishable skills while having limited exploration ability in the tree map. In contrast, CIC obtains a well global state
coverage while the trajectories of different skills are indistinguishable. CeSD can also reach the deepest branches and
overcome the limitations of CIC. Specifically, CeSD generates distinguishable skills, where the different skills perform
independent exploration and have fewer overlapping visitation areas.

CeSD (ours)DADSDIAYN CIC

Figure 8. The visualization of skill discovery methods in a Tree-like maze. Different colors represent the state trajectories with different
skill vectors. We let the agent start moving from the black dot in the upper corner and sample 20 trajectories for each skill for visualization.
Our method can explore the deepest branches and also learn distinguishable skills.

B.2. The Comparison of MI and Entropy Estimation

We compare the mutual information (MI) between states and skills (i.e., I(S;Z)) and the state entropy (i.e., H(dπ(s))) of
the final policies in different methods, where the dπ(s) is estimated by generating trajectories from all skills {πi}i∈[n].

To estimate the MI term, we generate several trajectories for each learned skill and perform MI estimation using the
MINE (Belghazi et al., 2018) estimator. MINE adopts a score function T : S × Z → R represented by a neural network
in estimation. The joint samples come from the joint distribution (s, z) ∼ PS,Z , where the states are generated by the
corresponding skills. s̄ ∼ dπs and z̄ ∼ PZ are sampled from the corresponding marginal distribution. Then the MINE
estimation given as: supT∈F EPS,Z [T (s, z)]− log(EPS⊗PZ [eT (s,z)]), where F is the function class. In addition, we perform
entropy estimation by using the particle-based entropy estimator (Liu & Abbeel, 2021b), which is the same as in our method.

As shown in Figure 9, CIC obtains much lower MI than other skill discovery methods but obtains the largest state entropy.
CeSD can balance state coverage and empowerment via partition exploration and distribution constraints, which leads to
diverse skills and also has better state coverage than previous skill discovery algorithms.

Figure 9. The qualitative result for the mutual information estimation and the entropy estimation in maze.
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C. Additional Experiments in URLB
C.1. Implementation Details and Hyperparameters

We introduce the implementation details of the proposed CeSD algorithm as follows. (i) Skills. In the pertaining stage, a
skill vector zi is sampled from a n-dimensional discrete distribution following a uniform distribution every fixed time-steps.
The agent interacts with the environment based on π(a|s, zi), and the obtained transition (s, a, r, s′, zi) is stored in a replay
buffer. We use n = 16 skills in all tasks. (ii) Clustering. In training, we sample a batch of transitions {(s, a, r, s′, zi)}
from the replay buffer and perform clustering for the states based on the prototypes. The encoder network fθ(s) of states
is an MLP network with obs dim → 1024 → 1024 → 1024 architecture and ReLU activations. The output of fθ(s)
is the same dimensions as the prototype ci ∈ Rm, where we use m = 16 in experiments. We perform a coarse search
for prototype updates per iteration for each domain from {4, 5, 6}. The temperature value in Eq. (3) is set to τ = 0.1.
The prototypes are trained using stochastic gradient optimization with Adam with a learning rate of 10−4. (iii) Entropy
estimation. We perform particle estimation on the feature space and k is set to 16. The entropy estimation is performed
in each cluster independently based on the prototypes. (iv) Ensemble value functions. Each Q-network is a MLP with
obs dim + action dim → 512 → 1024 → 1024 → 1. In practice, we use the vectorized linear layers in critic for parallel
inference of the ensemble Q-network. The ensemble size of the critic is the same as the number of skills. We denote the
ensemble Q-value for a batch with b samples as Q ∈ Rn×b. Then we adopt a mask matrix M ∈ Rn×b where each column is
a one-hot vector [0, . . . , 1, . . . , 0] that denotes the cluster index of this transition by following p(t). Then the masked value
function is calculated by Q⊙M for the TD-error calculation. (v) Policy learning. The policy network is an MLP with
obs dim + skill dim → 50 → 1024 → 1024 → action dim architecture, where we use the same actor architecture for
CeSD and other baselines. (vi) Intrinsic reward. For practical implementation, the state set Spe and Sclu used in intrinsic
reward is calculated in batches rather than all collected states. We use the batch size of 1024 in all methods.

