Solving the Rubik’s Cube in a Human-like Manner
with Assisted Reinforcement Learning (ARL)

Anonymous submission

Abstract

Human-AlI collaboration is most key in situations in which
Al must approach problems in a human-like manner. In this
work, we present a novel approach to Rubik’s cube solving
that utilizes human-like solving techniques. We demonstrate
assisted reinforcement learning (ARL), in which RL trains to
solve the cube in separate steps (CFOP), thereby emulating
human behavior.

Secondly, we applied inverse reinforcement learning (IRL) to
align Al behavior with human problem-solving. We create a
dataset of over 10,000 human Rubik’s cube solves and train
to achieve a reward function that accurately reflects the goals
and preferences of human solvers. As a result, the system is
able to generalize across different cube states while maintain-
ing interpretability.

Our research demonstrates the potential of combining ARL
and IRL to close the gap between human and Al behavior. We
successfully highlight the interdisciplinary nature of training
Al to solve a trivial task while imitating complex human be-
havior.

Introduction

In recent years, the intersection of Al and human problem-
solving has been a growing area of research. However, not
many attempts have been made to emulate human problem-
solving, which could potentially have huge benefits in en-
hancing interpretability, trust, and user collaboration. Al
systems that resemble humans more closely are better suited
for user expectations and provide solutions that are not only
efficient, but more intuitive for users to follow. For example,
in education, Al that solves problems in a more slow and
clear manner is potentially more useful than Al that solves
them in the fastest and most efficient manner.

We focus on replicating the solving of the Rubik’s cube
as a case study for human-like Al. By replicating the well-
known CFOP to solve a cube and developing reward func-
tions through IRL, we demonstrate the potential of human-
centered Al design.

Related Work

In the past, there have been many attempts to solve the
Rubik’s cube with algorithms or Al It has been solved
using deep reinforcement learning without human guid-
ance (Roshan et al. 2024). However, these solutions tend

to naturally prioritize efficiency over interpretability, pick-
ing moves that are completely unintuitive to human solvers.
Other works have explored incorporating domain-specific
heuristics into RL frameworks, allowing human-like solv-
ing to an extent. We build on this idea by creating distinct
RL agents to solve different phases of the CFOP solving
method, a technique that is familiar to human solvers.

IRL is the most common and useful tool to infer reward
functions from observed behavior, making it a natural choice
for tasks that require Al agents to both model human be-
havior and solve the problem effectively. In the context of
the Rubik’s cube, prior work has focused on learning op-
timal strategies and reward functions from human demon-
strations (Abbeel 2019). We build on this by developing a
custom dataset of over 10,000 human-produced solving se-
quences, allowing for tailored reward functions that incor-
porate human-like strategies and intuition into the solving
process.

Interpretability in aligning Al systems with human cogni-
tive processes has been underscored in many studies (Ope-
nAI 2019). It has been shown that interpretability is neces-
sary for trust and collaboration in such systems. Addition-
ally, in AlphaZero, hierarchical decision-making to break
strategies down into human-understandable steps was shown
to provide numerous benefits (Cheerla 2018). To emulate
such effects, we create a 3D visualization tool to display
a model of the cube to convey movements through visual
imagery rather than text. By adding to the interactive experi-
ence, we further increase intrepretability and trust in human-
Al systems.

Assisted Reinforcement Learning Approach
3D Movable Cube

A crucial component of our ARL framework was the cre-
ation of a 3D interactive Rubik’s cube model. Prior stud-
ies have shown that visualization is very useful in human-
centered Al, especially in tasks for which understanding ev-
ery step the model takes is essential. By presenting solutions
in a human-recognizable format and creating a visualization
for human cognition, this was an important step to take in
advancing the trust and interpretability of our system (Fig.

1.



Figure 1: 3D Interactive Cube

ARL Setup

We use a fairly standard reinforcement learning setup for
the representation of the cube. Each face of the cube is rep-
resented as a 3 x 3 grid of integers, for which each integer
corresponds to a color 1-6. Thus, the entire observation state
is a 6 x 3 x 3 tensor. To ensure compatibility and consis-
tency with standard RL algorithms, we flatten the state ten-
sor into a 1D vector of length 54. This encoding provides a
compact and computationally efficient representation of the
cube’s current configuration. To handle partial observabil-
ity during training, the environment supports encoding prior
states as part of the observation, forming a history of recent
states.

The action space is defined as the set of all possible moves
that can be applied to a particular observation state of the
cube. We opt to use the twelve standard human-recognizable
moves of “front”, "back”, “left”, “right”, “top”, “bottom”,
and their respective opposite moves. Thus, each action is en-
coded as an integer from 0-11 to ensure seamless integration
within existing RL frameworks.

