
Appendices
In Appendix A, we provide proofs of Proposition 1, Proposition 2, and Theorem 1 in the main text.
In Appendix B, we provide more details of the Bayesian variable selection (BVS) and stochastic
block model (SBM) in Section 4 as well as a detailed simulation study on the spatial clustering
model (SCM). In addition, we study the performance of multiple-try Metropolis for the case with
multimodal target distributions, following the BVS simulation setting of [54]. In Appendix C,
we present details of two real data application analyses. In Appendix D, we add a more detailed
discussion on parallelization, state space of interest, and the behavior of MTM on continuous state
space. Finally, we provide additional tables on the real data analysis results in Appendix E.

A A path method for proving the mixing time bound for multiple-try
Metropolis algorithm

A.1 Proof of Proposition 1

This section aims to provide a summary of the existing results on proving mixing time bound via
path methods. We refer readers to [13, 25, 42, 43] for more details. Let P(x, y) denote the transition
probability for an irreducible, aperiodic chain on the finite state space X . Assume P satisfies the
detailed balance condition with respect to the probability distribution ⇡, that is, ⇡(x)P(x, y) =

⇡(y)P(y, x) for x, y 2 X , which leads to ⇡ being stationary for P [25, Proposition 1.20]. P may be
thought as a |X |⇥ |X | stochastic matrix, which means P(x, y) � 0 and

P
z2X P(x, z) = 1 for all

x, y 2 X , and ⇡ can be regarded as a |X |-dimensional stochastic vector since
P

x2X ⇡(x) = 1. By
the spectral decomposition, we can sort the eigenvalues of P as

1 = �0 > �1 � · · · � �|X |�1 > �1,

due to P being stochastic, irreducible and aperiodic [25, Lemma 12.1]. Let �max =

max{�1, |�|X |�1|}. We say Gap(P) = 1� �max is the spectral gap of the chain P. Intuitively, if
the spectral gap is close to zero, the chain requires a large number of steps to be close to the stationary
distribution in total variation distance. The following lemma draws the connection between the
spectral gap and mixing time defined in Section 2.3.
Lemma 1. Let tmix(✏) denote ✏-mixing time defined in Section 2.3, then

tmix(✏)  2{Gap(P)}�1

"
log(1/✏) + log

⇢
min
x2X

⇡(x)

��1
#
.

Proof. We consider Plazy = (I+P)/2 so that all eigenvalues of Plazy are positive and the spectral
gap becomes Gap(Plazy) = 1� �1. By (1.10) of [13, Proposition 3],

4max
x2X
kPt

lazy
(x, ·)� ⇡(·)k2

TV
 max

x2X
{(1� ⇡(x))/⇡(x)} exp[�2tGap(Plazy)],

for t 2 N. We set maxx2X {(1� ⇡(x))/⇡(x)} exp[�2tGap(Plazy)]  4✏2, and solving the inequal-
ity with t gives

t � {Gap(Plazy)}�1

✓
1

2
max
x2X

log(⇡(x)�1 � 1)� log 2 + log(1/✏)

◆
.

Since

{Gap(Plazy)}�1

✓
1

2
max
x2X

log(⇡(x)�1 � 1)� log 2 + log(1/✏)

◆

 {Gap(Plazy)}�1

"
log(1/✏) + log

⇢
min
x2X

⇡(x)

��1
#

 2{Gap(P)}�1

"
log(1/✏) + log

⇢
min
x2X

⇡(x)

��1
#
,

15

it follows that to achieve “✏-mixing”, it suffices to choose

t � 2{Gap(P)}�1

"
log(1/✏) + log

⇢
min
x2X

⇡(x)

��1
#
.

This concludes the proof.

Our next interest is to find the lower bound of the spectral gap, which leads to the upper bound
of the mixing time. It is often the case that the functional analysis tool is useful to establish such
bound. Let RX

= {f : X ! R} and `2(⇡) ⇢ RX be the vector space equipped with an inner
product h·, ·i⇡, which is defined by hf1, f2i⇡ =

P
x2X f1(x)f2(x)⇡(x) for all f1, f2 2 `2(⇡). We

can regard the transition probability P as a function operator in `2(⇡), which can be defined as
Pf(x) =

P
y2X P(x, y)f(y). We define the Dirichlet form associated to the pair (P,⇡) by

E(f1, f2) = h(I�P)f1, f2i⇡ for f1, f2 2 `2(⇡).
By the reversibility of P, we can easily check that E(f) = E(f, f) =

1

2

P
x,y2X [f(x) �

f(y)]2⇡(x)P(x, y). The spectral gap can be defined using the Dirichlet form as follows [25, Remark
13.8]:

Gap(P) = min
f2`2(⇡)

Var⇡(f) 6=0

E(f)
Var⇡(f)

,

where Var⇡(f) =
P

x2X (f(x)� E⇡f)2⇡(x). This definition also has a link to the famous Poincaré
inequality [4], that is, Var⇡(f)  CE(f) for all f 2 `2(⇡), because the smallest constant C is equal
to {Gap(P)}�1. The next lemma uses Poincaré inequality and an arbitrary path ensemble � defined
in the main text.
Lemma 2 (Corollory 6, [43]). For an arbitrary path ensemble �,

Gap(P) � 1

⇢(�)l(�)
.

where `(�) = maxx,y |�(x, y)| and

⇢(�) = max
(u,v)2E

1

⇡(u)P(u, v)

X

x,y:�(x,y)3(u,v)

⇡(x)⇡(y)

Proof. We follow the proof given in [42, Theorem 3.2.1]. For each (x, y) 2 X ⇥ X and for any
function f 2 RX , we can write f(y)�f(x) =

P
(u,v)2�(x,y)

f(v)�f(u). By using Cauchy-Schwarz,
multiplying ⇡(x)⇡(y)/2, and summing over x and y,

|f(y)� f(x)|2  |�(x, y)|
X

(u,v)2�(x,y)

|f(v)� f(u)|2

=) 1

2

X

x,y

|f(y)� f(x)|2⇡(x)⇡(y)

| {z }
=Var⇡(f)

 1

2

X

x,y

|�(x, y)|
X

(u,v)2�(x,y)

|f(v)� f(u)|2⇡(x)⇡(y),

where the right-hand side becomes

1

2

X

(u,v)2E

8
<

:
1

⇡(u)P(u, v)

X

x,y:�(x,y)3(u,v)

|�(x, y)|⇡(x)⇡(y)

9
=

; |f(v)� f(u)|2⇡(u)P(u, v)

 max
(u,v)2E

8
<

:
1

⇡(u)P(u, v)

X

x,y:�(x,y)3(u,v)

⇡(x)⇡(y)

9
=

;
| {z }

⇢(�)

✓
max
x,y

|�(x, y)|
◆

| {z }
`(�)

0

@1

2

X

(u,v)2E

|f(v)� f(u)|2⇡(u)P(u, v)

1

A

| {z }
E(f)

.

This satisfies the Poincaré inequality, which yields the conclusion.

By combining the results of Lemma 1 and Lemma 2, we get the conclusion of Proposition 1.

16

A.2 Proof of Proposition 2

Proof. Recall that the form of the weight function suggested in [27] is given by
w(y |x) = ⇡(y)KRW(y, x)�(y, x),

where �(x, y) = �(y, x) is a non-negative symmetric function in x and y, and satisfies �(x, y) > 0

whenever KRW(x, y) > 0. If we put

�(x, y) =
1

⇡(y)KRW(y, x)
h

✓
⇡(y)KRW(y, x)

⇡(x)KRW(x, y)

◆
,

it is easy to check that the conditions are met.

A.3 Proof of Theorem 1

In this section, we prove our main result by using Proposition 1. The main step of the proof is
identifying the path ensemble �

⇤ that makes the mixing time bound tight. To this end, we need
to choose exactly one path �⇤(x, y) for each tuple (x, y) 2 X ⇥ X . (Note that x and y cannot be
identical by the definition of path). From the intuition described in Section 2.3, an edge (u, v) has a
large capacity if ⇡(u) and ⇡(v) are large. For example, if an edge contains the highest posterior state
x⇤, we can let the edge be traversed by a large number of paths. Given an edge with a small capacity,
however, we need to ensure that the edge overlies with a small number of paths. Importantly, we do
not let a path �⇤(x, y) pass through an edge with a small capacity if both ⇡(x) and ⇡(y) are large,
so that the edge can maintain a small unit flow size. We may envision the topography of the path
ensemble; x⇤ becomes the hub, while states with low posterior probability are located on the outskirt.