We adopt DDPG as the basic algorithm in policy training for all baselines. Table 1 summarizes the hyperparameters of our
method and the basic DDPG algorithm. We refer to our released code for the details.

Table 1. Hyper-parameters for CeSD and the basic DDPG algorithm for all methods.

BeCL hyper-parameter Value
skill dim / ensemble size n 16 discrete
prototype dim m 16
prototype update iterations in clustering {4, 5, 6}
temperature κ for clustering 0.1
k-nearest-neighbor in particle estimation 16
skill sampling frequency (steps) 50

DDPG hyper-parameter Value
replay buffer capacity 106

action repeat 1
seed frames 4000
n-step returns 3
mini-batch size 1024
seed frames 4000
discount (γ) 0.99
optimizer Adam
learning rate 10−4

agent update frequency 2
critic target EMA rate (τQ) 0.01
features dim. 1024
hidden dim. 1024
exploration stddev clip 0.3
exploration stddev value 0.2
number of pre-training frames 2× 106

number of fine-tuning frames 1× 105
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C.2. Algorithmic Description

We give algorithmic descriptions of the pretraining and finetuning stages in Algorithm 1 and Algorithm 2, respectively. We
evaluate the adaptation efficiency of BeCL following the pretraining and finetuning procedures in URLB. Specifically, in the
pretraining stage, latent skill z is changed and sampled from a discrete distribution p(z) in every fixed step and the agent
interacts with the environments based on πθ(a|s, z). In the finetuning stage, a skill is randomly sampled and keep fixed in
all steps. The actor and critic are updated by extrinsic reward after first 4000 steps.

In our experiments of the Walker domain, pretraining one seed of CeSD for 2M steps takes about 11 hours while fine-tuning
downstream tasks for 100k steps takes about 20 minutes with a single 4090 GPU.

Algorithm 1 Unsupervised Pretraining of CeSD
Input: number of pretraining frames NPT , skill dimension n, batch size N , and skill sampling frequency Nupdate.
Initialize the environment, random actor πψ(a|s, z), ensemble Q-network {Qϕi(s, a)} and target network {Qϕ′

i
(s, a)},

state encoder fθ, the prototype vectors {c1, . . . , cn}, and replay buffer D
for t = 1 to NPT do

Randomly choose zi from category distribution p(z) every Nupdate steps.
Interact with environment τzi ∼ πψ(a|s, zi), p(s′|s, a) and store the transitions to buffer D.
if t ≥ t0 then

Sample a batch a transitions from D : {(si, ai, s′i, zi)}i∈[N ].
Calculate p(t) for each transitions based on prototypes via Eq. (3) and obtains the cluster index as {ẑi}i∈[N ].
Perform particle estimation in each cluster and calculate the entropy-based intrinsic reward {rcesdi }i∈[N ].
Calculate the constraint reward {rregi }i∈[N ] based on the cluster index {ẑi} (i.e., Sclu) and skill label {zi} (i.e., Spe).
Calculate mask matrix M and update the ensembleQ-network with {(si, ai, s′i, zi)}i∈[N ] and {rcesdi +α ·rregi }i∈[N ].
Update the policy network πψ(a|s, zi) by maximizing the corresponding critic function Qϕi(s, a).

end if
end for

Algorithm 2 Downstream Finetuning of CeSD
Input: actor πψ(a|s, z) and critic Qϕ(s, a) with weights from the pretraining phase, randomly sampled a skill vector z⋆

from p(z), and the number of finetuning frames NFT batch size N . Initialized environment and replay buffer D.
for t = 1 to NFT do

Choose the action by at ∼ πθ(a|st, z⋆).
Interact with environment to obtain st+1, rt with extrinsic reward from downstream task.
Store (st, at, st+1, rt, z

⋆) into buffer D.
if t ≥ 4, 000 then

Sample a batch {(a(i), s(i), s′(i), r(i), z(i))}Ni=1 from the replay buffer D.
Update actor πθ(a|s, z⋆) and critic Qψ(s, a, z⋆) using extrinsic reward r in Eq. (1) and Eq. (2).