A={F F B ,B L LR R, UU, DD}

We found that designing an optimal reward system was
the hardest part of this process. This is the primary reason we
opted to explore an inverse reinforcement learning approach
later on. However, we observed that of the systems we tried,
the proposed “Intermediate Basis” works the best.

Intermediate Basis

* Solved State Reward: A large positive reward (for ex-
ample Rsoveda = +100) is given when the cube reaches
the solved state (all faces uniform in color).

* Intermediate Reward: A smaller positive reward
Rintermediate = +1 is given for each action that reduces
the Manhattan distance (Chugani 2024) between the cur-
rent state and the solved state. The Manhattan distance

is computed based on the number of misplaced stickers
relative to the solved configuration.

* Penalty for Invalid Moves: If the agent attempts an
action that does not result in a valid state transition, a
penalty Rivaia = —5 is applied.

* Step Penalty: To encourage efficiency, a small negative
reward Ry, = —0.1 is applied at every time step.

Additionally, we ensure actions result in valid cube trans-
formations by verifying with a deterministic transition func-
tion. The environment terminates either when the cube is
solved or after a maximum of Ny, = 100 steps

Implementation Framework The cube environment was
developed in Python, using OpenAI’s Gym (Brockman et. al
2016) library to create a standardized reinforcement learning
interface. We opted for this library because Gym provides a
flexible framework to define action and observation spaces
while facilitating integration with popular RL algorithms.

For training, we utilized the stable-baselines3 library,
which has efficient implementations of many state-of-the-art
RL algorithms. After rigorous testing, we found that using
the Deep Q-Networks (DQN) (Raffin et. al 2021) provided
optimal results.

Stable Baselines’ (Mnih 2013) implementation of DQN
uses two neural networks—the policy network, for approxi-
mating the action value Q(s, a; ), and the target network, a
delayed copy of the policy network that helps mitigate feed-
back loops caused by rapid updates of Q-values.

DQNs utilize experience replay buffers, data structures
that store tuples (s, a,r, s, d), which represent the current
state, action taken, reward received, next state, and ’done”
flag respectively. Batches of experiences are sampled uni-
formly from this buffer to decorrelate consecutive transi-
tions, which improves sample efficiency. This is especially
important in this task because it helps break temporal corre-
lation. Since consecutive states are highly correlated, utiliz-
ing experience replay helps produce more diverse and less
biased data.

The DQN loss function aims to minimize temporal dif-
ference error (Tang et. al 2022), which measures differences
between predicted Q-values and the target Q-value. Because
solving the Rubik’s cube is a process with sequential actions,
the TD error is a good way to gauge how well agents’ current
actions align with future expected rewards. The full adjusted
loss function we used is shown below:

L(g) = E(S,a,r,s’)ND |:(’f’ + v maxgy Qlargﬂ(slv a/; 07) - Q(Sv a; 9))2:|

Another appealing feature was Stable Baselines” imple-
mentation of Double Q-Learning Enhancement, to address
overestimation bias in Q-value predictions. We found that
without using this, models would overestimate the value of
certain actions, which would lead to many cycles or repeats.

DQNs utilize an e-greedy for exploration, and we added
a linear decay schedule for ¢, to reduce exploration over
time. This helped with avoiding local optima, which was ex-
tremely common in a puzzle like the Rubik’s cube. In ad-
dition, the epsilon value decays as the agent learns, which
allows it to use its learned knowledge more and more.



1e+3

900

800

700

600

500

400

300

200

100

20k

40k 60k 80k

100k

120k 140k 160k 180k 200k

Figure 2: Cumulative Mean Episode Lengths for Different Policies with Hyperparameter Tuning for Solving the Full Cube

Training

We use a multi-layer perceptron architecture for training
(MLP Policy) (Song and Sun 2021). We employ hyperpa-
rameter tuning by using Optuna (Akiba et. al 2019), a pop-
ular optimization framework. The tuning was done on 50
trials, and for each trial, a model was trained for 50,000
timesteps. The performance metric we used was episode
lengths, which was evaluated over 20 episodes for each trial.
The table below shows the model hyperparameters that were
randomly sampled during the tuning process.