We construct the path ensemble �
⇤ according to the description above. The construction of �⇤

is similar to that of [47] and [52]. With a neighborhood relation N that satisfies the conditions in
Theorem 1, g : X ! X ,

g(x) =

⇢
argmaxx02N (x) ⇡(x

0
)
1 if x 6= x⇤,

x⇤ otherwise.
(7)

By Condition (i) in Theorem 1, there exists m 2 N such that gm(x) = (

m timesz }| {
g � · · · � g)(x) = x⇤ for

any x 2 X and x⇤ is the only fixed point of g. (x⇤ can be thought as an attractor in dynamic
systems.) For all x, y 2 X with x 6= y, we have three cases; (i) gm(x) = y for some m 2 N \ {0},
(ii) gm(y) = x for some m 2 N \ {0}, or (iii) neither (i) nor (ii). If (x, y) 2 X ⇥ X belongs
to (i), we define �⇤(x, y) = (x, g(x), . . . , gm(x) = y). Similarly, if (x, y) 2 X ⇥ X belongs
to (ii), let �⇤(x, y) = (x = gm(y), . . . , g(y), y). For the case (iii), if m1,m2 2 N \ {0} are
the minimum numbers that satisfy gm1(x) = x⇤, gm2(y) = x⇤, respectively, we let �⇤(x, y) =

(x, g(x), . . . , gm1(x) = x⇤
= gm2(y), . . . , g(y), y). This yields the path ensemble �

⇤. We provide
a toy example on how to construct g and any path �⇤(x, y) for each tuple (x, y) 2 X ⇥ X associated
with g in Appendix A.5.

Next, we make a bound for the congestion parameter ⇢(�⇤
). We let ⇤(u) = {x 2 X : u =

gk(x), k 2 N} denote the ancestor set of u with respect to g. If (u, v) 2 �⇤(x, y) for some x, y 2 X ,
we can easily verify that x 2 ⇤(u) by the construction of �⇤. This implies {(x, y) 2 X ⇥ X :

(u, v) 2 �⇤(x, y)} ✓ ⇤(u)⇥ X . It follows that

⇢(�⇤
)  max

(u,v):v=g(u)

1

⇡(u)P(u, v)

X

(x,y)2⇤(u)⇥X

⇡(x)⇡(y)

= max
(u,v):v=g(u)

1

⇡(u)P(u, v)

0

@
X

x2⇤(u)

⇡(x)

1

A

0

@
X

y2X
⇡(y)

1

A

= max
(u,v):v=g(u)

⇡(⇤(u))

⇡(u)P(u, v)

 max
(u,v):v=g(u)

1

(1� p�(t2�t4))P(u, v)
.

1If multiple states tie, we randomly pick one of them.

17

The last inequality holds by the following. Let g�k
(u) = {x 2 X : gk(x) = u, gk�1

(x) 6= u} for
k 2 N, then ⇤(u) =]k2Ng�k

(u). By Condition (ii) in Theorem 1, we have |g�k
(u)|  pkt4 which

yields,
⇡(⇤(u))

⇡(u)
=

X

k2N

⇡(g�k
(u))

⇡(u)

X

k2N
p�k(t2�t4) =

1

1� p�(t2�t4)
,

where we use Condition (i) and the definition of g, and t2 > t4 in Theorem 1.

Finally, we show that P(x, g(x)) � C 0 N

pt4
for x 6= x⇤ and for some universal constant C 0 > 0.

Recall that (see also [27, Theorem 1])

P(x, g(x)) = N
X

y1,...,yN�1

X

x
?
1 ,...,x

?
N�1

w(g(x) |x)
w(g(x) |x) +

P
N�1

j=1
w(yj |x)

min

(
1,

w(g(x) |x) +
P

N�1

j=1
w(yj |x)

w(x | g(x)) +
P

N�1

j=1
w(x?

j
| g(x))

)
⇥

KRW(x, g(x))KRW(x, y1) · · ·KRW(x, yN�1)KRW(g(x), x?

1
) · · ·KRW(g(x), x?

N�1
)

�

0

@N
X

y1,...,yN�1

w(g(x) |x)
w(g(x) |x) +

P
N�1

j=1
w(yj |x)

KRW(x, g(x))KRW(x, y1) · · ·KRW(x, yN�1)

1

A⇥

0

@
X

x
?
1 ,...,x

?
N�1

min

(
1,

w(g(x) |x)
w(x | g(x)) +

P
N�1

j=1
w(x?

j
| g(x))

)
KRW(g(x), x?

1
) · · ·KRW(g(x), x?

N�1
)

1

A ,

and we denote the first and the second terms of the right-hand side by

K(x, g(x)) = N
X

y1,...,yN�1

w(g(x) |x)
w(g(x) |x) +

P
N�1

j=1
w(yj |x)

KRW(x, g(x))KRW(x, y1) · · ·KRW(x, yN�1),

(8)

⌘(x, g(x)) =
X

x
?
1 ,...,x

?
N�1

min

(
1,

w(g(x) |x)
w(x | g(x)) +

P
N�1

j=1
w(x?

j
| g(x))

)
KRW(g(x), x?

1
) · · ·KRW(g(x), x?

N�1
).

(9)
Hence, we have P(x, g(x)) � K(x, g(x))⌘(x, g(x)). We remark that the formulation of K(x, g(x))
in (8) is based on the exchangeability, where the N -th trial state yN = g(x) is assumed to be
selected as a proposal state and its probability is multiplied by N . However, we will not utilize such
exchangeability to calculate a lower bound of K(x, g(x)). Instead, we define an event A that selects
g(x) as the proposal from Step 1 and Step 2 in Algorithm 1, so that P(A) = K(x, g(x)). We aim to
lower bound the P(A) by using the law of total probability. To this end, we introduce the event F for
Step 1 in Algorithm 1 that we include the state g(x) at least once among the N trials while we don’t
sample any “high” posterior states of the neighborhood of x for the rest of trials, i.e. they do not
belong to the set S(x). Using conditional probability rule, the probability of the event F is equal to

P(F) =

✓
|N (x)|� |S(x)|+ 1

|N (x)|

◆N

1�

✓
|N (x)|� |S(x)|

|N (x)|� |S(x)|+ 1

◆N
!
, (10)

where we take the probability over the uniform samples in Step 1 in Algorithm 1. Using the inequality
an � bn = (a� b)(an�1

+ an�2b+ · · ·+ bn�1
) � (a� b)nbn�1 for any a � b � 0, we find that

the lower bound of P(F) can be obtained by

P(F) =

 ✓
1� |S(x)|� 1

|N (x)|

◆N

�
✓
1� |S(x)|

|N (x)|

◆N
!

� N

|N (x)|

✓
1� |S(x)|

|N (x)|

◆N�1

� N

pt4

✓
1� (N � 1)

s0
pt3

◆

� N

pt4
(1 + o(1)),

18

where Condition (ii) and Bernoulli’s inequality are used in the second inequality, and Condition (iii)
is used in the last inequality. We further define Fk as the event F with k number of g(x) among N
trials. (Note that since we sample trials with replacement in Step 1 of Algorithm 1, we may sample
g(x) multiple times.) Observe that F =]N

k=1
Fk. Given the event Fk, the probability to select g(x)

in (2) of Algorithm 1 is upper bounded by

P(A | Fk) =
kw(g(x) |x)

kw(g(x) |x) +
P

N�k

i=1
w(yj |x)

=

(
1 + k�1

N�kX

i=1

w(yj |x)
w(g(x) |x)

)�1

(?)

�
⇢
1 +N

h(pt1+t4�t3)

h(pt2+t3�t4)

��1

= 1 + o(1).

To see (?), we have used the fact that h is a non-decreasing function, Condition (iii), and we have

⇡(yj)

⇡(x)
· KRW(yj , x)

KRW(x, yj)
 pt1pt4�t3 ,

⇡(g(x))

⇡(x)
· KRW(g(x), x)

KRW(x, g(x))
� pt2pt3�t4 ,

from Condition (i) and (ii). Note that the right-hand side of the inequality (?) does not depend on k.
Using the law of total probability, we yield the lower bound of P(A) = K(x, g(x)) by combining
the previous results:

K(x, g(x)) = P(A|F)P(F) + P(A|F c
)P(F c

) � P(A|F)P(F)

=

NX

k=1

P(A|Fk)P(Fk) �
NX

k=1

(1 + o(1))P(Fk)

= (1 + o(1))P(F) � N

pt4
(1 + o(1)), (11)

Similarly, we can calculate the lower bound of ⌘(x, g(x)). We consider the event G that we don’t
select any “high” posterior states of the neighborhood of g(x) for N � 1 trials, that is, any of them
are not in the set S(g(x)). A simple calculation yields

P(G) �
✓
|N (g(x))|� s0

|N (g(x))|

◆N�1

.

