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ABSTRACT

Nowadays, open-source large language models like LLaMA have emerged. Re-
cent developments have incorporated supervised fine-tuning (SFT) and reinforce-
ment learning fine-tuning (RLFT) to align these models with human goals. How-
ever, SFT methods treat all training data with mixed quality equally, while RLFT
methods require high-quality pairwise or ranking-based preference data. In this
study, we present a novel framework, named OpenChat, to advance open-source
language models with mixed-quality data. Specifically, we consider the general
SFT training data, consisting of a small amount of expert data mixed with a large
proportion of sub-optimal data, without any preference labels. We propose the
C(onditioned)-RLFT, which regards different data sources as coarse-grained re-
ward labels and learns a class-conditioned policy to leverage complementary data
quality information. Interestingly, the optimal policy in C-RLFT can be easily
solved through single-stage, RL-free supervised learning, which is lightweight and
avoids costly human preference labeling. Through extensive experiments on three
standard benchmarks, our openchat-13b fine-tuned with C-RLFT achieves the
highest average performance among all 13b open-source language models. More-
over, we use AGIEval to validate the model generalization performance, in which
only openchat-13b surpasses the base model. Finally, we conduct a series of
analyses to shed light on the effectiveness and robustness of OpenChat. Our code,
data, and models are publicly available at https://github.com/imoneoi/openchat
and https://huggingface.co/openchat.

1 INTRODUCTION

Recently, there have been notable advancements in Large Language Models (LLMs), such as GPT-
4 (OpenAI, 2023) and Chinchilla (Hoffmann et al., 2022), demonstrating impressive performance
in various downstream natural language processing (NLP) tasks (Zhao et al., 2023). Despite the
remarkable success of GPT-4, the specific techniques employed in its development remain shrouded
in mystery. To gain a deeper understanding of the underlying technical aspects and to promote
the widespread adoption of LLMs, a series of open-source base language models have emerged,
especially LLaMA (Touvron et al., 2023a) and Llama 2 (Touvron et al., 2023b). Building upon the
released base language models, there are typically two methods to align these base models to specific
abilities, including supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT).

The first line of methods (Chiang et al., 2023; Taori et al., 2023) use SFT to enhance instruction
following abilities. Most existing methods primarily focus on designing SFT datasets. Some stud-
ies (Chiang et al., 2023; Geng et al., 2023) collect user-shared conversations as well as human
feedback datasets from the public web, while others (Xu et al., 2023a; Ding et al., 2023) develop
frameworks for automatically gathering extensive open-domain instructions spanning various diffi-
culty levels. However, these constructed SFT datasets are generally mixed with limited expert data
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Figure 1: Our proposed framework OpenChat with Conditioned-RLFT to advance the open-source
language model fine-tuning with mixed-quality data, comparing to previous supervised fine-tuning
(SFT) method and reinforcement learning fine-tuning (RLFT) method. MLE and RL denote maxi-
mum likelihood estimates and reinforcement learning, respectively.

and a large proportion of sub-optimal data due to the high cost of human labor and API requests.
Naturally, it is not advisable to indiscriminately feed all these mixed conversations to the base model,
as the low-quality data are likely to negatively impact learning (Zhou et al., 2023; Xu et al., 2022).
However, this is largely neglected in previous methods, which often treat all training data equally.

To allow LLMs to go beyond modeling the training data distribution, recent LLMs (OpenAI,
2023; Touvron et al., 2023b) adopt RLFT to align better with the human desired behaviors, es-
pecially API-based models. The well-known reinforcement learning from human feedback (RLHF)
method (Ouyang et al., 2022; Christiano et al., 2017; Bai et al., 2022b) first collects plenty of high-
quality preference feedback from human annotators to fit one or multiple reward models (typically
also trained based on smaller LLMs), and then uses RL to maximize the estimated reward. The in-
volvement of learning and optimizing with extra reward models using RL brings considerable com-
putational and stability issues. Some recent studies (Rafailov et al., 2023; Yuan et al., 2023) partly
address this problem by avoiding fitting the reward model and fusing preference modeling and LLM
fine-tuning into a single-stage training process. However, all existing RLHF methods require high-
quality pairwise or ranking-based preference data for preference modeling, which inevitably require
expensive human expert annotations (Casper et al., 2023).

To address the aforementioned limitations, we propose a new framework, named OpenChat, to ad-
vance the open-source language model fine-tuning with mixed-quality data as shown in Fig. 1. Here,
we consider the general non-pairwise (nor ranking-based) SFT training data, consisting of a small
amount of expert data and a large proportion of easily accessible sub-optimal data, without any
preference labels. Specifically, we propose the Conditioned-RLFT (C-RLFT), which enables lever-
aging mixed-quality training data with very coarse-grained reward labels. The reward label can be
as simple as a relative value differentiating different classes of data, i.e., expert and sub-optimal.
We derive C-RLFT based on the KL-regularized RL framework (Jaques et al., 2019; Korbak et al.,
2022), which maximizes the reward while penalizing the difference between the fine-tuned policy
and a reference policy. However, to remedy the imperfect reward signal, we learn the fine-tuned
LLM itself as a class-conditioned policy (i.e., conditioning data source classes with distinct prompt
tokens), and regularize it with a better and more informative class-conditioned reference policy in-
stead of the original pre-trained LLM. The optimal policy for this RL problem can be shown as
equivalent to a class-conditioned reward-weighted regression problem, which can be easily solved
through single-stage supervised learning. C-RLFT provides several particularly desirable features
for open-source LLM fine-tuning. First, it allows for simple and RL-free training, largely remov-
ing the complexities and instabilities in typical RLHF fine-tuning. Second, it has extremely low
requirements for the quality of the reward and does not need costly human feedback collection.

Despite being simple and lightweight, our proposed OpenChat with C-RLFT achieves great perfor-
mance in a series of benchmark evaluations. Specifically, we leverage the ShareGPT conversations
dataset1 following Vicuna (Chiang et al., 2023) and use llama-2-13b as the base model. It is
worth noting that our proposed method can be applied to any mixed-quality datasets and arbitrary
base language models. We conduct extensive experiments on three standard benchmarks to assess
instruction following ability, including Alpaca-Eval (Li et al., 2023), MT-bench (Zheng et al., 2023)
and Vicuna-bench (Chiang et al., 2023). The results demonstrate that openchat-13b significantly
surpasses previous 13b open-source language models and can even outperform gpt-3.5-turbo
in all three benchmarks. Furthermore, we also use AGIEval (Zhong et al., 2023) to prove the gen-
eralization, where openchat-13b also achieves the top-1 average accuracy among all 13b open-
source language models. Finally, we design a series of ablation studies and analyses to validate
the contribution of different components, and performance consistency, providing insights into the
effectiveness and robustness of OpenChat.