Table 1: Randomly Sampled Model Hyperparameters during
Tuning Process

Hyperparameter | Randomly Sampled | Optimal
Range Value
n_steps 2048 - 8192 6004
gamma 0.8 - 0.9999 0.85
learning_rate 0.00001 - 0.0001 0.00009
clip_range 0.1-04 0.22
gae_lambda 0.8-0.99 0.91

After obtaining the model with the best parameters, the
final PPO model was trained for 75,000 timesteps. We utilize
a custom training callback for checkpointing every 10,000
steps and preventing any potential overfitting.

Summary

These steps were repeated for each step of CFOP (the cross,
the first two layers, OLL, and PLL). In the end, we were
able to achieve a cumulative average of 64 moves to solve
the full Rubik’s cube from a random scramble (evaluated
100 times). Although this number pales in comparison to
top-end algorithms like Kociemba’s algorithm or even pro-
fessional Rubik’s cube solvers, it solves the cube in a very

basic and intuitive way. This helps users understand what
is happening and makes it an appropriate guide to help be-
ginners solve the cube. The training cycles for models of
different hyperparameters are shown (Fig. 2). The light blue
curve represents the model without any tuning, and the red
curve represents the model with full hyperparameter tuning.
The other curves are intermediate steps.

Inverse Reinforcement Learning Approach
Data Collection and Stratification

To model human problem-solving in the Rubik’s cube, we
manually collected a comprehensive dataset of over 10,000
human-produced solve sequences. We sourced the data from
three primary channels.

First, we took solved sequences from over 50 professional
”speedcubers”, with each contributing an average of 60 se-
quences. We obtained this data from official competition
records. On average, each sequence length was about 52
moves long.

Second, we took solved sequences from over 200 begin-
ner solvers, with each contributing an average of 25 se-
quences. We obtained this data from online forums, surveys,
and competition records. On average each sequence length
was about 82 moves long.

Last, we took solved sequences from 10 intermediate
solvers, with each contributing an average of 200 sequences.
We obtained this data from willing participants. On average,
each sequence length was about 68 moves long (Fig. 3).

The intention for this data stratification was not to get a
sample of the most efficient solves, but rather to get a di-
verse selection of all Rubik’s cube solvers. In this way, the
final cube solver would be understandable and intuitive to
solvers of all skill levels. We can thus demonstrate a suc-
cessful method of increasing interpretability and user trust.



Dataset Stratification

10,000
sequences

v

3,000 2,000 5,000
Professional Intermediate Beginner

ZNELTAN

48% under 52% under 28% under 72% under 13% under 87% under
50 moves 50 moves 50 moves 50 moves 50 moves 50 moves

Figure 3: Data Stratification Tree

Data Preprocessing

Each solving sequence was tokenized into a standard nota-
tion for every Rubik’s cube move. We then generated state-
action pairs where each state represented a cube configura-
tion and the action corresponded to a move applied to the
cube.

Because the Rubik’s cube has over 4.3 x 10? possible
configurations, the state space was very large. To combat
this issue, a state hashing feature was implemented to effi-
ciciently map cube configurations to unique identifiers. This
allowed us to do faster lookups and comparisons.

Simulation Environment Setup

We built a custom environment with OpenAI’s Gym to sim-
ulate cube dynamics. The observation space was encoded as
a flattened vector to represent all cube stickers. The action
space was defined as 12 discrete actions. We initially defined
the reward structure as sparse, (+1 for solving each stage of
CFOP). This would later be adjusted during the IRL training
stage.

Implementing Adversarial IRL

We opted to use adversarial inverse reinforcement learning
(AIRL 2019) because of its ability to generalize well in envi-
ronments with high-dimensional state spaces, such as those
in this task. Unlike other classical IRL algorithms. AIRL
uses GANSs to jointly learn a reward function and policy. An-
other bonus of AIRL is that it decouples the learned reward
function from the policy, making it more suited for transfer-
ability across tasks and environments.

We initialized an AIRL generator with a pre-trained PPO
policy trained on synthetic environments to stabilize early-
stage learning. The policy model was a neural network with
two hidden layers that used a ReLLU activation function.

We also created a neural network architecture for devel-
oping the discriminator (used to create the reward function).
This also had two hidden layers and used a sigmoid activa-
tion function. The Adam optimizer was also used to stabilize
learning rates.

During training, training alternated between generator
and discriminator, switching every 10 epochs. Adjusting the
number of discriminator updates per generator update also

dramatically altered the results. With hyperparameter tun-
ing, we found the optimal value for this was 3.

Because many of the libraries we used were newer, we
ran into more hurdles than when using the ARL approach.
We combated mode collapse in the generator by using a
diversity-promoting loss function to penalize repeated tra-
jectories. We also had to employ learning rate decay and use
entropy regularization to address potential insufficient ex-
ploration.