Under the event G, on the other hand,

w(g(x) |x)
w(x | g(x)) +

P
N�1

j=1
w(x?

j
| g(x))

=

0

@w(x | g(x))
w(g(x) |x) +

N�1X

j=1

w(x?

j
| g(x))

w(g(x) |x)

1

A
�1

=

0

@ ⇡(x)KRW(x, g(x))

⇡(g(x))KRW(g(x), x)
+

N�1X

j=1

w(x?

j
| g(x))

w(g(x) |x)

1

A
�1

�
✓
p�t2�t3+t4 + (N � 1)

h(pt1�t3+t4)

h(pt2+t3�t4)

◆�1

,

where the second equality is due to the property of the balancing function h(u) = uh(1/u) and the
last inequality follows from a similar argument as before using Conditions (i), (ii) and

⇡(x?

j
)

⇡(g(x))
·
KRW(x?

j
, g(x))

KRW(g(x), x?

j
)
 pt1pt4�t3 ,

19

by non-decreasing h. Then for x 6= x⇤, by Conditions (ii), (iii) and we have

⌘(x, g(x)) � min

(
1,

✓
p�t2�t3+t4 + (N � 1)

h(pt1�t3+t4)

h(pt2+t3�t4)

◆�1
)✓

|N (g(x))|� s0
|N (g(x))|

◆N�1

� (1 + o(1))(1� s0/p
t3)

N�1

� 1� Ns0
pt3

+ o(1)

= 1 + o(1). (12)

Combining the lower bounds (11) and (12) leads to P(x, g(x)) � C 0 N

pt4
, which concludes the proof

of the theorem.

A.4 An example on a different weight function.

The example below shows an undesirable behavior of the MTM algorithm if we use a weight function
which is not in the class of (4). Here an undesirable behavior means that the acceptance probability is
close to zero even when ⇡(xprop)� ⇡(xcurr), where we denote xcurr, xprop as the current state and
the proposed state from (2) in Algorithm 1, respectively.
Example 1. We consider the weight function w(y |x) = ⇡(y). For the sake of simplicity, let
|N (x)| = pt3 and for x0 2 N (x),

⇡(x0
)

⇡(x)
=

⇢
pt2 , for x0 2 S(x),
pt1/2, for x0 62 S(x),

for all x 6= x⇤. Let xj , x?

j
be uniform samples from N (xcurr) and N (xprop), respectively for

j 2 [N � 1]. Assume xprop 2 S(xcurr) to reflect ⇡(xprop)� ⇡(xcurr). Although the conditions on
Theorem 1 are met (except for those related to a balancing function h), the acceptance probability
from xcurr to xprop is upper bounded as

↵(xcurr, xprop) = min

(
1,

P
N�1

i=1
⇡(xi) + ⇡(xprop)P

N�1

i=1
⇡(x?

i
) + ⇡(xcurr)

)

 Npt2⇡(xcurr)

(1 + (N � 1)pt2+t1/2)⇡(xcurr)

 2

pt1/2
= o(1).

Notice that the acceptance probability ↵(xcurr, xprop) = 1 in the MH algorithm.

20

A.5 A toy example on path construction.

We provide a simple example on how to construct the canonical path ensemble �
⇤ described in A.3.

Define X = {0, 1}3 as our state space and let x⇤
= (1, 1, 0) be the mode of the distribution on X .

Let the target distribution ⇡(x) / exp(�dH(x, x⇤
)), where dH is a Hamming distance. We specify

a neighborhood of any x 2 X as N (x) = {y 2 X : dH(y, x) = 1}, where dH is a Hamming
distance. In the left panel of Figure 5, neighboring states are linked to black undirected edges. We
follow the rule described in (7) to define a transition function g : X ! X and black directed edges
indicate the defined moves by a function g. The height of each bar indicates ⇡(x) associated with the
corresponding state x. In the right panel of Figure 5, we provide three examples to illustrate the three
possible cases to construct a path from the defined transition g, described in A.3.

• The red directed edges indicate a path from (0, 0, 1) to (1, 0, 0), which corresponds to the
case (i), since (1, 0, 0) = g2((0, 0, 1)),

• The green directed edge indicates a path from (1, 1, 0) to (0, 1, 0), which corresponds to the
case (ii), since (1, 1, 0) = g((0, 1, 0)),

• The blue directed edges indicate a path from (0, 0, 1) to (1, 1, 1), which corresponds to the
case (iii).

Figure 5: A toy example on path construction. Black undirected edges connect neighboring states
and the target distribution ⇡ is represented as the heights of the cylinders. (Left) Black directed edges
indicate the defined moves by a function g. (Right) The colored paths exemplify the three possible
cases of path construction.

21

B Details of simulation studies

The scope of this paper is to theoretically study the mixing time for the family of MTM algorithms,
and hence we mainly focus on experiments to empirically verify our theoretical insights, that the
MTM mixing time is smaller by a factor of the number of trials N and that locally balanced weight
functions tend to perform better under suitable assumptions. Nevertheless, in some experiments, we
compare the MTM algorithm with the locally balanced MH algorithm (denoted as LBMH) [48], as it
has been reported to outperform the other state-of-the-art methods. Before describing the details of
simulation studies, here we briefly describe the locally balanced MH algorithm.

Specification of LBMH requires balancing function h and uninformed symmetric distribution
Ksym(x, ·) supported on N (x). LBMH chooses a proposal state y from a pointwise informed
proposal distribution

Qh(x, y) = (Zh(x))
�1h (⇡(y)/⇡(x))Ksym(x, y), (13)

where Zh(x) =
P

z2N (x)
h (⇡(z)/⇡(x))Ksym(x, z) is a normalizing constant. Then, y is accepted

with probability ↵ = min{1, ⇡(y)Qh(y,x)

⇡(x)Qh(x,y)
} = min{1, Zh(x)

Zh(y)
}, by defintion of balancing function

h(u) = uh(1/u) and symmetry of Ksym. Unlike MTM where a subset of N (x) is selected (with
replacement) as a trial and choose a proposal among them, LBMH needs to evaluate h(⇡(y)/⇡(x)) for
all y 2 N (x) to get a proposal state y which can be viewed as an exhaustive search of N (x). In terms
of computation, MTM requires calculating 2N � 1 weight functions at each iteration where N can
be chosen at one’s disposal, LBMH requires calculating |N (y)| number of ratios to calculate Zh(y)
at each iteration, where proposal probabilities {Qh(x, y) : y 2 N (x)} and normalizing constant
Zh(x) can be saved and reused from the previous iteration. Since random walk proposals in BVS
and SBM examples are both symmetric, we compare MTM with LBMH by letting Ksym = KRW

with three different balancing functions: h(u) =
p
u, h(u) = min{1, u} and h(u) = max{1, u}

(corresponding to wsqrt, wmin, wmax respectively).

B.1 Details of Bayesian variable selection (BVS)

After marginalizing out � and �, the posterior distribution ⇡(� |y) is written as [47, §A.1]

⇡(� |y) = C · 1

p|�|(1 + G)|�|/2
SSR(�)�n/2

(|�|  smax), (14)

where SSR(�) = y>
⇣
In � G

G+1
X�

�
X>

�
X�

��1

X>
�

⌘
y is a term having a similar role as a sum of

squared residuals and C is a normalizing constant.

MCMC setup. Hyperparameters are specified as G = p3 = 5000
3,  = 2, and smax = 100.

For each dataset, we run a chain of 105 iteration for single-try MH, 2 ⇥ 10
4 iteration for MTM

with N = 5, and 10
4 iteration for MTM with N = 5, 10, 50, 100, 500, 1000, 2000, 5000 using four

different weight functions. Algorithms are randomly initialized with state �0 such that �0 \ �⇤ = ;
and dH(�0, �⇤) = 20 which implies H = 20 is the minimum required hitting iteration. For each
simulated dataset, the true data generated model achieves the highest posterior probability (�⇤ = x⇤).
All simulation studies are performed on a Linux cluster with Intel(R) Xeon(R) Gold 6132 CPU @
2.60GHz and 96GB memory.

Results from Table 2 show that H decreases roughly by a factor of N until N = 100, which confirms
our theoretical findings, given that the model setting satisfies that the mixing time is equivalent to the
hitting iteration up to constant factors [36]. When N becomes larger, the performance of unscaled
weight function word deteriorates and never converges when N = 5000. In contrast, locally balanced
weight functions generally perform well even when N is large. Table 3 suggests that choosing
moderate N is beneficial in terms of computational savings. When the design matrix is correlated and
SNR= 2, the result suggests that the chain often stuck when we choose the weight function as wmax.
Since the shape of the posterior distribution becomes irregular when the SNR is intermediate [47] and
design matrix is correlated, to get a more clear insight we further perform additional simulation study
when the posterior distribution exhibits multimodality; see Appendix B.4. Finally, under different
settings of the design and SNR, the median N estimated from Algorithm 2 using = 0.9 over 50
replicate datasets is N̂ = 349 (indep, SNR=4), 501 (indep, SNR=2), 328 (dep, SNR=4) and 158 (dep,
SNR=2).

22

Table 2: (BVS) Median of H , the number of iterations until the chain hit �⇤ over 50 replicates. Entry
with “Fail” indicates that chains never hit �⇤ in more than half of the replicated datasets.

SNR N 1 5 10 50 100 500 1000 2000 5000 LBMH

ind.

4

word

19414

3283 1742 392 203 100 211 3168 Fail N/A
wsqrt 3340 1787 360 177 55 42 38 54 Fail
wmin 3365 1948 354 180 50 33 28 24 20
wmax 3246 1876 372 182 54 42 40 60 Fail

2

word

20088

3684 1865 392 213 89 137 1020 Fail N/A
wsqrt 3666 1955 398 200 58 40 33 32 137
wmin 3928 2034 366 202 55 34 29 24 20
wmax 3696 2000 418 229 62 44 36 34 Fail

dep.