1The ShareGPT dataset is collected from https://sharegpt.com/.
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2 PRELIMINARIES

Given a conversation dataset D = {(xi, yi)}, where xi indicates the instruction, yi is its correspond-
ing response, the pre-trained language model π0(y|x) can be regarded as a probability distribution
mapping from instructions to responses. There are two lines of research to adapt the pre-trained
language model π0(y|x) to a fine-tuned language model πθ(y|x) with desirable features, including
supervised fine-tuning and reinforcement learning fine-tuning.

Supervised Fine-tuning (SFT). This line of methods (Xu et al., 2023a;b; Ding et al., 2023) directly
uses a high-quality conversation dataset D to fine-tune the pre-trained language model π0(y|x) using
supervised learning, i.e., maximum likelihood estimates (MLE):

JSFT(θ) = E(x,y)∼D [log πθ(y|x)] (1)

where πθ is initialized from π0. To ensure the fine-tuning performance, SFT requires the conversa-
tion dataset D to have very high quality, because SFT treats all training data uniformly (Zhou et al.,
2023; Chen et al., 2023). However, the collection of high-quality SFT datasets can be very expen-
sive. Most existing open-source LLMs (Chiang et al., 2023; Geng et al., 2023; Xu et al., 2023a; Ding
et al., 2023) fine-tune their models using conversation datasets that likely contain a large proportion
of sub-optimal data due to high costs of human labor or API requests, inevitably leading to a certain
level of performance degeneration.

Reinforcement Learning Fine-tuning (RLFT). Another intuitive approach to align LLMs is
through RL, which models rewards according to human preference feedbacks (Ouyang et al., 2022;
Bai et al., 2022a; Rafailov et al., 2023) or pre-defined classifiers (Wu et al., 2023), and fine-tune
LLMs to maximize the reward. The reward r(x, y), either modeled explicitly or implicitly, assigns
high values on desirable responses and low values on bad ones to guide the alignment of the fine-
tuned LLM. A popular RL framework for fine-tuning LLMs is the KL-regularized RL (Jaques et al.,
2019; Korbak et al., 2022; Rafailov et al., 2023), which adds an additional KL penalty to constrain
the fine-tuned LLM πθ(y|x) to stay close to the base pre-trained LLM π0(y|x). This has been shown
beneficial to avoid distribution collapse as compared to naı̈vely maximize reward using RL (Korbak
et al., 2022). The RL objective of this series of RLFT models can be typically formulated as follows:

JRLFT(θ) = Ey∼πθ
[r(x, y)]− βDKL (πθ, π0) (2)

In existing RLFT methods, high-quality reward signals play a crucial role in ensuring improved LLM
fine-tuning performance. This, however, requires collecting considerable amounts of costly pairwise
(or ranking-based) human preference feedback, which poses a major challenge in the development
of many open-source language models.

3 OPENCHAT

In this section, we introduce the OpenChat framework, which provides a new possibility to fine-tune
open-source LLMs using easily collectable and mixed-quality training data without any preference
labels. More specifically, we consider the setting where we are given a pre-trained LLM π0, a
small set of high-quality/expert conversation data Dexp, and a larger medium-quality or sub-optimal
conversation dataset Dsub, we aim to fine-tune an LLM policy πθ based on π0 using only data from
Dexp

⋃
Dsub. Taking the most popular SFT dataset ShareGPT used in Vicuna (Chiang et al., 2023)

as an example, the distinct data sources from GPT-4 and GPT-3.5 can be regarded as Dexp and Dsub,
as the overall quality of GPT-3.5 conversations generally falls short when compared to that of GPT-4
conversations (OpenAI, 2023; Li et al., 2023), where detailed comparison can be found in Sec. 5.1.

Obviously, it is not possible to derive accurate and fine-grained reward signals solely based on Dexp
and Dsub. However, it should be noted that the quality difference between Dexp and Dsub itself can
serve as implicit or weak reward signals. To make use of this coarse-grained reward information, we
provide a new insight that by regularizing πθ with a better and more informative class-conditioned
reference policy πc instead of the original base pre-trained LLM π0, we are likely to compensate for
the potential deficiencies in the rewards and achieve good fine-tuning performance. In the following,
we describe the details of OpenChat and its core algorithm – C-RLFT.
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3.1 CLASS-CONDITIONED DATASET AND REWARDS

Given the SFT conversation datasets Dexp
⋃

Dsub with different quality levels, we can replenish
them with distinct sources as class labels (e.g., ci ∈ {GPT-4,GPT-3.5}) and construct a class-
conditioned dataset Dc = {(xi, yi, ci)}. We use πc(y|x, c) to denote class-conditioned distribution
over instructions x and responses y in the class-conditioned dataset Dc, which can be perceived
similarly as the behavior policy of a dataset in offline RL literature (Levine et al., 2020), with the
difference that πc is now a class-conditioned policy.

According to the different overall quality with respect to class labels, we can naturally encode
coarse-grained rewards rc(x, y) in Dc as follows:

rc(xi, yi) =

{
1, if (xi, yi) ∈ Dexp (e.g., ci = GPT-4),
α, if (xi, yi) ∈ Dsub (e.g., ci = GPT-3.5) (α < 1).

(3)

where we regard GPT-4 conversations as expert data Dexpert, and GPT-3.5 conversations as sub-
optimal data Dsub. Meanwhile, we set α < 1 to guide the fine-tuned model to favor more of the
high-quality responses.

3.2 FINE-TUNING VIA C(ONDITIONED)-RLFT

As the rewards rc(x, y) in Eq. (3) are very coarse-grained, to reliably use them in RLFT, we need to
provide additional sources of information to remedy their deficiencies. Here, we introduce C-RLFT,
which is inspired by the insight from the goal-conditioned supervised learning in offline RL, that by
conditioning on proper information in a supervised goal/outcome-conditioned policy, it is possible
to recover optimized performance (Chen et al., 2021; Emmons et al., 2021). C-RLFT contains two
key ingredients: 1) fine-tuning the LLM as a class-conditioned policy πθ(y|x, c), and 2) regularizing
πθ with respect to the class information augmented reference policy πc rather than the original base
reference policy π0 in the KL-regularized RL framework.

Class-conditioned policy. Instead of directly fine-tuning an LLM from the pre-trained model π0 as
in existing methods, we model the LLM to be fine-tuned as a class-conditioned policy πθ(y|x, c).
This can be easily implemented by conditioning each example from different data sources using
distinct conversation templates as shown below.

[GPT-4 Template] GPT4 User: Question<|end of turn|>GPT4 Assistant:

[GPT-3.5 Template] GPT3 User: Question<|end of turn|>GPT3 Assistant:

To differentiate speakers, we introduce a new <|end of turn|> special token at the end of each
utterance, following Zhou et al. (2023). The <|end of turn|> token functions similarly to the
EOS token for stopping generation while preventing confusion with the learned meaning of EOS
during pretraining. We further discuss the effect of conversation template choice in App. A.