We also adjusted the following values with hyperparam-
eter tuning: generator learning rate, discriminator learning
rate, dropout rate, and entropy regularization coefficient.
This was the extracted learned reward function after train-
ing:

R(s,a) =log(D(s,a)) —log(1 — D(s,a))

where D(s, a) is the probability assigned by the discrim-
inator to the expert trajectories.

The final cumulative average number of moves to solve
the cube with IRL was 75 moves. Our model was not very
efficient in finding the moves, but solves the cube in a very
human-like way, making it a good guide for human begin-
ners.

Conclusions: Bridging Human-AlI
Collaboration in Rubik’s Cube Solving

In our work, we explored the intersection of Al and hu-
man cognition through the development of two cube-solving
agents that integrate RL techniques, human behavioral mod-
eling, and principles of interpretability. Our research not
only makes significant findings in Al-driven puzzle solving,
but demonstrates the importance of making Al systems more
understandable to human users.

The development of the custom 3D cube model was cru-
cial to the leisure of human users. We wanted to provide
a interface that maximizes human connection to ensure the
greatest engagement and trust.

The incorporation of assisted reinforcement learning
serves to strengthen human-Al interaction by learning from
both Al training and traditional human techniques. This hy-
brid approach balances human intuition and ML, enabling
the agent to learn to solve the cube in a human-like manner.

To further understand the reward structure of human
users, we pivoted to inverse reinforcement learning, in which
we allowed the agent to find a reward function for itself. In
particular, using adversarial IRL helped the model differen-
tiate between expert and non-expert moves, adding to the il-
lusion of human decision-making. The final learned reward
function provides insights into the motivations behind hu-
man actions in solving the cube, which could be explored
meticulously in future work.

In conclusion, our work contributes to the goal of creating
interpretable Al systems. Through techniques like IRL and
ARL, we move closer to creating Al systems that can truly
empower human users and enhance their problem-solving
capabilities.



References

M. M. Roshan, S. Rakesh, T. S. Gnana Guru, B. Rohith, and
J. Hemalatha, “Towards efficiently solving the Rubik’s cube
with deep reinforcement learning and recursion,” E3S Web
of Conferences, vol. 491, p. 01009, 2024. doi: https://doi.
org/10.1051/e3sconf/202449101009.

P. Abbeel, “Inverse Reinforcement Learning.” Accessed:
Nov. 26, 2019. [Online]. Available: https://people.eecs.
berkeley.edu/~pabbeel/cs287fal2/slides/inverseRL.pdf

“Solving Rubik’s Cube with a robot hand,” Openai.com,
2019. https://openai.com/index/solving-rubiks-cube/

N. Cheerla, “AlphaZero Explained,” On AI, Jan. 01,
2018. https://mikcheerla.github.io/deeplearningschool/2018/
01/01/AlphaZero-Explained/

V. Chugani, “What is Manhattan Distance?,” Data-
camp.com, Jul. 17, 2024. https://www.datacamp.com/
tutorial/manhattan-distance

G. Brockman et al., “OpenAl Gym,” arXiv.org, 2016. https:
/larxiv.org/abs/1606.01540

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernes-
tus, and N. Dormann, “Stable-Baselines3: Reliable Rein-
forcement Learning Implementations,” Journal of Machine
Learning Research, vol. 22, no. 268, pp. 1-8, 2021, Avail-
able: https://jmlr.org/papers/v22/20-1364.html

V. Mnih et al., “Playing Atari with Deep Reinforcement
Learning,” arXiv.org, 2013. https://arxiv.org/abs/1312.5602

Y. Tang, M. Rowland, R. Munos, B. A. Pires, W. Dab-
ney, and M. G. Bellemare, “The Nature of Temporal
Difference Errors in Multi-step Distributional Reinforce-
ment Learning,” arXiv.org, 2022. https://arxiv.org/abs/2207.
07570(accessedDec.10,2024).

Y. Song and W. Sun, “PC-MLP: Model-based Rein-
forcement Learning with Policy Cover Guided Ex-
ploration,” arXiv.org, 2021. https://arxiv.org/abs/2107.
07410(accessedDec.10,2024).

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
“Optuna: A Next-generation Hyperparameter Optimization
Framework,” arXiv:1907.10902 [cs, stat], Jul. 2019, Avail-
able: https://arxiv.org/abs/1907.10902

“Adversarial Inverse Reinforcement Learning (AIRL) - imi-
tation,” Readthedocs.io, 2019. https://imitation.readthedocs.
io/en/latest/algorithms/airl.html(accessedDec.10,2024).



