
TBoost: Gradient Boosting Temporal Graph Neural
Networks

Anonymous Author(s)
Affiliation
Address
email

1 Supplementary Material1

1.1 Algorithm2

Algorithm 1: TBoost Training Loop
1 Function Training_Loop(G,xxxu,xxxv,xxxu,v(t), y(t)):
2 xxxgbdt

u,v (t) = [xxxu,xxxv,xxxu,v(t), TE(t)]

3 ygbdt(t) = y(t)
4 for iter i=1 to N do
5 // Train k decision trees

6 fi
k←− argminfi L

gbdt(fi(xxx
gbdt
u,v (t)), y(t))

7 f = f + fi;
8 // Prepare GNN input features
9 x̄̄x̄xu,v(t) = [xxxgbdt

u,v (t), ŷgbdtu,v (t)]
10 xxxgnn

u,v (t) = [xxxu,xxxv, x̄̄x̄xu,v(t)]
11 // Train l epochs of GNN
12 θ,−η ∂Lgnn

∂xxxgnn
u,v (t)

←− Equation 4
13 // update the target for the next iteration of GBDT
14 ygbdt(t) = −η ∂Lgnn

∂xxxgnn
u,v (t)

15 end for
16 Output: GBDT f , GNN gθ

1.2 Baselines3

We evaluate TBoost against the following baselines:4

• GBDT Baselines: CatBoost[9] and XGBoost[1] are commonly used gradient boosting5

algorithms. They differ in handling categorical variables, missing values, and overfitting6

prevention. The models are trained on the concatenated node and edge features of datasets.7

We also implement another version of GBDTs where the model is trained on concatenated8

temporal encoding features as given in Equation 3. These models are called XGBoost+ and9

CatBoost+ respectively.10

• Temporal GNN Baselines: In our study, we utilized several state-of-the-art temporal graph11

neural network (GNN) models, including JODIE [4], DyRep [11], and TGAT [12], which are12

specifically designed for learning on dynamic graphs. JODIE [4] is a neural network model13

that learns bipartite embeddings for both nodes and edges in a dynamic graph by modeling14

Submitted to Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans. Do not distribute.



the interactions between nodes as a sequence of edge snapshots over time. DyRep [11],15

on the other hand, uses temporal point processes to model the evolution of the graph as a16

sequence of events and predict user-item interactions in temporal graphs where the structure17

of the graph changes over time. TGAT [12] extends the basic graph attention network (GAT)18

to incorporate temporal information, allowing it to capture the dynamics of the graph over19

time. TGN [10] combines RNN-based temporal modeling with graph attention convolution.20

It captures temporal information using an RNN and incorporates self-attention mechanisms21

to model spatial and temporal dynamics jointly. To evaluate the baselines, we used public22

PyTorch implementation of the repositories released by the authors.23

1.3 Datasets24

Table 1: Dataset statistics
Dataset Vertices Edges Timestamps Classes

Wikipedia 9,227 1,57,474 1,52,757 2
Reddit 10,984 6,72,447 6,69,065 2
MOOC 7145 411,749 345,600 2
Fashion 437 3,176 344 5
Luxury 5,400 34,278 2,510 5
Office 129,466 800,357 5,348 5

Payments 367,221 1,063,398 544,724 2
BankSim 4,162 594,643 180 2

We consider real-world datasets Wikipedia [4], Reddit [4] and MOOC [4] along with simulated25

financial datasets Payments [2], BankSim [5] for the temporal node classification task and Amazon26

[7] for the temporal edge classification task. The dataset statistics are shown in Table 1:27

• Wikipedia [4] The dataset consists of one month’s worth of Wikipedia page modifications,28

focusing on the top 1,000 pages with the most revisions and 8,227 editors with at least five29

edits as users. User modifications are transformed into 172-dimensional LIWC [8] feature30

vectors.31

• Reddit [4] This dataset is a temporal graph of active users and their posts under subreddits32

as 11,000 nodes, 700,000 temporal edges, and dynamic labels suggesting whether a user33

has been banned from posting. Edge feature vectors are created from the user post in the34

temporal setting. Here, we are trying to predict whether a user has been banned to post.35

• MOOC [4]: This public dataset consists of actions, e.g., viewing a video, submitting an36

answer, etc., done by students on a MOOC online course. This dataset consists of 7,04737

users interacting with 98 items (videos, answers, etc.) resulting in over 411,749 interactions.38

The task is to predict one of the 4,066 drop-out events.39

• Payments Data1 [2] The data consists of subject-centric transaction records aimed at de-40

tecting fraudulent activities, encompassing both normal and abnormal transactions with41

predefined probabilities. It was generated using an AI planning execution simulator, translat-42

ing output planning traces into a tabular format, with parameters like the number of clients,43

time duration, and fraud probabilities configurable.44

• BankSim [5] BankSim is an agent-based simulator generating synthetic data for fraud45

detection research, based on Spanish bank transaction data. It models merchant-customer46

relationships and aims to represent normal payments and known fraud patterns.47

• Amazon [Fashion, Luxury and Office] [7] The Amazon review dataset is a vast collection48

of product reviews from Amazon.com, comprising reviews with text, product IDs, reviewer49

IDs, ratings, and timestamps. Word2Vec [6] embeddings of the reviews are utilized as50

features, while user ratings serve as the labels for analysis.51

1This publication includes or references synthetic data provided by J.P. Morgan.