Policy optimization. To compensate for the coarse-grained reward information rc(x, y), we modify
the original KL-regularized RL objective Eq. (2) and instead optimize the following problem:

JC-RLFT(θ) = Ey∼πθ
[rc(x, y)]− βDKL (πθ, πc) (4)

The idea is to use the higher-quality and more informative class-conditioned behavior policy πc of
Dc for regularization, rather than the pre-trained model π0. We adopt this design for the following
reasons. First, for most existing open-source pre-trained LLMs, their performance in many cases is
still inferior to the behavior policy that generates the sub-optimal data (e.g. GPT-3.5 in ShareGPT).
This means that even the sub-optimal data Dsub is likely to have higher quality than π0. Second, πc

contains additional data source information, which can help differentiating the quality of data.

Following prior works (Peters & Schaal, 2007; Peng et al., 2019; Korbak et al., 2022; Rafailov et al.,
2023), it can be shown that the optimal solution to the above KL-regularized reward maximization
objective takes the following form (see App. B for detailed derivation):

π∗(y|x, c) ∝ πc(y|x, c) exp
(
1

β
rc(x, y)

)
(5)
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We can thus extract the optimized policy πθ by minimizing the KL divergence between π∗ under
the class-conditioned dataset Dc (Nair et al., 2020; Korbak et al., 2022):

πθ =argmin
θ

E(x,c)∼Dc
[DKL(π

∗(·|x, c)∥πθ(·|x, c))]

=argmin
θ

E(x,c)∼Dc
[Ey∼π∗ [− log πθ(y|x, c)]]

=argmax
θ

E(x,y,c)∼Dc

[
exp

(
1

β
rc(x, y)

)
log πθ(y|x, c)

]
(6)

The last step is obtained by plugging the closed form π∗ in Eq. (5) and using the fact that πc is
exactly the class-conditioned behavior distribution of Dc. This suggests that the fine-tuned policy
πθ can be learned through a simple reward-weighted regression objective with the class-conditioned
dataset Dc. This learning objective provides a remarkably simple scheme to fine-tune open-source
LLMs. It does not require accurate reward labels, but uses conditioning to differentiate good and
inferior model behaviors. Moreover, after initializing πθ with π0, we no longer need to load π0

during training, while most RLHF methods using PPO for policy optimization (Ouyang et al., 2022;
Bai et al., 2022a) still need to maintain π0 to compute the KL penalty during fine-tuning. This
enables C-RLFT to save a considerable amount of computation resources during training.

Model inference. During the inference phase, we assume that our C-RLFT method has learned
to distinguish expert and sub-optimal data distributions. Considering that we aim to exclusively
generate high-quality responses for our fine-tuned class-conditioned πθ, we use the same specific
conversation template employed in GPT-4 conversations during the training phase as below:

[Inference template] GPT4 User: Question<|end of turn|>GPT4 Assistant:

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Mixed-quality Data. Following Vicuna (Chiang et al., 2023), we adopt a widely-used SFT dataset,
the ShareGPT dataset. The ShareGPT dataset consists of approximately 70k user-shared conversa-
tions, including around 6k expert conversations generated by GPT-4 and the remaining sub-optimal
conversations from GPT-3.5. We perform experiments to assess their varying quality in Sec. 5.1.

Benchmarks. To evaluate the instruction-following ability, we employ the three most widely rec-
ognized benchmarks, including AlpacaEval (Li et al., 2023), MT-bench (Zheng et al., 2023) and
Vicuna-bench (Chiang et al., 2023). Additionally, to verify generalization, we perform all English
tasks in AGIEval (Zhong et al., 2023) using zero-shot settings, which presents a collection of human-
centric standardized exams. More details of the benchmarks are listed in App. C.

Baselines. We evaluate the most popular API-based and open-source LLMs: (1) gpt-4 (Ope-
nAI, 2023) and gpt-3.5-turbo (Ouyang et al., 2022) are highly advanced LLMs developed
by OpenAI; (2) claude (Bai et al., 2022a) is helpful and harmless assistants by Anthropic; (3)
llama-2-chat (Touvron et al., 2023b) series models are the most frequently used open-source
models with SFT and RLHF; (4) wizardlm (Xu et al., 2023a), guanaco (Dettmers et al., 2023),
ultralm (Ding et al., 2023) and vicuna (Chiang et al., 2023) are among the well-known open-
source LLMs with SFT. More details are shown in App. D.

Automatic Evaluators. To mitigate the cost of human annotations, we follow the official evalua-
tors according to each benchmark. Specifically, AlpacaEval employs alpaca eval gpt, while
MT-bench and Vicuna-bench use gpt-4. It is worth noting that these benchmarks have already
computed the human agreements to ensure reliability. Additionally, we further introduce gpt-3.5
and claude-2 to eliminate the potential self-enhancement bias in App. E.

Metrics. We employ three metrics following the official implementations: (1) Win rate: This metric
is employed for pairwise comparisons. Given a question and two answers generated by the tested
model and the target model, the LLM evaluator needs to compare these two models. The tested
model receives 1 point for a win, 0.5 points for a tie, and 0 points for a loss. (2) Score: This metric
is applied for single-answer grading in MT-bench, where the LLM evaluator directly judges the
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Models Base Models Method AlpacaEval MT-bench Vicuna-bench Average

Larger than 13b

gpt-4 - SFT + RLFT 95.3 82.5 90.0 89.3
llama-2-chat-70b llama-2-70b SFT + RLFT 92.7 60.0 87.5 80.1
claude - SFT + RLFT 88.4 65.0 76.3 76.6
gpt-3.5-turbo - SFT + RLFT 86.1 50.0 50.0 62.0
guanaco-65b llama-65b SFT 71.8 40.6 49.4 53.9
guanaco-33b llama-33b SFT 66.0 40.6 54.4 53.7

Equal to 13b

vicuna-v1.1-13b llama-13b SFT 70.4 29.4 45.0 48.3
wizardlm-v1.0-13b llama-13b SFT 75.3 33.1 44.4 50.9
vicuna-v1.5-13b llama-2-13b SFT 78.8 37.2 47.1 54.4
ultralm-13b llama-13b SFT 80.6 37.2 50.0 55.9
wizardlm-v1.2-13b llama-2-13b SFT 89.2 53.1 80.6 74.3
llama-2-chat-13b llama-2-13b SFT + RLFT 81.1 55.3 86.9 74.4
openchat-13b llama-2-13b C-RLFT 89.5 57.5 85.0 77.3

Table 1: The win-rate (%) performance of the proposed openchat-13b and other popular
open-source language models. The competitors are text-davinci-003 in AlpacaEval, and
gpt-3.5-turbo in both MT-bench and Vicuna-bench. The bold scores denote the best perfor-
mance, and the underline scores indicate the second-best performance.

generated answer with a score varying from 1 to 10. (3) Accuracy: This metric is used by AGIEval
for multiple-choice exam questions.