end if
end for

C.3. Description of Baselines

A comparison of intrinsic rewards and representations used in unsupervised RL baselines is summarized in Table 2.
According to the taxonomy in URLB (Laskin et al., 2021), (i) the knowledge-based baselines adopt curiosity measurements
by training an encoder to predict the dynamics, and use the prediction-error of next-state (e.g., ICM (Pathak et al., 2017)),
prediction variance (e.g., Disagreement (Pathak et al., 2019)), or the divergence between a random network prediction
(e.g., RND (Burda et al., 2019)) as intrinsic rewards; (ii) the data-based or entropy-based methods estimate the state
entropy via particle estimation and use the state entropy estimation as the intrinsic reward in exploration, including
as APT (Liu & Abbeel, 2021b), ProtoRL (Yarats et al., 2021) and CIC (Laskin et al., 2022); (iii) the competence-
based or empowerment-based baselines aim to learn latent skill z by maximizing the MI between states and skills:
I(S;Z) = H(S)−H(S|Z) = H(Z)−H(Z|S). The different methods adopt various variational forms in estimating the
MI term, including the forward form in APS (Liu & Abbeel, 2021a) and DADS (Sharma et al., 2020), and the reverse form
in DIAYN (Eysenbach et al., 2019). BeCL (Yang et al., 2023) is also a competence-based method and adopts a multi-view
perspective and maximizes the MI term I(S(1);S(2)), where S(1) and S(2) are generated by the same skill.
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We adopt the baselines of open source code implemented by URLB (https://github.com/rll-research/
url_benchmark), CIC (https://github.com/rll-research/cic), and BeCL (https://github.com/
Rooshy-yang/BeCL). CeSD can be considered as a data-based method, but also has the advantages of competence-based
methods in learning diverse skills. We adopt partition exploration with clusters to learn distinguishable skills without MI
estimation. More descriptions of the baselines can be found in URLB (Laskin et al., 2021).

Table 2. Summary of baseline methods.
Name Algo. Type Intrinsic Reward Explicit max H(s)

ICM (Pathak et al., 2017) Knowledge ∥f(st+1|st, at)− st+1∥2 No
Disagreement (Pathak et al., 2019) Knowledge Var{fi(st+1|st, at)} i = 1, . . . , N No
RND (Burda et al., 2019) Knowledge ∥f(st, at)− f̃(st, at)∥22 No

APT (Liu & Abbeel, 2021b) Data
∑
j∈KNN log ∥f(st)− f(sj)∥ f ∈ random or ICM Yes

ProtoRL (Yarats et al., 2021) Data
∑
j∈KNN log ∥f(st)− f(sj)∥ f ∈ prototypes Yes

CIC (Laskin et al., 2022) Data 1 ∑
j∈KNN log ∥f(st, s′t)− f(sj , s

′
j)∥ f ∈ contrastive Yes

SMM (Lee et al., 2019) Competence log p∗(s)− log qz(s)− log p(z) + log d(z|s) Yes
DIAYN (Eysenbach et al., 2019) Competence log q(z|s)− log p(z) No
APS (Liu & Abbeel, 2021a) Competence rAPT

t (s) + log q(s|z) Yes
BeCL (Yang et al., 2023) Competence exp(f(s

(1)
t )⊤f(s

(2)
t )/κ)/

∑
sj∼S− ⋃

s
(2)
t

exp(f(sj)
⊤f(s

(1)
t )/κ No

C.4. URLB Environments

An illustration of URLB tasks is given in Figure 10. There are three domains (i.e., Walker, Quadruped, and Jaco), and each
domain has four different downstream tasks. The environment is based on DMC (Tassa et al., 2018). The episode lengths
for the Walker and Quadruped domains are set to 1000, and the episode length for the Joco domain is set to 250, which
results in the maximum episodic reward for the Walker and Quadruped domains being 1000, and for Jaco Arm being 250.

Reach Bottom Left Reach Bottom Right

Reach Top Left Reach Top Right

Jaco Arm

Run Jump

Stand Walk

QuadrupedWalker

Run Flip

Stand Walk

Figure 10. Illustration of domains and downstream tasks in URLB (Laskin et al., 2021). Each domain has four downstream tasks.