4

word

21292

3898 1989 422 234 91 117 735 Fail N/A
wsqrt 3977 2256 394 209 64 44 36 45 Fail
wmin 4196 2065 412 226 51 35 30 24 20
wmax 4360 2137 504 240 70 46 42 40 Fail

2

word

66020

7724 6324 1033 528 150 145 404 Fail N/A
wsqrt 9458 4226 1088 660 180 97 59 72 Fail
wmin 8357 4363 1212 484 109 68 54 31 37
wmax 11541 7057 6794 6782 3668 3124 3729 7246 Fail

Table 3: (BVS) Median of TH , wall-clock time (in seconds) until the chain hit �⇤ over 50 replicates.
Entry with “Fail” indicates that chains never hit �⇤ in more than half of the replicated datasets.

SNR N 1 5 10 50 100 500 1000 2000 5000 LBMH

ind.

4

word

1.30

0.80 0.42 0.12 0.07 0.07 0.27 6.95 Fail N/A
wsqrt 0.81 0.46 0.11 0.07 0.04 0.05 0.09 0.30 Fail
wmin 0.89 0.53 0.12 0.07 0.04 0.04 0.06 0.11 0.07
wmax 0.88 0.53 0.13 0.07 0.04 0.05 0.09 0.33 Fail

2

word

1.25

0.82 0.43 0.11 0.07 0.06 0.15 1.93 Fail N/A
wsqrt 0.81 0.44 0.12 0.07 0.04 0.04 0.06 0.13 0.39
wmin 1.01 0.55 0.11 0.08 0.04 0.04 0.06 0.11 0.07
wmax 0.92 0.51 0.13 0.08 0.05 0.05 0.06 0.13 Fail

dep.

4

word

1.35

0.85 0.42 0.12 0.08 0.06 0.12 1.37 Fail N/A
wsqrt 0.87 0.50 0.11 0.07 0.04 0.05 0.06 0.17 Fail
wmin 1.04 0.55 0.13 0.08 0.04 0.04 0.06 0.10 0.06
wmax 1.07 0.53 0.15 0.08 0.05 0.05 0.07 0.14 Fail

2

word

3.38

1.67 1.29 0.26 0.16 0.09 0.14 0.70 Fail N/A
wsqrt 1.91 0.90 0.28 0.19 0.10 0.10 0.10 0.24 Fail
wmin 1.89 1.01 0.34 0.16 0.07 0.07 0.10 0.13 0.09
wmax 2.58 1.66 1.86 1.97 2.10 2.78 5.74 22.36 Fail

23

In contrast to MTM, LBMH fails to converge to �⇤ when h(u) =
p
u or h(u) = max{1, u}. It is

easier for MTM to escape from such local modes by randomly searching part of its neighborhood
to select the proposal. The exhaustive search nature of LBMH makes it difficult to escape from the
local mode since some high values of ⇡(y⇤)/⇡(y), y⇤ 2 N (y) involved in the denominator makes
the acceptance ratio small. This phenomenon disappears when h(u) = min{1, u} is used. In terms
of wall-clock hitting time TH , LBMH is not as efficient as MTM with a smaller choice of N .

In addition, we also consider the case when SNR = 0.5 (very weak SNR) so that the null model
�⇤ = 0 receives the highest probability across all simulated datasets. For each replicated dataset,
algorithms are randomly initialized with state �0 such that dH(�0, �⇤) = 10 which implies H = 10

is the minimum required hitting iteration. Table 4 provides the result similar to Tables 2 and 3, since
the posterior distribution is unimodal with the peak at the null model �⇤ = 0 due to the sparsity prior.
The median N estimated from Algorithm 2 using = 0.9 over 50 replicate datasets is N̂ = 171for
independent design and is N̂ = 212 for dependent design.

Table 4: (BVS, very weak SNR = 0.5) Median of H and TH over 50 replicates. Entry with “Fail”
indicates that chains never hit �⇤ in more than half of the replicated datasets.

SNR = 0.5 N 1 5 10 50 100 500 1000 2000 5000

H

indep.

word

14358

2708 1309 281 142 50 46 106 8968
wsqrt 2788 1402 285 148 37 20 16 12
wmin 2680 1481 282 149 34 19 16 12
wmax 2476 1276 266 131 38 23 17 12

dep.

word

12596

2924 1432 304 142 43 42 104 Fail
wsqrt 2776 1532 278 146 35 21 15 12
wmin 2836 1354 260 154 34 22 14 11
wmax 2562 1289 270 140 32 22 15 12

TH

indep.

word

0.89

0.56 0.3 0.07 0.04 0.03 0.05 0.19 39.38
wsqrt 0.6 0.32 0.07 0.05 0.02 0.02 0.03 0.04
wmin 0.68 0.36 0.09 0.05 0.02 0.02 0.03 0.04
wmax 0.62 0.35 0.08 0.05 0.02 0.02 0.03 0.04

dep.

word

0.67

0.57 0.29 0.07 0.04 0.03 0.04 0.17 Fail
wsqrt 0.56 0.31 0.07 0.04 0.02 0.02 0.02 0.04
wmin 0.66 0.33 0.07 0.05 0.02 0.02 0.02 0.04
wmax 0.58 0.31 0.08 0.04 0.02 0.02 0.02 0.04

24

B.2 Details of stochastic block model (SBM)

After marginalizing out {Quv}1uvK , the posterior distribution ⇡(z |A) is written as (see [24,
§2.1] and [55, §2.2])

⇡(z |A) = C ·
Y

1uvK

B(1 +muv,2 +muv) · (z 2 S↵), (15)

where B(1,2) = �(1)�(2)/�(1 + 2) is a beta function, C is a normalizing constant,

muv =

(P
i,j

Aij (zi = u, zj = v) if u < v,P
i<j

Aij (zi = u, zj = u) if u = v,

is the number of edges between blocks u and v, and using the notation nu(z) =
P

i
(zi = u),

muv =

⇢
nu(z)nv(z)�muv if u < v,
nu(z)(nu(z)� 1)/2�muu if u = v,

is the number of non-edges between blocks u and v. We note that ⇡(z |A) is invariant of a label
permutation.

Data generation. When K = 2, there are two true clusters (blocks) of nodes each with 500 nodes.
When K = 5, there are five true clusters of nodes each with 200 nodes. We generated a graph from
the homogeneous SBM and where within- and cross-community edge connection probabilities are a
and b respectively. Specifically, for K = 2 we set (a, b) = (0.222, 0.01) and (a, b) = (0.07, 0.01) so
that CH ⇡ 10 and CH ⇡ 2, and for K = 5 we set (a, b) = (0.473, 0.01) and (a, b) = (0.13, 0.01)
so that CH ⇡ 10 and CH ⇡ 2. For each setting, we simulate 50 datasets.

MCMC setup. Hyperparameters are specified as 1 = 2 = 1, and ↵ = 1000 so that the size
of the feasible set S↵ is maximized. For each dataset, we run a chain of 105 iteration for single-
try MH, 5 ⇥ 10

4 iteration for MTM with N = 5, and 2 ⇥ 10
4 iteration for MTM with N =

5, 10, 50, 100, 500, 1000, 2000, 5000 using four different weight functions. Algorithms are randomly
initialized with state z0 such that d̃H(z0, z⇤) = 400 which implies H = 400 is the minimum required
hitting iteration. For each simulated dataset, the true data generated model achieves the highest
posterior probability (z⇤ = x⇤). All simulations are performed on a Linux cluster with Intel(R)
Xeon(R) Gold 6132 CPU @ 2.60GHz and 96GB memory.

Results from Table 5 show that H decreases roughly by a factor of N until N = 10 for locally
balanced weight functions, but not for unscaled weight function word. Even when N � 50, MTM
with word never converges to the highest probability model, highlighting the necessity of the use of
locally balanced weight function for the general model selection problems. When N is very large,
the performance of locally balanced weight functions generally deteriorates, which matches with our
theoretical findings regarding the rate condition on N . Table 6 also suggests that a moderate choice
of N (in SBM case, around 10) is beneficial in terms of computation savings. Finally, under different
settings of (K, CH), the median N estimated from Algorithm 2 using = 0.9 over 50 replicate
datasets is N̂ = 15 for (K, CH) = (2, 2), N̂ = 8 for (2, 10), N̂ = 5 for (5, 2) and N̂ = 4 for (5, 10).

Comparison of hitting iteration H with LBMH gives an insight similar to the BVS example. When
K = 5, LBMH often gets stuck at a local mode and never converges to z⇤. However when K = 2,
LBMH performs similarly to MTM with larger choices of N . We note that when K = 2, the shape
of posterior distribution can be significantly different from that of K = 5, as the minimax rate and
posterior contraction rate analysis are often treated separately when K = 2 and K � 3 [51, 55]. The
comparison of wall-clock hitting time TH also suggests MTM with moderate choice of N is much
more efficient.

25

Table 5: (SBM) Median of H , the number of iterations until the chain hit z⇤ over 50 replicates. Entry
with “Fail” indicates that chains never hit z⇤ in more than half of the replicated datasets.