Implementation Details. The openchat-13b is based on the llama-2-13b (Touvron et al.,
2023b). We fine-tune the model for 5 epochs on the ShareGPT dataset using the AdamW optimizer
with a sequence length of 4,096 tokens and an effective batch size of 200k tokens. Given that
the reward weight term in Eq. (6) (exp(rc/β)) remains constant within a class, we simplify the
process by assigning a unit weight to Dexp and the weight of 0.1 to Dsub. The AdamW optimizer’s
hyperparameters are set as follows: β1 = 0.9, β2 = 0.95, ϵ = 10−5, and weight decay of 0.1. We
employ a cosine learning rate schedule with a maximum learning rate of 6.7×10−5, which decays to
10% of the maximum value. The hyperparameters remain consistent with the base model pretraining
settings following Touvron et al. (2023b). However, we scale the learning rate proportionally to the
square root of the batch size, following the theoretical analysis provided by Granziol et al. (2020).

4.2 MAIN RESULTS

In the first set of results, we compare the win-rate (%) performance of openchat-13b and other
popular LLMs on three standard benchmarks to assess the instruction-following ability. The re-
sults are presented in Table 1. Among the API-based LLMs, the win rate of gpt-4 signif-
icantly outperforms all other models, demonstrating that gpt-4 maintains obvious advantages.
The open-source language model llama-2-chat-70b, which employs both SFT and RLHF, is
another powerful instruction-following model which surpasses claude and gpt-3.5-turbo.
However, guanaco-65b and guanaco-33b lag behind other models larger than 13b. Regard-
ing the series of 13b models, the open-source language models based on llama-13b, including
vicuna-v1.1-13b, wizardlm-v1.0-13b and ultralm-13b, achieve approximately 50%
average win rates across the three benchmarks. Meanwhile, the open-source language models based
on llama-2-13b generally exhibit higher average win rates. Notably, wizardlm-v1.2-13b
and llama-2-chat-13b achieve average win rate scores of 74.3 and 74.4, respectively, which
is close to the 76.6 score of claude. Our proposed language model openchat-13b attains the
highest win rate scores in both AlpacaEval and MT-bench benchmarks, and the second-highest win
rate scores in Vicuna-bench. It is worth noting that the average win rate score of openchat-13b
even surpasses that of claude.

In the second set of results, we present the MT-bench scores of openchat-13b and other baseline
models in Fig. 2(a). The overall trends are align closely with the win rate performance. For the API-
based language models, gpt-4 continues to lead by a significant margin. Notably, all API-based
language models perform better than open-source language models. Among the open-source lan-
guage models, the series based on llama-2-13b generally surpasses those based on llama-13b.
Meanwhile, our openchat-13b achieves the highest MT-bench score, even exceeding open-
source language models with much larger parameters, such as llama-2-chat-70b.
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(a) MT-bench score (b) AGIEval Accuracy

Figure 2: The MT-bench score (a) and AGIEval Accuracy (b) of the proposed openchat-13b and
other popular open-source language models, where the detailed performance of AGIEval in App. F.

Finally, to further validate generalization rather than overfitting, we compare the AGIEval accu-
racy of the base model llama-2-13b and the corresponding fine-tuned models, as depicted in
Fig. 2(b). It is worth noting that only the average accuracy of openchat-13b outperforms the
base model llama-2-13b, while the accuracies of all other baselines have declined to varying
degrees. Although llama-2-chat-13b excels in Vicuna-bench, the accuracy on AGIEval po-
tentially indicates a forgetting issue.

5 ANALYSIS

5.1 DATA QUALITY DISTRIBUTION

Figure 3: Quality distribution
of GPT-3.5 and GPT-4 con-
versations in the ShareGPT
dataset.

Although prior works (OpenAI, 2023; Zhao et al., 2023) have
widely confirmed that GPT-4 demonstrates superior capabilities on
a broad range of tasks compared to GPT-3.5, we further analyze
the quality of collected GPT-3.5 and GPT-4 conversations in the
ShareGPT dataset to validate our assumption of mixed-quality data.
Specifically, we randomly sample 128 conversations from each data
source. Then gpt-4 serves as the automatic evaluator, scoring the
responses following Zheng et al. (2023). As illustrated in Figure 3,
GPT-4 conversations contain more high-quality conversations and
exhibit a higher overall score. The detailed scoring settings can be
found in App. G.

5.2 ABLATION STUDIES

We conduct an ablation study on the two key components of the openchat-13b model to ascer-
tain their individual contributions to the overall performance, including the coarse-grained rewards
and the class-conditioned policy. Additionally, we introduce two important baselines. One series
is only SFT which uses the same ShareGPT data as OpenChat with three filtering strategies (i.e.,
no-filtering, only GPT-3, and only GPT-3.5). The other is vicuna-v1.5-13b which SFT on
about 125k ShareGPT data as a baseline. The results of ablation studies are detailed in Table 2.
Without coarse-grained rewards, the training phase treats different data sources equally, leading to
performance decline. Similarly, without a class-conditioned policy, language models lack explicit
signals to discern between expert and sub-optimal data, significantly reducing performance. We
also conduct only SFT on different sources of ShareGPT data. It is worth noting that only SFT with
GPT-4 data performs much better than with the entire ShareGPT data, indicating that the quality
of data is much more important than quantity. However, openchat-13b still obviously outper-
forms all the only SFT methods, demonstrating that our proposed framework can better exploit
the mixed-quality data. This indicates the significant contribution of both main components to model
performance. Notably, expanding the SFT dataset from 70k to 125k has less impact on performance
improvement than our proposed components, particularly the class-conditioned policy.

7



Published as a conference paper at ICLR 2024

ShareGPT
Dataset

AlpacaEval
(text-davinci-003)

MT-bench
(gpt-3.5-turbo)

Vicuna-bench
(gpt-3.5-turbo) Average

openchat-13b
∼70k

89.5 57.5 85.0 77.3
- w/o reward 89.1 52.8 80.0 74.0
- w/o condition 79.1 38.1 64.4 60.5

only SFT ∼70k 78.6 33.1 46.3 52.7
- only GPT-4 ∼06k 85.8 33.4 84.4 64.5
- only GPT-3.5 ∼64k 76.5 16.9 35.0 42.8

vicuna-v1.5-13b ∼125k 78.8 37.2 47.1 54.4

Table 2: Ablation studies of coarse-grained rewards (reward) and class-conditioned policy (condi-
tion) to openchat-13b.