2



1.4 Model Training52

Tboost is an end-to-end framework that is trained in an alternate fashion using Adam [3] optimizer.53

TBoost is capable of accommodating any temporal GNN model along with GBDT. We experimented54

with CatBoost as a GBDT module. In temporal GNN, either TGAT or TGN is employed as these55

models perform well over other baselines. Based on our experiments with TBoost, we found that56

a single layer of GNN with two attention heads is sufficient to model the data for attention-based57

models. We used a learning rate of 1e−3 for Wikipedia and Reddit and a learning rate of 1e−558

for other datasets. The neighborhood size was set to 10 for all models, with a batch size of 3059

for Wikipedia, 200 for Reddit, and 100 for the other datasets. For tree-based models, we used a60

learning rate of 1e−3, a maximum depth of 7, and a maximum of 1000 iterations. We also employed61

early stopping with a patience of 5. Trained models are evaluated for node classification and edge62

classification tasks. For the node-classification task, due to the label imbalance in the datasets, we63

employ the area under the ROC curve (AUC) as done in prior arts [12, 10]. In the multiclass edge64

classification task, the number of classes is 5 for all the datasets in our experimentation. We use the65

macro-F1 score as the evaluation metric for these tasks. We carry out each experiment 10 times and66

report the mean numbers in Table 2 and Table 3 in the main material.67

1.5 Ablation study68

Table 2: Impact of time-encoding on GBDT for the temporal node classification task. In TE1 temporal
feature is not used, in TE2 absolute value of timestamp is used, in TE3 Bochner’s kernel is used and
in TE4 inter arrival time is used.

Model CatBoost XGBoost
TE1 TE2 TE3 TE4 TE1 TE2 TE3 TE4

Reddit 56.62 56.23 54.30 56.59 53.34 57.30 51.45 54.78
Wiki 59.30 63.84 62.54 65.75 55.50 64.74 59.37 64.91

MOOC 59.73 60.11 60.26 60.00 59.82 60.10 57.75 59.81
Payments 52.70 50.10 52.50 56.10 52.20 53.07 51.11 54.60
BankSim 52.70 51.47 51.30 52.90 52.20 50.30 51.06 52.25
Average 56.21 56.35 56.18 58.27 54.61 56.70 54.10 57.27

Effect of temporal encoding: GBDT models, while widely used for various supervised learning69

tasks, are not inherently designed to handle time-series data. There is no built-in mechanism within70

the algorithm to handle temporal aspects. Several approaches have been explored in the literature71

to encode time information in GBDTs. These methods include incorporating time as a feature72

(TE2) in Table 2, adopting functional encoding inspired by Bochner’s Kernel (TE3), and utilizing73

inter-event time (TE4), among others(Refer Table 2). Due to the discrete nature of GBDTs, we74

used a non-trainable version of the temporal kernels. We report the ROC-AUC in Table 2 for the75

node classification task averaged over 10 runs. We conducted experiments using two extensively76

used GBDT algorithms, CatBoost [9] and XGBoost [1]. Our results showed consistent performance77

improvements by incorporating time information, but the candidate for best encoding changed across78

different datasets. On average, Bochner’s encoding did not yield substantial improvements in GBDTs,79

performing similarly to models without time information. On the other hand, adding time as a feature80

had better results. Further, the best results were obtained with inter-event time.81

Effect of pretraining: In the temporal GNN literature, one of the common ways to benchmark82

node classification is by pre-training the GNN with an unsupervised objective like contrastive link83

prediction. For downstream tasks, the GNNs are initialized with the pre-trained weights and are84

kept non-trainable. Only the task-specific head is trained in a supervised fashion. In this section, we85

tried to understand the impact of pretraining and weight fixing in TBoost for the node classification86

task. The results are shown in the Table 3. In the first setting (TBoost1), we train Tboost without87

using pre-trained weights. In the second setting (TBoost2), we initialize the GNN with pre-trained88

weights that are eventually frozen during training. Only the classifier layer is trained through89

backpropagation. In the third setting (TBoost3), we initialize the GNN with pre-trained weights90

but don’t freeze them. We keep the entire framework trainable. Table 3 shows that pre-training91

helps boost performance in most cases. We have used the same in our implementation of TBoost.92

3



Table 3: Effect of pretraining on link classification. TBoost1 is without pre-trained GNN model.
TBoost2 is initialized with pre-trained TGAT but the GNN weights are frozen. In TBoost3, the
pre-trained weights are kept trainable.

Model Reddit Wikipedia MOOC Payments BankSim
TBoost1 65.80 85.28 51.31 56.31 77.65
TBoost2 66.03 87.50 59.32 57.37 78.10
TBoost3 66.09 88.40 58.40 62.10 78.15

Keeping the GNN parameters trainable gives a further boost compared to the frozen parameter setting.93

However, for a fair comparison with baselines in Table 3, we report only the fixed weighted results.94

4


	Supplementary Material
	Algorithm
	Baselines
	Datasets
	Model Training
	Ablation study