C.5. Visualization of Skills

As shown in Figure 11, Figure 12, and Figure 13, we give more visualization results of DMC domains. CeSD can learn
various locomotion skills, including standing, walking, rolling, moving, somersault, and jumping in Walker and Quadruped
domains; and also learns various manipulation skills by moving the arm to explore different areas, opening and closing the
gripper in different locations in Jaco domain. The learned meaningful skills lead to superior generalization performance in
the fine-tuning stage of various downstream tasks.

1The newest NeurIPS version of CIC https://openreview.net/forum?id=9HBbWAsZxFt has two designs of intrinsic
reward including the NCE term and KNN reward, which represent competence-base and data-based designs respectively. Since CIC
obtains the best performance in URLB with KNN reward only and NCE is used to update representation, we use KNN reward as its
intrinsic reward and consider it as a data-based method in this paper.
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Walker Stand from Falling

Walker Push the legs backwards to move forward

Walker turn a somersault forward

Walker turn a somersault backward

Figure 11. Visualization of representative skills learned of CeSD in the Walker domain. The Walker agent learns some interesting skills
like standing and moving. The agent also learns highly difficult skills that turn a somersault forward and backward.

Quadruped robot rolling its body to the right

Quadruped robot jumping to the left

Quadruped robot using two legs for side rolling

Quadruped robot walking and jumping

Figure 12. Visualization of representative skills learned of CeSD in the Quadruped domain. The Quadruped agent learns challenging
skills like walking, rolling, and jumping that benefit downstream tasks. Also, a novel two-leg rolling skill is learned in pre-training.

C.6. Numerical Results

We report the individual normalized return of different methods in state-based URLB after 2M steps of pretraining and 100k
steps of finetuning, as shown in Table 4. In the Quadruped and Jaco domains, BeCL obtains state-of-the-art performance in
downstream tasks. In the Walker domain, CeSD shows competitive performance against the leading baselines.
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Jaco Arm reaching the right rear area and opening the gripper

Jaco Arm reaching the front area and opening the gripper

Jaco Arm grabbing objects by closing the gripper

Jaco Arm reaching the left area and grabbing objective

Figure 13. The Jaco Arm agent learns various manipulation skills, including reaching different locations, which allows fast adaptation in
downstream tasks. The agent also learned to open and close grippers to manipulate objects.

Table 3. Results of CeSD and other baselines on state-based URLB. All baselines are pre-trained for 2M steps with only intrinsic rewards
in each domain and then finetuned to 100K steps in each downstream task by giving the extrinsic rewards. All baselines are run for 10
seeds per task. The highest scores are highlighted.

Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS CIC BeCL CeSD

Walker

Flip 538±27 390±10 332±7 506±29 606±30 549±21 500±28 361±10 448±36 641±26 611±18 541±17
Run 325±25 267±23 243±14 403±16 384±31 370±22 395±18 184±23 176±18 450±19 387±22 337±19

Stand 899±23 836±34 760±24 901±19 921±15 896±20 886±18 789±48 702±67 959±2 952±2 960±3
Walk 748±47 696±46 606±51 783±35 784±52 836±25 792±42 450±37 547±38 903±21 883±34 834±34

Quadruped

Jump 236±48 205±47 510±28 626±23 416±54 573±40 167±30 498±45 389±72 565±44 727±15 755±14
Run 157±31 125±32 357±24 439±7 303±30 324±26 142±28 347±47 201±40 445±36 535±13 586±25

Stand 392±73 260±45 579±64 839±25 582±67 625±76 266±48 718±81 435±68 700±55 875±33 919±11
Walk 229±57 153±42 386±51 517±41 582±67 494±64 154±36 506±66 385±76 621±69 743±68 889±23

Jaco

Re. bottom left 72±22 88±14 117±9 102±9 143±12 118±7 45±7 20±5 84±5 154±6 148±13 208±5
Re. bottom right 117±18 99±8 122±5 110±7 138±15 138±8 60±4 17±5 94±8 149±4 139±14 186±13

Re. top left 116±22 80±13 121±14 88±13 137±20 134±7 39±5 12±5 74±10 149±10 125±10 215±4
Re. top right 94±18 106±14 128±11 99±5 170±7 140±9 32±4 21±3 83±11 163±9 126±10 195±9