5.3 REVEALING SECRETS OF C-RLFT

Firstly, we visualize the representations of openchat-13b, and its ablation version, only SFT,
to distinguish between our proposed C-RLFT and SFT. We randomly sample 2,000 GPT-4 and
GPT-3.5 conversations. To obtain the representations of conversations, we compute the embeddings
through mean pooling of all tokens in the last Transformer layer output following Xiao (2018). These
embeddings, depicted in Fig. 4, are consequently mapped to 2-D space using UMAP (McInnes et al.,
2018). Multiple clusters are observed in both only SFT and openchat models, likely due to the
diverse conversation domains in the ShareGPT dataset. More importantly, the GPT-4 and GPT-
3.5 conversation representations in only SFT were intermingled. In contrast, openchat-13b
clearly distinguished these representations according to their data sources, demonstrating the effi-
cacy of our proposed C-RLFT in enriching input information.

(a) only SFT (b) openchat-13b
Figure 4: Visualization of GPT-4 and GPT-3.5 conversations’ representations in only SFT and
openchat-13b.

Figure 5: Effects of class-conditioned
prompt tokens during inference phase.

Secondly, given the significant impact of the class-
conditioned policy, we further explore its effects on
model performance during the inference phases by ex-
amining the influence of class-conditioned prompt to-
kens. In the inference phase, we use the GPT-4 prompt
to induce openchat-13b to generate high-quality re-
sponses. Here we further verify the impacts of different
inference prompts by replacing the GPT-4 prompt with
the GPT-3.5 prompt. The comparison results, illustrated
in Fig. 5, reveal a substantial performance decline when
using the GPT-3.5 prompt instead of the GPT-4 prompt.
This suggests that our openchat-13b model can dis-
tinguish the quality of different data sources based on our
class-conditioned policy, and it further indicates that the
representation space of GPT-4 is superior to that of GPT-3.5.

5.4 EFFECTS OF DATA SIZE

In this section, we investigate the impact of varying data sizes on model performance. Specif-
ically, we sub-sample one class in GPT-3.5 or GPT-4 with the ratio varying from 60% to
100% in 10% increments, while keeping the other class unchanged. It is worth noting
that the total number of GPT-3.5 data is more than ten times larger than that of GPT-4.
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Figure 6: Effects of sub-
sampling a specific class of
data.

The results are shown in Fig. 6. Firstly, we observe that the overall
decline in both average performances is relatively modest, indicat-
ing that our openchat-13b is robust to variation in data size.
Secondly, although the number of GPT-4 data points changes much
less than GPT-3.5, the effect of varying GPT-4 data size is even
more pronounced. This phenomenon demonstrates that expert data,
while limited in quantity, is extremely important.

6 RELATED WORKS

Large Language Models. Recent years have witnessed significant advancements in LLMs, with
models such as GPT-4 (OpenAI, 2023), PaLM (Chowdhery et al., 2022), and others comprising
hundreds of billions or more parameters. This surge in LLMs extends beyond API-based models, as
a suite of open-source language models like LLaMA (Touvron et al., 2023a), LLaMA-2 (Touvron
et al., 2023b), and Falcon (Penedo et al., 2023) have emerged. This paper primarily focuses on the
LLaMA base models, which are among the most popular open-source language models.

Supervised Fine-tuning for LLMs. A considerable body of work has been dedicated to en-
hancing large base language models through SFT. For instance, Alpaca (Taori et al., 2023)
uses self-instruct (Wang et al., 2022) to generate 52k instruction-following demonstrations via
text-davinci-003. This instruction data has been extensively applied in subsequent stud-
ies, such as Koala (Geng et al., 2023). Peng et al. (2023) follow Alpaca’s setup but replace GPT-
4 as the distillation teacher. WizardLM (Xu et al., 2023a) introduces Evol-Instruct, a technique
that rewrites Alpaca’s initial instruction data into more complex instructions, thereby enhancing the
model’s instruction-following capabilities. Other studies, such as UltraChat (Ding et al., 2023) and
Baize (Xu et al., 2023b), have designed frameworks to obtain large-scale datasets of instructional
conversations. Vicuna (Chiang et al., 2023), another popular variant, is the first to adopt ShareGPT
with 70k user-shared ChatGPT conversations. Unlike previous SFT studies that treat all training
data uniformly, we strive to maximize the use of mixed-quality data.

Reinforcement Learning Fine-tuning for LLMs. To better align with preferences beyond SFT,
RLFT methods have been proposed. The most well-known method is RLHF (Ouyang et al., 2022),
which involves collecting preference feedback from humans to train reward models. Subsequently,
Proximal Policy Optimization (PPO) is used to train the target LLM to maximize the reward given.
Most API-based LLMs, such as GPT-4, ChatGPT (OpenAI, 2023), and open-source models like
Llama-2-chat series (Touvron et al., 2023b), utilize RLHF techniques. However, RLHF is a complex
and unstable process that involves training a reward model and the LLM with an RL objective. As
a result, simpler alternatives like DPO (Rafailov et al., 2023), RRHF (Yuan et al., 2023) have been
proposed. DPO trains the LLM to predict and maximize reward simultaneously in a one-staged
manner, while RRHF uses a ranking loss to encourage preferred answer output. Considering that
the preference data is costly to collect, our method uses easily collectible and mixed-quality training
data without any preference labels to finetune LLMs.

7 CONCLUSION AND FUTURE WORK

In this paper, we present OpenChat, an innovative framework featuring the Conditioned-RLFT
method, tailored to advance open-source language models with mixed-quality data. Our model,
openchat-13b, delivers the highest average performance on extensive benchmarks among all
13b open-source language models, demonstrating notable advantages such as simplicity, RL-free
training, and minimal reward quality requirements. Despite these encouraging results, we acknowl-
edge potential research areas for further improvement. Firstly, our assumption of different quality
according to data sources may be overly simplistic, and the assigned coarse-grained rewards could be
more finely tuned to reflect the actual quality of each data point. Secondly, while our model primar-
ily focuses on enhancing instruction-following capabilities, exploring the application of OpenChat
towards improving the reasoning abilities of LLMs offers a promising avenue for future work.
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This study aims to advance open-source language models with mixed-quality data. Firstly, the
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A EFFECTS OF CLASS-CONDITIONED PROMPT TOKENS

Figure 7: Effects of class-conditioned
prompt tokens during training phase.

We further detect the effects of class-conditioned prompt
tokens on model performance during the training phase.
Our designed class-conditioned prompt tokens in differ-
ent positions are shown in Table 3. we attempt three dis-
tinct initial prompt tokens in different positions: before
speaker, before assistant, and beginning. The results are
shown in Fig. 7. We observe that putting the conditioned
prompt tokens in every turn (either before the speaker or
before the assistant) performs similarly, but adding the
condition only once at the beginning of the conversation
performs much worse. This may be due to LLMs tend
to forget the prompt at the beginning when the context is
long or during subsequent turns. Touvron et al. (2023b)
also observe the gradual loss of multi-turn consistency
when the system prompt is put at the beginning. Therefore, we repeat the condition prompt ev-
ery turn, to improve the effect of class-conditioned policy.