CH N 1 5 10 50 100 500 1000 2000 5000 LBMH

K = 2

⇡ 10

word

11572

2495 5542 Fail Fail Fail Fail Fail Fail N/A
wsqrt 1603 1136 692 644 602 610 637 684 740
wmin 1558 974 544 493 444 434 431 424 418
wmax 1657 1142 762 708 726 830 1224 2842 6364

⇡ 2

word

13343

2722 3484 Fail Fail Fail Fail Fail Fail N/A
wsqrt 1948 1432 874 818 808 703 700 728 682
wmin 2244 1400 944 911 820 882 812 890 866
wmax 1916 1354 851 774 701 696 681 680 709

K = 5

⇡ 10

word

25328

5852 4614 Fail Fail Fail Fail Fail Fail N/A
wsqrt 5400 3008 1210 987 858 874 992 1564 Fail
wmin 5376 2695 1127 907 719 690 675 660 Fail
wmax 5230 2977 1184 1022 905 960 1286 3895 Fail

⇡ 2

word

25883

6388 4422 Fail Fail Fail Fail Fail Fail N/A
wsqrt 5552 2885 1067 805 628 574 542 506 Fail
wmin 5426 3056 1168 966 802 775 752 740 1517
wmax 5245 2904 1100 882 703 654 630 614 Fail

Table 6: (SBM) Median of TH , wall-clock time (in seconds) until the chain hit z⇤ over 50 replicates.
Entry with “Fail” indicates that chains never hit z⇤ in more than half of the replicated datasets.

CH N 1 5 10 50 100 500 1000 2000 5000 LBMH

K = 2

⇡ 10

word

0.73

0.50 1.32 Fail Fail Fail Fail Fail Fail N/A
wsqrt 0.33 0.27 0.39 0.62 1.64 2.75 5.04 13.49 1.95
wmin 0.41 0.29 0.36 0.53 1.29 2.03 3.52 8.27 1.09
wmax 0.42 0.35 0.49 0.75 2.05 3.75 9.90 54.05 16.13

⇡ 2

word

0.82

0.54 0.83 Fail Fail Fail Fail Fail Fail N/A
wsqrt 0.4 0.35 0.48 0.75 1.49 2.15 3.78 9.30 1.28
wmin 0.56 0.41 0.57 0.89 1.55 2.62 4.31 11.26 1.60
wmax 0.47 0.39 0.51 0.75 1.29 2.07 3.57 8.35 1.35

K = 5

⇡ 10

word

1.97

1.35 1.39 Fail Fail Fail Fail Fail Fail N/A
wsqrt 1.25 0.92 0.97 1.38 4.01 7.36 15.71 60.95 Fail
wmin 2.27 1.50 1.31 1.78 3.97 6.69 12.30 29.76 Fail
wmax 2.21 1.52 1.39 2.00 4.94 9.31 23.38 174.89 Fail

⇡ 2

word

1.88

1.41 1.24 Fail Fail Fail Fail Fail Fail N/A
wsqrt 1.22 0.84 0.81 1.05 2.31 3.84 6.89 15.90 Fail
wmin 1.35 0.97 0.91 1.31 2.99 5.17 9.61 23.64 6.52
wmax 1.33 0.89 0.83 1.16 2.61 4.36 7.93 19.18 Fail

26

B.3 Spatial clustering model (SCM)

We consider a spatial clustering problem for a given set of spatial locations S = {s1, . . . , sp} ⇢ R2

where the responses ⇣(si)’s are observed. The goal of an SCM is to identify a spatially contiguous
partition on S, denoted by P = {S1, . . . ,SK}, where Sj’s are disjoint subsets of S whose union
is S, such that the responses within a cluster {⇣(s) : s 2 Sj} are identically distributed and have
different means across clusters.

We follow [28] to adopt a probabilistic model for P that utilizes a spanning tree graph T on S (with
p vertices and p� 1 edges) as a “spatial order” of S . The spanning tree T is chosen in a way that two
locations connected by an edge are spatially proximate to each other. A partition P with K clusters
can be defined by removing K�1 edges from T . Specifically, the SCM we consider can be written as

⇣(si)|{µ(si)},P,K,�2 ind⇠ N(µj ,�
2
), with µ(si) = µj if si 2 Sj , for i 2 [p], (16)

µj |P,K,�2 iid⇠ N(0,��1�2
), for j 2 [K],

�2 ⇠ InvGamma(a0/2, b0/2),

⇡(P|K) / {P can be obtained by removing K � 1 edges from T },
⇡(K) / (1� c0)

K , K = 1, . . . , p,

where a0 > 0, b0 > 0, 0  c0 < 1, and � > 0 are hyperparameters. See Figure 6a for an example of
partition P obtained by cutting edges from the spanning tree T .

Thanks to the conjugate priors, µj’s and �2 can be analytically marginalized out, and hence the infer-
ence problem boils down to drawing samples from the (discrete) posterior distribution ⇡(P | data).
Although [28] considered random spanning trees by assigning a prior distribution on T , we stress
that the main focus of this paper is the mixing time analysis on the posterior distribution of P .
Thus, following [26], we fix T as the Euclidean minimum spanning tree in a Delaunay triangulation
graph on S, otherwise we can only sample from the conditional distribution ⇡(P | T , data) which
complicates the mixing time analysis of our target distribution ⇡(P | data).
We consider the following proposal:

KRW(P,P 0
) = 1/(p� 1) Nb(P)[Nd(P)(P 0

),

where Nb(P) is the set of all possible partitions obtained by splitting a cluster in P into two clusters
by selecting a cut-edge of T and Nd(P) is the set of all possible partitions obtained by merging two
neighboring (with respect to T) clusters in P . See [23, 28] for detailed discussion on how to perform
an appropriate split or merge on P given a spanning tree T .

Data generation. We generate p = 1000 uniform locations si
iid⇠ Unif([0, 1]2), i 2 [p] and specify

the true means {µ(si)} as in Figure 6a. Responses are generated according to (16) with � =p
Var(µ(s))/SNR and we simulate 50 replicate datasets under SNR 2 {3, 10} respectively.

MCMC setup. Following [28], we initialize the chain using the estimates from the spatially clustered
coefficient model of [26]. However, this initialization does not guarantee the same minimum
number of iterations required to hit the true partition Ptrue for different replicate datasets. For a fair
comparison, throughout this subsection, we redefine H as the number of extra iterations until hit,
which is the iterations until hit minus the minimum number of iterations required to reach Ptrue.
Hyperparameters are specified as a0 = b0 = 1, c0 = 0.5, and � = 0.01. We consider the number of
trials N 2 {5, 10, 100, 500, 1000}. For each replicate dataset, we run a chain of 10, 000 iterations for
each MTM specification and a chain of 30, 000 for standard single-try MH. All simulation studies are
performed on a Linux cluster with Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz and 96GB memory.

Table 7 summarizes H and TH of various weight functions and numbers of trials N . The distributions
of H for the setting of SNR = 10 are provided in Figure 6b. The results from single-try MH are
also included as a baseline. When SNR = 10, the proposed locally balanced weight functions,
especially wsqrt and wmin, considerably outperform the ordinary weight function word and the
single-try MH, in the sense that the proposed ones can reach Ptrue by much fewer iterations when
N 2 {100, 500, 1000}. In contrast, the performance of word deteriorates when N � 100 and it fails
to reach Ptrue when N = 500 or 1000. For the proposed weight functions, the wall-clock time until
hit TH is minimized when N = 100, since the benefit of having fewer iterations until hit is offset by
the computational cost of extra trials when N is large.

27

When SNR = 3, the chains never visit the true partition, possibly because Ptrue does not lead to the
highest posterior probability. In this case, we redefine H and TH to be the number of extra iterations
and the wall-clock time, respectively, to reach the 0.99 Rand index neighborhood of Ptrue, defined as

NRand(Ptrue
) := {P : Rand(P,Ptrue

) � 0.99},

where Rand(·, ·) is the Rand index [39] measuring the proportion of agreements between two
partitions. The findings on H and TH for reaching NRand(Ptrue

) are similar to the ones when SNR
= 10.

Finally, the median N estimated from Algorithm 2 using = 0.9 over 50 replicate datasets is
N̂ = 13 when SNR = 10 and N̂ = 21 when SNR = 3.

(a)

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
sh

s v

−1.5 −1.0 −0.5 0.0 0.5 1.0

(b)
●●●●●●● ●●●●●● ●●●●● ●●

●

● ●● ●

●

●●●

●●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●

10

100

1000

10000

No−hit

1 5 10 100 500 1000
N

ex

tra
 it

er
at

io
ns

 u
nt

il
hi

t

Method (1) single−try MH (2) ordinary (3) square root (4) min (5) max

Figure 6: (a) True µ(s) and the Euclidean minimum spanning tree T on S. Edges that should be
removed in the true partition are marked in black. (b) Boxplot of numbers of extra iterations until hit
for SCM under different numbers of trials and weight functions when SNR = 10.