D. More Discussions
D.1. Difference to Mixture-of-Expert (MoE) (Celik et al., 2022)

The fundamental difference is the problem setting. We focus on unsupervised skill discovery, aiming to learn distinguishable
skills without extrinsic reward and task structure information, for efficiently solving downstream tasks via finetuning skills.
In contrast, the MoE work addresses learning skills in the context-conditioned tasks with extrinsic reward, where different
tasks are represented by different contexts c. Correspondingly, the learned MoE model depends on the context for skill
inference (i.e., π(θ|c) =

∑
o∈O π(o|c)π(θ|o, c), where o represents skills/components). Furthermore, the downstream task

provides explicit context for the algorithm, which makes the method less general. Thus, the MoE method may not be
deployed directly to the unsupervised skill discovery as far as we know; we can only receive the states from the environment
and encourage diverse behaviors via some self-proposed objective (such as r = log(z|s) from DIAYN).

Second, the details of the method are quite different. As for maximizing state coverage, we propose portioned exploration
to encourage local skill exploration, while the MoE algorithm uses policy entropy (i.e., H(π(θ|o, c))), which is common
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Table 4. Result comparison of MoE methods.

Task CeSD+MoE (Finetune skill) CeSD+MoE (Freeze skill) CeSD
walker stand 341 ± 16 339 ± 48 960 ± 3
walker run 75 ± 4 71 ± 8 337 ± 19
walker walk 157 ± 9 159 ± 13 834 ± 34
walker flip 197 ± 8 200 ± 13 541 ± 17
quadruped stand 627 ± 203 532 ± 101 919 ± 11
quadruped jump 480 ± 147 361 ± 151 755 ± 14
quadruped run 327 ± 107 297 ± 60 586 ± 25
quadruped walk 295 ± 158 255 ± 70 889 ± 23

in RL research. As for distinguishing between skills, we propose the clustering-based technique. In contrast, the MoE
algorithm does not introduce the technique to explicitly encourage skill/component diversity as we know. Given the
context-conditioned task (e.g., the context c defines the target position in table tennis) and the context-conditioned extrinsic
reward function r(s, a, c), the components/skills can naturally derive distinguishable behaviors under the guidance of the
context. Imagine a simple case, we train multiple skill networks, and each skill is trained to maximize its own context-based
reward function (i.e., π∗

i = argmaxEπi [
∑∞
t=0 r(s, a, ci)]), the trained skill will obtain distinguishable behaviors finally

(e.g., different skill plays table tennis towards different target positions).

D.2. Calculation of Eq. (9)

The size of |Spei − Sclui | is easy to calculate since the two state-sets are mostly overlapped. In clustering, for state s ∈ Spei
collected by the skill policy πi, (i) if s is collected in the previous rounds, we have the cluster label unchanged (i.e.,
(s, a, s′) ∈ Sclui ) since the Sinkhorn-Knopp cluster algorithm will keep the cluster-index of existing states fixed; and (ii) if
(s, a, s′) is the newly collected one in the current round, it may be assigned to cluster i or other clusters (e.g., j) according to
{f(s)⊤cj}j∈[n]. Then we use r = 1/(|Spei − Sclui |+ λ) as the rewards to force πi to reduce the visitation probability of
states lied in clusters of other skills. In implementation, we give each transition (s, a, s′) two skill labels (i.e., zpe and zclu).
Specifically, zpe signifies the transition (s, a, s′) is collected by which skill policy in exploration, and zclu is determined by
the clustering index of Sinkhorn-Knopp algorithm.