Sources Types Conditioned Prompts

GPT-4
Before speaker GPT4 User: Question<|end of turn|>GPT4 Assistant:
Before assistant User: Question<|end of turn|>GPT4 Assistant:
Beginning Assistant is GPT4<|end of turn|>User: Question<|end of turn|>Assistant:

GPT-3.5
Before speaker GPT3 User: Question<|end of turn|>GPT3 Assistant:
Before assistant User: Question<|end of turn|>GPT3 Assistant:
Beginning Assistant is GPT3<|end of turn|>User: Question<|end of turn|>Assistant:

Table 3: The attempted conditioned prompts during the training phase.

B DERIVATION OF THE OPTIMAL POLICY IN C-RLFT

The goal of C-RLFT is to find the optimal KL-regularized conditional policy. This optimization
problem can be formulated as:

max
π

Ey∼π[rc(x, y)]− βDKL (π, πc) (7)

To ensure π is a valid probability distribution, we add the normalization constraint and the optimiza-
tion problem becomes:

max
π

Ey∼π[rc(x, y)]− βDKL (π, πc) (8)

s.t.

∫
y

π(y|x, c)dy = 1 (9)

We can obtain the optimal solution of this constrained optimization problem by solving its Karush-
Kuhn-Tucker (KKT) conditions. The Lagrangian of this problem is:

L(π, λ) = Ey∼π[rc(x, y)]− βDKL (π, πc) + λ(1−
∫
y

π(y|x, c)dy) (10)

Following the KKT conditions, we take derivatives of L with respect to π and λ, and set them to
zero:

∂L
∂π

= rc(x, y) + β log π(y|x, c)− β log πc(y|x, c) + β − λ = 0 (11)

∂L
∂λ

= 1−
∫
y

π(y|x, c)dy = 0 (12)
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Solving these equations gives us the optimal policy π∗:

π∗(y|x, c) = 1

Z(x, c)
πc(y|x, c) exp

(
1

β
rc(x, y)

)
(13)

Z(x, c) =

∫
y

πc(y|x, c) exp
(
1

β
rc(x, y)

)
dy (14)

where Z(x, c) is a normalization term ensuring that π∗(y|x, c) is a valid probability distribution.

C DETAILS OF BENCHMARKS

This section provides the specifics of the benchmarks employed in our study:

• AlpacaEval (Li et al., 2023): This benchmark primarily assesses the model’s ability to
comprehend and execute user instructions. It incorporates a test set of 805 user instruc-
tions, collected from a diverse array of sources, and corresponding reference responses from
text-davinci-003.

• MT-bench (Zheng et al., 2023): MT-bench presents a rigorous multi-turn benchmark designed to
test both conversational and instruction-following capabilities. It includes 80 high-quality multi-
turn questions that span eight distinct topics: writing, roleplay, extraction, reasoning, mathematics,
coding, knowledge I (STEM), and knowledge II (humanities/social science).

• Vicuna-bench (Chiang et al., 2023): This benchmark evaluates the proficiency of large language
models across eight question categories: generic, knowledge, roleplay, commonsense, Fermi prob-
lems, counterfactual scenarios, coding, mathematics, and writing.

• AGIEval (Zhong et al., 2023): AGIEval is a collection of human-centric standardized tests aimed
at gauging the problem-solving abilities of language models. We include all English multiple-
choice tasks in our evaluation, which encompass general college admission tests (SAT, AQuA-
RAT), law school admission tests (LSAT), and civil service exams (LogiQA).

D MODEL INFORMATION

Table 4 presents the detailed specifications of the models used in our study, including the base
models, context length, finetuning methods, and datasets employed.

Model Base Model Context Finetuning Data

Larger than 13b

gpt-4 - 8k SFT + RLFT -
claude - 9k SFT + RLFT -
gpt-3.5-turbo - 4k SFT + RLFT -
llama-2-chat-70b llama-2-70b 4k SFT + RLFT ∼27k high-quality SFT data + ∼2.9M preference
guanaco-65b llama-65b 2k SFT ∼9k OASST1
guanaco-33b llama-33b 2k SFT ∼9k OASST1

Equal to 13b

vicuna-v1.1-13b llama-13b 2k SFT ∼70k ShareGPT
wizardlm-v1.0-13b llama-13b 2k SFT ∼70k gpt-3.5-turbo
ultralm-13b llama-13b 2k SFT ∼1.5M UltraChat
llama-2-chat-13b llama-2-13b 4k SFT + RLFT ∼27k high-quality SFT data + ∼2.9M preference
vicuna-v1.5-13b llama-2-13b 4k SFT ∼125k ShareGPT
wizardlm-v1.2-13b llama-2-13b 4k SFT ∼250k gpt-3.5-turbo
openchat-13b (ours) llama-2-13b 4k C-RLFT ∼70k ShareGPT

Table 4: The details of the proposed OpenChat series models and other popular language models.
The RLFT, SFT, and C-RLFT indicate reinforcement learning fine-tuning, supervised fine-tuning,
and conditioned-RLFT proposed in our paper, respectively.

15



Published as a conference paper at ICLR 2024

E EVALUATORS CONSISTENCY

Figure 8: The consistency be-
tween GPT-3.5 and Claude-2
in AlpacaEval benchmark.

While all benchmarks evaluate the agreement between humans and
automatic evaluators, we also consider the self-enhancement bias
as discussed by Zheng et al. (2023), where self-enhancement bias
indicates that automatic evaluators may favor their own generated
answers. To address this, we employ two additional automatic eval-
uators, gpt-3.5 and claude-2, alongside the official evaluator
gpt-4, to verify the consistency of evaluators on AlpacaEval. The
results between gpt-3.5 and claude-2 are shown in Fig. 9,
while the correlations between gpt-4 and others (r = 0.79 and
0.73) are detailed in App. H. The model performances evaluated
by both evaluators show a strong Pearson correlation of r = 0.91.
Most importantly, regardless of the automatic evaluator used, our
openchat-13b outperforms all other 13b open-source language
models, ranking within the top three among all API-based and
open-source language models.

F AGIEVAL RESULTS

Table 5 presents the comprehensive results of AGIEval performance. All models are assessed using
the official AGIEval zero-shot prompt and answer matching as described in Zhong et al. (2023).
For conversation models (excluding llama-2-13b), we utilize the corresponding conversation
templates and set the zero-shot prompt as the user’s question.