Table 7: (SCM) Median of H and TH (see text for definition; TH in seconds) over 50 replicates.
Entry with “Fail” indicates that chains never hit the target state in more than half of the replicated
datasets.

N 1 5 10 100 500 1000

H

SNR = 10

word

10124

1933 1058 4638 Fail Fail
wsqrt 1822 851 144 66 78
wmin 1661 840 117 62 50
wmax 2260 918 304 244 195

SNR = 3

word

23950

5083 2958 1046 Fail Fail
wsqrt 2860 2064 235 84 126
wmin 4443 2545 234 236 121
wmax 6470 2810 394 462 301

TH

SNR = 10

word

906.72

164.28 90.75 1291.13 Fail Fail
wsqrt 149.48 74.15 45.98 114.68 253.31
wmin 182.53 94.21 42.74 117.88 206.83
wmax 235.46 96.17 85.17 274.57 465.76

SNR = 3

word

2058.61

524.33 318.72 245.42 Fail Fail
wsqrt 330.36 229.80 62.23 113.15 299.45
wmin 486.18 264.62 58.71 233.03 288.35
wmax 721.71 303.91 97.47 438.06 628.02

28

B.4 MTM algorithm on multimodal target distributions

In this section, we analyze the performance of the MTM algorithm with different choices of weight
functions and N on the multimodal target distribution. Following [54], we generate a multimodal
dataset in the context of a Bayesian variable selection problem.

Data generation. We let sample size n = 1000 and number of variables p = 5000. Each row
of design matrix is independently sampled from xi

iid⇠ N (0,⌃) for i = 1, . . . , n where ⌃ =

diag (⌃20, . . . ,⌃20) is block-diagonal. Each block ⌃20 has dimension 20 ⇥ 20, and (⌃20)jk =

exp(�|j � k|/3). We generate true coefficient �true by first sampling 100 indices j1, . . . , j100

uniformly at random (without replacement) from [p] and let �j`
iid⇠ N(0,�2

�
) for ` = 1, . . . , 100, and

�k = 0 if k 62 {j1, . . . , j100}. Then the response vector y is generated from y ⇠ N(X�true, In).
We consider three settings of �� = 0.3, 0.4, 0.5 to simulate the coefficients and data. For each setting,
we simulate 20 datasets.

MCMC setup. We use the same BVS model described in Section 4. Hyperparameters are specified
as G = p = 5000,  = 1, and smax = 100. For each dataset, we run a chain of 10,000 iteration for
MTM with N = 50, 100, 500, 1000, 2000, 5000 using four different weight functions. The first 2000
iterations are discarded since the behavior of the chain (e.g. acceptance ratio) during the burn-in stage
may be different from the behavior of the chain which entered stationarity; see also Figure 7. for trace
plots. Algorithms are all initialized with null model �0 = 0. All simulation studies are performed on
a Linux cluster with Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz and 96GB memory.

Since the target distribution is no longer unimodal, hitting iteration H and wall-clock hitting time
TH are not appropriate metrics to compare mixing performance. Instead, we use three different
metrics to evaluate the quality of the mixing: 1) acceptance ratio, 2) the number of unique states
visited by the chain, denoted by #(unique �), and 3) ESS/Time, where ESS is the effective sample
size calculated from the hamming distances dH(�̂max, �t), t = 2001, . . . , 10000 from the maximum
posterior state �̂max found in a chain, Time is wall-clock time usage, measured in seconds. The
results are summarized in Table 8.

Figure 7: Examples of MTM trace plot using different weight functions and the number of trials N .
(Left) Simulated data with �� = 0.3, (Right) Simulated data with �� = 0.5. Each row corresponds
to N = 50, 500, 5000. All chains are initialized at the null model �0 = 0.

Figure 7 shows that as N increases, chains generally move faster towards the high posterior states
which suggests that discarding the first 2000 samples is reasonable. One exception is when N = 5000,

29

Table 8: Multimodal posterior simulation results based on the acceptance rate, the number of unique
states visited by a chain, and the effective sample size divided by the running time. All statistics are
based on chains with a length of 8000 (2000 burn-in), and are averaged over 20 datasets.

N 50 100 500 1000 2000 5000

�� = 0.3

Acc. Rate

word 0.041 0.076 0.290 0.436 0.509 0.051
wsqrt 0.039 0.069 0.191 0.257 0.314 0.385
wmin 0.042 0.075 0.299 0.430 0.576 0.717
wmax 0.008 0.011 0.021 0.031 0.043 0.067

#(unique �)

word 233.4 425.5 1398.3 2052.6 2130.8 161.8
wsqrt 240.2 385.1 993.2 1314.7 1549.6 1885.2
wmin 255.1 408.4 1538.8 2056.4 2684.8 3168.8
wmax 53.0 71.0 118.1 158.9 211.8 311.0

ESS/Time

word 7.04 8.71 9.32 6.12 2.27 0.02
wsqrt 5.11 8.08 7.14 4.62 2.48 1.14
wmin 5.35 7.11 9.38 7.17 4.20 1.94
wmax 1.20 1.12 0.49 0.41 0.13 0.06

�� = 0.4

Acc. Rate

word 0.036 0.069 0.260 0.389 0.417 0.017
wsqrt 0.034 0.057 0.172 0.233 0.285 0.350
wmin 0.036 0.064 0.261 0.404 0.541 0.674
wmax 0.007 0.009 0.018 0.026 0.040 0.059

#(unique �)

word 211.4 392.6 1302.9 1782.8 1852.1 72.4
wsqrt 205.8 316.1 932.5 1277.8 1470.2 1767.4
wmin 219.8 361.6 1310.4 1919.6 2565.6 3067.3
wmax 50.2 57.4 103.6 135.3 197.6 279.4

ESS/Time

word 6.13 8.06 6.31 6.58 0.52 0.03
wsqrt 4.79 6.81 6.06 4.04 2.10 1.09
wmin 5.42 7.73 7.26 5.07 3.83 1.87
wmax 1.04 0.80 0.35 0.23 0.11 0.05

�� = 0.5

Acc. Rate

word 0.028 0.051 0.209 0.337 0.263 0.001
wsqrt 0.024 0.046 0.138 0.190 0.242 0.306
wmin 0.026 0.055 0.209 0.337 0.481 0.633
wmax 0.005 0.007 0.015 0.024 0.036 0.056

#(unique �)

word 146.2 261.6 924.7 1382.0 976.5 5.6
wsqrt 132.2 246.4 648.8 877.4 1054.0 1323.6
wmin 138.2 291.0 958.2 1445.6 2001.9 2444.1
wmax 37.4 48.5 83.8 124.6 177.7 257.7

ESS/Time

word 5.93 9.05 9.85 7.77 0.32 0.01
wsqrt 6.75 6.83 7.33 5.05 3.27 1.17
wmin 6.73 6.45 8.73 5.15 5.41 2.54
wmax 1.97 1.00 0.53 0.39 0.15 0.07

the chain using ordinary weight function barely moves to another state, whereas the chain using
locally balanced weight functions exhibits better mixing properties than N = 50 and N = 500.

Finally, Table 8 summarizes the multimodal simulation results. Similar to the previous unimodal
results, the performance of word deteriorates as N being large, especially when �� is large. When N
is moderate, the weighting functions word and wmin has a better mixing property than wsqrt, while
wmax being the worst. The inferior performance of wmax is also observed at Table 2. If the current
state x is one of the local modes, we may have max{1,⇡(x?

)/⇡(y)} >> max{1,⇡(y)/⇡(x)} where
y is the proposed state, and x? is one of the trials of y in Step 3 of Algorithm 1, which makes the
acceptance probability very small so that the chain is stuck at x when using wmax. On the other hand,
the magnitude of the difference between h(⇡(x?

)/⇡(y)) and h(⇡(y)/⇡(x)) will be reduced if we use
wsqrt, wmin so that the chain can traverse among local modes. To summarize, the simulation results
suggest that wmin would be the best choice of the weight function if the multimodality exists, since it
not only traverses the multimodal posterior efficiently, but also is robust to large N . We envision that
there are a number of ways to improve the mixing under the multimodal posterior by combining it
with techniques such as annealing or tempering [9].

30

C Real data applications

C.1 GWAS dataset for Bayesian variable selection

We consider a genome-wide association study (GWAS) dataset on glaucoma studied in [54] with
sample size n = 5418 and number of genetic variants p = 7255. The response variable y 2 R5418

is the standardized cut-to-disk ratio measurements averaged over two eyes. We use the BVS model
described in Section 4.1, with hyperparameters G = 100 and  = 0.8. Since the “true" state is not
available, we compare the acceptance rate and the number of unique states visited, averaging over 5
chains. From Table 9, it is clear that the performance of word deteriorates significantly as N grows
whereas wsqrt, wmin, wmax does not. We also report the posterior inclusion probabilities of the top
10 genetic variants in Tables 12, 13, 14, 15, 16, and 17 in Appendix E. All results generally agree
with the result of [54], except that when we use word with N = 5000, the chain is stuck at local
modes and fails to find the significant genetic variants.