D.3. Non-overlapping Property

The non-overlapping property of skills is not a hard constraint in our method but a soft one with a tolerance value. In Sec.
3.3, we define a desired policy π̂i based on the skill policy πi, where dπ̂i(s) = 0 for overlapping states between clusters.
Then our constraint for regularizing skill πi is defined as Lreg(πi) = DTV(d

π̂i∥dπi). In practice, we adopt a heuristic
intrinsic reward to prevent the policy πi from visiting states in Spei − Sclui , as rregi = 1/(|Spei − Sclui |+ λ), which we assume
to make the TV-distance between state distributions bounded by DTV

(
dπ̂i |dπi

)
≤ δ, where δ is a tolerance value. In our

paper, Theorem 3.3 and Corollary 3.4 hold with such a tolerance value. Some special cases exist in which each skill policy
must visit some bottleneck states. In these cases, the regularization reward rregi = 1/(|Spei − Sclui | + λ) ≤ 1/(c + λ),
where c is the number of bottleneck states. The reward rregi will become small if c is very large, which can be alleviated by
removing this constant or increasing the weight of rregi in policy updating.

D.4. Pixel-based URLB

According to Pixel-URLB (Rajeswar et al., 2023), which evaluates the unsupervised RL algorithms on pixel-based URLB,
the performance in pixel-based URLB depends heavily on the basic RL algorithm. Specifically, according to Figure 1 of
Rajeswar et al. (2023), all unsupervised RL algorithms perform poorly when combined with a model-free method (e.g.,
DrQv2), while they perform much better when using a model-based algorithm (e.g., Dreamer) as the backbone. APT obtains
the best performance in the challenging Quadruped domain compared to other methods. Following the official code of [1],
we re-implement CeSD with the Dreamer backbone. We compare CeSD-Dreamer and APT-Dreamer in the following table.
The result shows our method outperforms APT in the pixel-based domain on average.
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Table 5. Results comparison of Pixel-based URLB methods.

Pixel-based Task CeSD Dreamer APT Dreamer
quadruped jump 756.5 ± 60 584.6 ± 1
quadruped run 445.7 ± 23 428.2 ± 21
quadruped stand 864.9 ± 1 914.7 ± 7
quadruped walk 581.5 ± 129 473.7 ± 27

D.5. Discrete/Continuous Skill Space

Although infinite skills (in continuous space) seem to be a better choice, infinite skills do not always lead to better
performance than discrete ones. As shown in Fig. 3, DADS have a continuous skill space while the resulting state coverage
is limited. As for the DMC tasks, the baseline methods, including APS, DADS, and CIC, also have a continuous skill space.
Actually, learning infinite skills with diverse and meaningful behaviors is desirable, while it can be difficult for existing skill
discovery methods. In our method, since we adopt partition exploration based on Sinkhorn-Knopp clustering, the cluster
number is required to be finite to partition the state space, and each state should be assigned to a specific cluster.

D.6. Additional Comparison to Re-Implemented Baselines

The recently proposed Metra (Park et al., 2024) uses Wasserstein dependency to measure (WDM) between states and skills,
i.e., IW (S,Z), for skill discovery. Metra also contains experiments in URLB benchmark while it only reports the skill
policy’s coverage (see Fig. 5 of Park et al. (2024)), and the downstream tasks are specifically designed to reach a target
goal (see Appendix F.1 of Park et al. (2024)) rather than diverse task adaptation considered in our paper. As a result, we
use the official Metra code and carefully modify the goal adaptation process to evaluate the adaptation of various DMC
tasks. We also add new baselines, including LSD (Park et al., 2022) and CSD (Park et al., 2023). Since LSD/CSD are
evaluated on different benchmarks in their original papers, we have tried our best to re-implement LSD/CSD in URLB tasks
based on the official code. A comparison of the results is given in the following table. We find out that the method obtains
competitive performance compared to CSD and Metra in the Walker domain and significantly outperforms other methods in
the Quadruped domain.

Table 6. Results comparison to re-implemented baselines.

Task LSD CSD Metra CeSD
walker flip 223 ± 6 602 ± 11 589 ± 75 541 ± 17
walker run 130 ± 22 457 ± 50 361 ± 45 337 ± 19
walker stand 837 ± 3 942 ± 8 943 ± 13 960 ± 3
walker walk 323 ± 75 802 ± 85 850 ± 63 834 ± 34
quadruped jump 247 ± 54 520 ± 80 224 ± 17 775 ± 14
quadruped run 270 ± 55 329 ± 62 196 ± 34 586 ± 25
quadruped stand 426 ± 131 425 ± 120 324 ± 173 919 ± 11
quadruped walk 256 ± 83 353 ± 142 190 ± 44 889 ± 23
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