Task openchat-13b llama-2-13b wizardlm-v1.2-13b llama-2-chat-13b vicuna-v1.5-13b

AQuA-RAT 19.3 20.1 28.3 22.4 21.7
LogiQA 34.9 32.6 27.2 27.3 19.0

LSAT-AR 19.1 21.3 21.7 19.6 20.0
LSAT-LR 37.5 33.3 32.4 27.6 16.7
LSAT-RC 45.0 46.1 43.5 25.3 19.0

SAT-English (w/o Psg.) 44.7 41.3 33.5 25.2 26.7
SAT-English 66.0 65.5 65.5 25.7 28.2
SAT-Math 30.9 29.1 22.7 28.6 24.5

Average 36.4 35.0 32.8 25.8 20.7

Table 5: Zero-shot performance on AGIEval benchmark.

G CONVERSATION QUALITY SCORING

We employ gpt-4 to automatically score the quality of conversations in the ShareGPT dataset on a
scale of 1-10. For multi-turn conversations, each assistant’s response is scored independently, taking
into account the context of previous turns. The conversation’s score is the average of all turn scores.
The scoring prompt template is shown in Table 6.
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Scoring prompt template [Instruction]
Please act as an impartial judge and evaluate the quality of the response provided
by an AI assistant to the conversation displayed below. Your evaluation should
consider factors such as the helpfulness, relevance, accuracy, depth, creativity,
and level of detail of the response. Begin your evaluation by providing a short
explanation. Be as objective as possible. After providing your explanation, you
must rate the response on a scale of 1 to 10 by strictly following this format:
”[[rating]]”, for example: ”Rating: [[5]]”.

[Conversation]
{previous turns}

[The Start of Assistant’s Response]
{response}
[The End of Assistant’s Response]

Table 6: Conversation evaluation prompts.

H EVALUATORS CONSISTENCY

The correlations between arbitrary two models among gpt-4, gpt-3.5 and claude-2 are
shown in Fig. 9.

Figure 9: The consistency of three evaluators, GPT-4, GPT-3.5, Claude-2 in AlpacaEval benchmark.
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I CASE STUDY

vicuna-13b-v1.5 [Turn #1] Craft an intriguing opening paragraph for a fictional short story. The story should involve
a character who wakes up one morning to find that they can time travel.
As the sun began to rise, Sarah stirred in her bed, the sound of birds chirping outside her window. But as
she opened her eyes, she was not greeted by the familiar sight of her bedroom. Instead, she found herself
standing in the middle of a bustling city street, the sound of cars and people rushing past her. Confused and
disoriented, she looked around, trying to make sense of where she was and how she got there. And then she
saw it - a shimmering aura around her, and a faint buzzing in her ears. It was then that she realized she had
time traveled.
[Turn #2] Summarize the story with three bullet points using only nouns and adjectives, without
verbs.
* Sarah wakes up in a bustling city street
* She discovers she has time traveled
* She is disoriented and confused

ultralm-13b [Turn #1] Craft an intriguing opening paragraph for a fictional short story. The story should involve
a character who wakes up one morning to find that they can time travel.
It was a typical morning when the alarm screeched through the room, jolting the sleeper awake. As they
rubbed their eyes and reached for their glasses, they noticed something peculiar. The clock on the bedside
table had stopped ticking. Yet, the room was bathed in a soft, golden light, and the air felt different.
Suddenly, the sleeper felt a strange sensation in their chest, and before they knew it, they were hurtling
through time.
[Turn #2] Summarize the story with three bullet points using only nouns and adjectives, without
verbs.
Time Traveler:
- Unexpectedly travels through time
- Struggles to control powers
- Encounters historical figures and events

wizardlm-13b-v1.2 [Turn #1] Craft an intriguing opening paragraph for a fictional short story. The story should involve
a character who wakes up one morning to find that they can time travel.
It was just another ordinary day, a day like any other, or so it seemed. But for John, it was about to become
the most extraordinary day of his life. As he groggily opened his eyes, he was hit with a wave of dizziness,
a feeling he had never experienced before. Confused and disoriented, he rubbed his eyes, hoping it was
just a side effect of his late night binge-watching of Doctor Who. But as he looked around, he realized that
something was very wrong. His room seemed different, and the sunlight streaming in through the window
was at an angle he had never seen before. It was then that he realized he had somehow managed to time
travel.
[Turn #2] Summarize the story with three bullet points using only nouns and adjectives, without
verbs.
* Character: John
* Time Travel
* Doctor Who
* Sunlight
* Room
* Day

llama-2-chat-13b [Turn #1] Craft an intriguing opening paragraph for a fictional short story. The story should involve
a character who wakes up one morning to find that they can time travel.
As I lay in bed, I felt a strange sensation wash over me, like the whisper of a breeze on a summer day. I
opened my eyes to find myself in a world that was both familiar and yet, utterly foreign. The clock on my
nightstand read 6:45 AM, but something felt off. The light pouring through the window seemed warmer,
more golden than it should be. And then, I felt it - the sudden jolt of time travel. I blinked, and when I
opened my eyes again, I was somewhere else entirely. The world outside my window was not the one I had
left just moments before. I sat up, rubbing my eyes, trying to make sense of the strange sensation that had
washed over me. How had I traveled through time? And where was I now? The possibilities were endless,
and I couldn’t wait to explore this new world and all its wonders.
[Turn #2] Summarize the story with three bullet points using only nouns and adjectives, without
verbs.
Sure, here are three bullet points summarizing the story using only nouns and adjectives, without verbs:
* Character wakes up with strange sensation
* Golden light pours in through window
* Unfamiliar world outside with endless possibilities

openchat-13b [Turn #1] Craft an intriguing opening paragraph for a fictional short story. The story should involve
a character who wakes up one morning to find that they can time travel.
As the first rays of sunlight peeked through the window, Sarah closed her eyes, relishing the warmth that
caressed her face. She never could resist the allure of a beautiful morning, but this particular day was about
to become anything but ordinary. With a start, she sat up in bed, her heart pounding, as she realized she was
somewhere else, somewhere she had never been before. Confused and exhilarated, Sarah discovered that
she had the extraordinary ability to time travel, her very first morning blessed – or perhaps cursed – with
the power to traverse the fabric of time.
[Turn #2] Summarize the story with three bullet points using only nouns and adjectives, without
verbs.
*Sarah, a time traveler
*Mysterious morning adventure
*Discovery of extraordinary ability

Table 7: Comparison of models on MT-bench. Only openchat-13b successfully adhered to the
user’s request in the second turn.
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Question How long will it take to walk around the world, assuming that would be possible?

vicuna-13b-v1.5 It is not possible to walk around the world, as the distance around the globe is much greater than the
distance across it. The circumference of the Earth at the equator is approximately 40,075 kilometers
(24,901 miles), while the diameter is about 12,742 kilometers (7,918 miles).