Table 9: GWAS dataset analysis results, averaged over 5 chains with random seeds.

N 50 100 500 1000 2000 5000
iteration 10

6
5⇥ 10

5
10

5
5⇥ 10

4
2⇥ 10

4
10

4

Acc. Rate

word 0.4014 0.5081 0.1370 0.0471 0.0259 0.0085
wsqrt 0.3407 0.4812 0.7571 0.8325 0.8777 0.9251
wmin 0.4136 0.5851 0.8252 0.8797 0.9138 0.9455
wmax 0.2335 0.3404 0.6161 0.7199 0.7930 0.8698

#(unique states)

word 199442 126238 6796 1172 259 43
wsqrt 169242 119396 37481 20588 8669 4563
wmin 205459 145372 40993 21848 9080 4696
wmax 115615 84124 30227 17591 7717 4211

C.2 Single-cell RNA dataset for structure learning

We consider a gene expression dataset on Alzheimer’s disease used in [10] with the sample size
n = 1666 and the number of genes p = 73. The goal is to learn the underlying directed acyclic graph
(DAG) model among the p genes. Due to acyclicity, each DAG has at least one ordering of the nodes.
For example, the ordering for the DAG a ! b c can be either (a, c, b) or (c, a, b). A popular
Bayesian structure learning strategy is to use MCMC sampling to first learn the marginal posterior
distribution on the order space and then find one or multiple best DAGs for each sampled ordering.

We use an MTM implementation of the order MCMC sampler proposed in [10], which aims to learn
the posterior distribution on the order space Sp, the permutation group on {1, . . . , p}. The size of
our model space Sp is equal to 73! ⇡ 4.5 ⇥ 10

105. For each weight function and each setting, we
simulate 30 chains, initialized at (1, . . . , 73). It is clear from Table 10 that the acceptance probability
with ordinary weight function word significantly deteriorates, which is consistent with our theory. We
can see this tendency more clearly in the log-posterior trace plots for all weight functions in Figure 8.

Table 10: The single-cell RNA database for Alzheimer’s disease analysis results, averaged over 30
chains with random seeds. The number in the parenthesis is the standard error.

N 5 50
iteration 5⇥ 10

2
2⇥ 10

2

Acc. Rate

word 0.7187 (0.004) 0.0012 (0.000)
wsqrt 0.8029 (0.004) 0.9186 (0.003)
wmin 0.8329 (0.002) 0.9506 (0.001)
wmax 0.6643 (0.006) 0.6806 (0.008)

#(unique orderings)

word 361.1 (3.1) 1.333333 (0.1)
wsqrt 402.3 (2.2) 184.3 (0.8)
wmin 416.7 (1.8) 191.8 (0.6)
wmax 332.0 (2.9) 136.2 (1.6)

31

0 100 200 300 400 500

−65985

−65980

−65975

−65970

log−posterior trajectory of ord

Number of iterations

0 100 200 300 400 500

−65985

−65980

−65975

−65970

log−posterior trajectory of sqrt

Number of iterations

0 100 200 300 400 500

−65985

−65980

−65975

−65970

log−posterior trajectory of min

Number of iterations

0 100 200 300 400 500

−65985

−65980

−65975

−65970

log−posterior trajectory of max

Number of iterations

Figure 8: Log-posterior trace plots. Red trajectories indicate MTM with the number of trial N = 5

with 500 iterations, and blue trajectories indicate MTM with N = 50 with 200 iterations.

32

D Additional discussion

D.1 On parallelization (vectorization)

As discussed in Remark 3 in Section 3.1, the overall theoretical computational complexity of the
MTM algorithm until the convergence remains the same as a usual MH algorithm. However, MTM
enables parallel computations when evaluating N weight functions and hence leads to a significant
practical computational gain as evidenced by the reduced wall-clock hitting time reported in Table
1. Under the random walk proposal KRW, the evaluation of weight functions is equivalent to the
evaluation of target distribution at N states y1, . . . , yN . Here we clarify that the scope of parallelism
we consider is the instruction-level parallelism [41], also called vectorization. Thanks to modern
When task-level parallelism, assigning a set of independent tasks in parallel across several processors,
is employed to the MTM algorithm within each MCMC iteration, it suffers from communication
overhead unless the evaluation of target distributions takes extremely long. Thanks to the optimized
linear algebra libraries such as BLAS [7], the easiest way to achieve instruction-level parallelism is to
convert the problem of evaluating target distribution at multiple states ⇡(y1), . . . ,⇡(yN) to a series
of matrix multiplication problems.

Here we outline the computational strategy to simultaneously calculate ⇡(y1), . . . ,⇡(yN) for BVS
and SBM. For BVS, since only one variable is added or deleted in the proposal, the Cholesky rank-1
update [17, 44] is utilized to get ⇡(y1), . . . ,⇡(yN) from ⇡(x). To be specific, assume �0

1
. . . , �0

N

are obtained by adding a variable from �. By (14), the evaluation of ⇡(�j |y), j = 1, . . . , N
corresponding to evaluating SSR(�j), j = 1, . . . , N from SSR(�) saved from the previous iteration.
We refer [49, Appendix B] for details of vectorization procedure with Cholesky rank-1 update. For
SBM, let Ai 2 {0, 1}p be the ith column of adjacency matrix and Z 2 {0, 1}p⇥K be one-hot encoded
partition matrix such that Zi,k = 1 if zi = k and 0 otherwise. Since a node is assigned to another
block one at a time, the calculation of ⇡(y1) . . . ,⇡(yN) given current state ⇡(x) can be done by
counting the change of the number of edges between blocks; see (15). Letting AJ 2 {0, 1}p⇥N

where column Aj corresponds to the jth proposal, the matrix-matrix multiplication Z>AJ allows to
calculate ⇡(y1) . . . ,⇡(yN) simultaneously from ⇡(x). In addition, if the graph is sparse, then sparse
matrix multiplication algorithms can be utilized for further speedup.

D.2 On state space

Our state space of interest is finite (so discrete), but the proposed locally balanced MTM algorithm is
also applicable to continuous state spaces which will be shown shortly. We choose to focus on the
discrete case since the theory on continuous state spaces is usually developed under very different
frameworks (and likewise, the theory on continuous spaces often cannot be readily applied to discrete
ones). Indeed, developing MCMC theory or methodology on discrete spaces is often regarded as
more challenging than on continuous ones [48, Section 1], due to the lack of gradient information
and a widely accepted theoretical framework supported by statistical theory (for comparison, on
continuous spaces, one often assumes log-concavity or asymptotic normality of the target posterior
distribution).

To some extent, the proposed MTM method is conceptually similar to MALA (Metropolis adjusted
Langevin algorithm) or HMC (Hamiltonian Monte Carlo) on continuous spaces in that MTM evaluates
the “gradient” by a random search of neighboring states. This suggests that for continuous-state-space
problems where the gradient of log-posterior cannot be easily evaluated (e.g. Bayesian inverse
problems and Gaussian process regression models), the proposed MTM method can be quite useful.

We conclude this section with a simulation study that shows the weight function proposed in Propo-
sition 2 can lead to an improved MTM algorithm on continuous spaces. Suppose our target dis-
tribution is the 10-dimensional Gaussian distribution N(0, I10). We set our proposal distribution
q(·|x) = N10(x, 10�2I10), initialize the chains at x0 = (10, 10, . . . , 10), and run 10,000 iterations
for each chain. The result is summarized in Table 11, where for each setting we repeat the simulation
30 times. The advantage of the weight functions considered in Proposition 2 over word is substantial.
We present the log-posterior traceplots in Figure 9 and the MCMC sample trajectories in Figure 10.

33

Table 11: Sampling from 10-d standard Gaussian distribution with 10,000 iterations using MTM.
Averaged over 30 chains with random seeds. The number in the parenthesis is the standard error.

N MH (N = 1) 10 100 1,000

Acc. Rate

word

0.8604 (0.001)

0.7488 (0.002) 0.2971 (0.012) 0.0394 (0.008)
wsqrt 0.9667 (0.000) 0.9897 (0.000) 0.9967 (0.000)
wmin 0.9656 (0.000) 0.9890 (0.000) 0.9963 (0.000)
wmax 0.9593 (0.000) 0.9861 (0.000) 0.9950 (0.000)

0 500 1000 1500 2000

−6
00

−4
00

−2
00

0

ord

bin

0 500 1000 1500 2000

−6
00

−4
00

−2
00

0

sqrt

bin

0 500 1000 1500 2000

−6
00

−4
00

−2
00

0

min

bin

0 500 1000 1500 2000

−6
00

−4
00

−2
00

0

max

bin

MH (N=1)
N=10
N=100
N=1000

Figure 9: Log-posterior trace plots for 4 different weight functions word, wsqrt, wmin and wmax.
Different colors indicate a different number of trials as specified in the legend.