Assuming you could walk continuously without rest, it would take approximately 1,900 years to
walk around the world at an average walking speed of 5 kilometers (3.1 miles) per hour. However, this is
just an estimate and does not take into account factors such as the terrain, altitude, and other conditions that
would affect walking speed.

ultralm-13b Walking around the world is not possible as the Earth is not a perfect sphere and has different land masses
making it impossible to walk continuously without gaps. However, if we assume that there were no land
masses and the Earth was a perfect sphere, it would take approximately 43,288.89 miles (69,617.05 kilo-
meters) to walk around the equator. If we were to walk around the circumference of the Earth, it would
take approximately 24,901.26 miles (40,074.91 kilometers). However, if we were to walk around the world
in a straight line, it would take approximately 24,859.82 miles (40,008.06 kilometers) as the Earth is not a
perfect sphere and has an elliptical shape. These distances are based on the equator circumference and the
circumference of the Earth, respectively. The time it would take to walk around the world would depend on
the individual’s walking speed and other factors such as stops for rest and food.

wizardlm-13b-v1.2 As an AI, I’m assuming you’re asking about walking around the Earth’s equator. The distance around
the Earth’s equator at the equator itself is about 40,075 kilometers (24,901 miles). However, the actual
distance would be much greater if you were to walk along a route that follows coastlines, navigates through
mountains, and crosses other obstacles.

Now, let’s consider that a person walks at a moderate pace of about 5 kilometers per hour. Walking
around the world would then take approximately 8,015 hours or approximately 333,600 minutes.

To convert this into days, you would divide the total number of minutes by 24 (hours in a day):
333,600 minutes / 24 = 14,000 days.

So, if you were to walk around the world, it would take you approximately 14,000 days or approxi-
mately 38.89 years, assuming you walk continuously without rest and no obstacles. This is an estimate
based on the distance around the Earth’s equator and does not take into account real-world challenges like
mountains, oceans, and other obstacles.

llama-2-chat-13b Thank you for your question! While it is not possible to walk around the entire world, as there are many
areas that are not accessible by foot, such as oceans and other bodies of water, it’s important to note that
even if it were possible, it would be a very long and challenging journey.

The circumference of the Earth at the equator is approximately 40,075 kilometers (24,901 miles).
However, it’s important to consider that walking is not a viable mode of transportation for long distances,
as it would be extremely time-consuming and would require a tremendous amount of physical endurance.

Furthermore, it’s important to note that walking through certain areas of the world, such as deserts
or other remote regions, could be dangerous due to harsh weather conditions, lack of resources, and other
hazards.

Therefore, it’s not possible to provide an accurate estimate of how long it would take to walk around
the world, as it is not a feasible or safe journey. It’s important to prioritize safe and accessible forms
of transportation when traveling, and to plan your journeys with careful consideration of your physical
limitations and the resources available to you. Is there anything else I can help with?

openchat-13b It is possible to walk around the world, though it would be a continuous, grueling journey that would take
several years, if not a decade or more, depending on the route chosen, individual physical capabilities,
and other factors. The distance around the world varies depending on the route, but a commonly used
measure is the equatorial circumference of the Earth, which is approximately 24,901.48 miles (40,075.01
kilometers).

Walking at a moderate pace of around 3 miles (4.8 kilometers) per hour, it would take an average
person nearly 3 years and 3 months to walk around the world (assuming no breaks or rest days). However,
this is just an estimate, and the actual time required would depend on various factors, such as:

1. Route: The distance around the world varies depending on the route taken. For example, the
shortest distance is along the Equator, while the longest distance is along the meridians of longitude.
2. Terrain: Walking through mountainous or heavily forested areas may be slower and more challenging
than walking on flat terrain.
3. Weather: Adverse weather conditions, such as extreme heat or cold, high winds, or heavy rainfall, can
make walking more difficult and slow down progress.
4. Fitness and endurance: An individual’s physical fitness, endurance, and ability to withstand the rigors of
constant walking will affect their pace and overall journey time.
5. Nutrition and rest: Proper nutrition and adequate rest are essential for maintaining physical and mental
stamina. Taking regular breaks and rest days will prolong the journey.

Keep in mind that walking around the world is an extraordinary feat that would require extensive
preparation, both physically and logistically. It’s essential to consider the many challenges and potential
hazards involved before embarking on such an adventure.

Table 8: Comparison of models on AlpacaEval benchmark. Specifically, the mod-
els ultralm-13b and llama-2-chat-13b fail to provide a direct answer, while
vicuna-13b-v1.5 and wizardlm-13b-v1.2 offer estimates with significant discrepancies.
openchat-13b provides a reasonable estimate, demonstrating the varying capabilities of models
in addressing complex hypothetical questions.

19



Published as a conference paper at ICLR 2024

Question Given that f(x) = 5x3 − 2x+ 3, find the value of f(2).

vicuna-13b-v1.5 To find the value of f(2), we simply substitute 2 for x in the expression for f(x):
f(2) = 5(2)3 − 2(2) + 3
Simplifying this expression, we get:
f(2) = 25− 4 + 3
f(2) = 24
Therefore, the value of f(2) is 24.

ultralm-13b To find the value of f(2), we substitute 2 for x in the function f(x):
f(2) = 5(2)3 − 2(2) + 3
f(2) = 20− 4 + 3
f(2) = 25
Therefore, the value of f(2) is 25.

wizardlm-13b-v1.2 The problem is asking us to find the value of the function f(2). The function is given as f(x) = 5x3−2x+3.
Step 1: Substitute the value of x into the function
We are told to substitute the value of x with 2. So, we replace every x in the function with 2. This gives us:
f(2) = 5(2)3 − 2(2) + 3
Step 2: Simplify the expression
Next, we simplify the expression. The expression 5(2)3 simplifies to 5*8, which equals 40. The expression
2(2) simplifies to 4. And the number 3 remains the same. So, we have:
f(2) = 40− 4 + 3
Step 3: Perform the subtraction and addition
Now, we perform the subtraction and addition in the correct order. First, we subtract 4 from 40, which gives
us 36. Then, we add 3 to 36, which gives us 39. So, we have:
f(2) = 39
So, the value of f(2) is 39.

llama-2-chat-13b Sure! To find the value of f(2), we can plug 2 into the function f(x) = 5x3 − 2x+ 3.
f(2) = 5(2)3 − 2(2) + 3
= 5(8)− 2(2) + 3
= 5(8)− 4 + 3
= 40− 4 + 3
= 36
So, f(2) = 36.

openchat-13b To find the value of f(2), we need to evaluate the function when x = 2.
f(2) = 5(2)3 − 2(2) + 3
f(2) = 5(8)− 4 + 3
f(2) = 40− 4 + 3
f(2) = 39

Table 9: Comparison of models on Vicuna-bench. Only openchat-13b and
wizardlm-13b-v1.2 provide the correct answer to this math problem.
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