−2 0 2 4 6 8 10

−2
0

2
4

6
8

10

plotting 1st and 2nd coordinates with N=1000

out$pointsout[, c(1, 2)][,1]

ord
sqrt
min
max

Figure 10: MCMC sample trajectories under 10-dimensional continuous target distribution N(0, I10)
with different weight functions, initialized at x0 = (10, 10, . . . , 10). Note that the chain with the
ordinary weight function word gets stuck at its early stage, whereas the chains with the other weight
functions move to the region with a high posterior, which supports our claim.

34

E Additional tables

Here we report genetic variants with the top 10 highest posterior inclusion probabilities found from
BVS model with MTM algorithm, under the different choices of N = 50, 100, 500, 1000, 2000,
5000 and weight functions word, wsqrt, wmin and wmax.

Table 12: Genetic variants with top 10 posterior inclusion probability (PIP), obtained from MTM
algorithm with N = 50 and averaged over 5 chains. Blue are genetic variants reported by [54].

word wsqrt wmin wmax

Name PIP Name PIP Name PIP Name PIP
1 rs1063192 0.987 rs10483727 0.997 rs1063192 0.998 rs1063192 0.982
2 rs653178 0.979 rs1063192 0.979 rs653178 0.976 rs10483727 0.976
3 rs10483727 0.972 rs653178 0.978 rs10483727 0.974 rs653178 0.972
4 rs2275241 0.908 rs2275241 0.914 rs2275241 0.915 rs2275241 0.903
5 rs319773 0.806 rs319773 0.798 rs4557053 0.802 rs319773 0.827
6 rs4557053 0.77 rs4557053 0.773 rs319773 0.777 rs4557053 0.752
7 rs2369705 0.667 rs2369705 0.678 rs2369705 0.671 rs2369705 0.667
8 rs10491971 0.619 rs10491971 0.639 rs10491971 0.63 rs10491971 0.633
9 rs3177954 0.598 rs3177954 0.604 rs3177954 0.595 rs3177954 0.602

10 rs11087973 0.567 rs11087973 0.581 rs11087973 0.576 rs3843894 0.533

Table 13: Genetic variants with top 10 posterior inclusion probability (PIP), obtained from MTM
algorithm with N = 100 and averaged over 5 chains. Blue are genetic variants reported by [54].

word wsqrt wmin wmax

Name PIP Name PIP Name PIP Name PIP
1 rs10483727 1 rs10483727 0.993 rs10483727 0.988 rs10483727 1
2 rs1063192 0.996 rs1063192 0.99 rs653178 0.97 rs1063192 0.982
3 rs653178 0.973 rs653178 0.973 rs1063192 0.953 rs653178 0.975
4 rs2275241 0.918 rs2275241 0.922 rs2275241 0.914 rs2275241 0.925
5 rs319773 0.795 rs4557053 0.806 rs319773 0.802 rs319773 0.793
6 rs4557053 0.795 rs319773 0.78 rs4557053 0.792 rs4557053 0.765
7 rs2369705 0.673 rs2369705 0.663 rs2369705 0.662 rs2369705 0.63
8 rs10491971 0.626 rs10491971 0.624 rs10491971 0.617 rs11087973 0.604
9 rs3177954 0.618 rs3177954 0.62 rs3177954 0.598 rs10491971 0.602

10 rs11087973 0.583 rs11087973 0.597 rs11087973 0.587 rs11040978 0.563

Table 14: Genetic variants with top 10 posterior inclusion probability (PIP), obtained from MTM
algorithm with N = 500 and averaged over 5 chains. Blue are genetic variants reported by [54].

word wsqrt wmin wmax

Name PIP Name PIP Name PIP Name PIP
1 rs1063192 1 rs1063192 1 rs1063192 1 rs10483727 1
2 rs653178 0.992 rs10483727 0.983 rs10483727 1 rs653178 0.925
3 rs2275241 0.943 rs653178 0.979 rs653178 0.973 rs2275241 0.915
4 rs319773 0.857 rs2275241 0.922 rs2275241 0.887 rs319773 0.839
5 rs10483727 0.8 rs319773 0.791 rs319773 0.792 rs4557053 0.828
6 rs4557053 0.787 rs4557053 0.774 rs4557053 0.791 rs1063192 0.799
7 rs10491971 0.658 rs10491971 0.67 rs2369705 0.65 rs2369705 0.764
8 rs3843894 0.579 rs2369705 0.647 rs3177954 0.622 rs10491971 0.757
9 rs587409 0.553 rs3177954 0.624 rs10491971 0.615 rs12133371 0.617

10 rs3177954 0.546 rs11087973 0.613 rs11087973 0.561 rs11087973 0.605

35

Table 15: Genetic variants with top 10 posterior inclusion probability (PIP), obtained from MTM
algorithm with N = 1000 and averaged over 5 chains. Blue are genetic variants reported by [54].

word wsqrt wmin wmax

Name PIP Name PIP Name PIP Name PIP
1 rs653178 0.959 rs1063192 0.991 rs1063192 1 rs10483727 1
2 rs2275241 0.952 rs653178 0.982 rs10483727 1 rs653178 0.999
3 rs319773 0.918 rs10483727 0.939 rs653178 0.994 rs2275241 0.886
4 rs10483727 0.8 rs2275241 0.927 rs2275241 0.918 rs2369705 0.842
5 rs2369705 0.737 rs4557053 0.866 rs319773 0.791 rs319773 0.841
6 rs10491971 0.713 rs319773 0.859 rs4557053 0.779 rs1063192 0.804
7 rs4557053 0.704 rs2369705 0.651 rs10491971 0.652 rs3177954 0.787
8 rs3177954 0.688 rs10491971 0.637 rs2369705 0.646 rs10491971 0.768
9 rs12133371 0.615 rs3177954 0.6 rs3177954 0.613 rs12133371 0.656

10 rs1063192 0.6 rs11087973 0.574 rs11087973 0.588 rs3843894 0.65

Table 16: Genetic variants with top 10 posterior inclusion probability (PIP), obtained from MTM
algorithm with N = 2000 and averaged over 5 chains. Blue are genetic variants reported by [54].

word wsqrt wmin wmax

Name PIP Name PIP Name PIP Name PIP
1 rs2275241 1 rs653178 0.983 rs1063192 0.998 rs1063192 1
2 rs653178 1 rs10483727 0.922 rs653178 0.971 rs10483727 0.997
3 rs319773 0.819 rs2275241 0.857 rs2275241 0.916 rs653178 0.986
4 rs11087973 0.805 rs1063192 0.829 rs319773 0.794 rs2275241 0.948
5 rs1063192 0.8 rs4557053 0.824 rs4557053 0.771 rs319773 0.87
6 rs4557053 0.755 rs10491971 0.775 rs10483727 0.724 rs2369705 0.675
7 rs1460509 0.737 rs319773 0.763 rs10491971 0.714 rs4557053 0.634
8 rs3843894 0.729 rs2369705 0.697 rs3177954 0.672 rs3177954 0.527
9 rs3858886 0.648 rs11040978 0.651 rs2369705 0.628 rs2567344 0.519

10 rs10483727 0.61 rs587409 0.612 rs3843894 0.576 rs11634375 0.472

Table 17: Genetic variants with top 10 posterior inclusion probability (PIP), obtained from MTM
algorithm with N = 5000 and averaged over 5 chains. Blue are genetic variants reported by [54].

word wsqrt wmin wmax

Name PIP Name PIP Name PIP Name PIP
1 rs2151280 0.4 rs1063192 1 rs1063192 1 rs10483727 1
2 rs10483727 0.367 rs10483727 1 rs10483727 1 rs653178 0.997
3 rs12457539 0.29 rs653178 0.983 rs653178 0.972 rs319773 0.901
4 rs10508818 0.255 rs319773 0.804 rs2275241 0.821 rs3177954 0.844
5 rs3858886 0.231 rs2369705 0.791 rs4557053 0.732 rs2275241 0.668
6 rs7995962 0.207 rs2275241 0.772 rs319773 0.709 rs12457539 0.649
7 rs12125527 0.2 rs3177954 0.732 rs3177954 0.662 rs1063192 0.6
8 rs2738755 0.2 rs587409 0.652 rs12133371 0.593 rs587409 0.6
9 rs6661853 0.2 rs10491971 0.636 rs11087973 0.569 rs4924156 0.51

10 rs9869577 0.2 rs4557053 0.611 rs587409 0.565 rs4236601 0.498

36

	Introduction
	Preliminary
	Notation
	Multiple-try Metropolis algorithm
	Analysis on mixing time via geometric tools

	Main result
	A mixing time bound with locally balanced weight functions
	Choice of the number of trials

	Simulation studies
	Bayesian variable selection (BVS)
	Stochastic block model (SBM)

	Real data applications and discussion
	A path method for proving the mixing time bound for multiple-try Metropolis algorithm
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	An example on a different weight function.
	A toy example on path construction.

	Details of simulation studies
	Details of Bayesian variable selection (BVS)
	Details of stochastic block model (SBM)
	Spatial clustering model (SCM)
	MTM algorithm on multimodal target distributions

	Real data applications
	GWAS dataset for Bayesian variable selection
	Single-cell RNA dataset for structure learning

	Additional discussion
	On parallelization (vectorization)
	On state space

	Additional tables

