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This supplementary material provides more experiment results on
PS-TTL in Sec. A and more visualization results in Sec. B.

A MORE EXPERIMENT RESULTS
A.1 One Batch vs. One Epoch
We implement test-time learning by fine-tuning on the test data
for one epoch, followed by testing on the same test data. Hence,
we require a specific storage capacity to accommodate the test
data. In a more realistic scenario, we need to conduct test-time
learning for sequentially streamed test data.When a batch of testing
samples arrives, we first use the model to make predictions. And
then, the model weight are updated on this batch of testing samples.
We compared two testing strategies, one batch and one epoch, on
the novel split 1 of the PASCAL VOC benchmark, as shown in
Table A. By comparing row 1 and row 2, we found that under the
One Batch testing strategy, test-time learning can still bring stable
improvements to the baseline. Although the performance of the
One Batch strategy is generally inferior to that of the One Epoch
strategy, we believe this is because in the early stages of testing,
the model does not learn enough knowledge from the test data.

A.2 The performance trend of Test-Time
Learning

As shown in Fig. A, we plotted the performance trend of the model
under different shot settings on the novel split 1 of the PASCAL
VOC dataset as training iterations progressed. As expected, with
the increase of training iterations, the performance of the model
improves progressively. This demonstrates the effectiveness of test-
time learning. Through test-time learning, we endow the model
with the ability to continuously learn. By learning on the test data,
the model can better utilize the novel instances in the test data to
capture the data distribution of novel classes.

A.3 Results on MS COCO Under Low-shot
Settings

Table B shows the detection results on MS COCO under low-shot
settings. The MS COCO dataset contains 80 categories, with each
image typically containing multiple instances. This leads to a degra-
dation in the performance of FSOD detectors on the test data, espe-
cially in low-shot settings, which hinders the ability to conduct test-
time learning. However, our method consistently improves across
various low-shot settings, especially in extremely low-sample sce-
narios, demonstrating notable enhancements. For example, in the
1-shot scenario, our method improved the mAP on novel classes by
9% compared to DeFRCN.

B MORE VISUALIZATION RESULTS
We visualize more detection results of 1-shot on PASCAL VOC in
Fig. B. Our method can alleviate the misclassification issue between

Table A: Ablation study of the test strategy.

Test Strategy nAP50
1-shot 2-shot 3-shot

DeFRCN 55.4 62.1 65.0
One Batch 56.4 64.0 66.4
One Epoch 58.4 65.7 67.9

1000 2000 3000 4000 5000
Training iteration

50

55

60

65

70

nA
P5

0

1-shot
2-shot
3-shot

Figure A: The performance trend (nAP50) of Test-Time Learn-
ing on PASCAL VOC.

base and novel classes, as shown in the top group of Fig. B. De-
FRCN misclassifies base class dogs and horses as novel class cows,
and misclassifies novel class motorbikes as base class bottles, and
novel class buses as base class trains. Although our method is not
optimized for the regression branch, as more novel class instances
are observed, our method can improve the regression performance
of novel classes, as shown in the first two columns of the bottom
group in Fig. B. Additionally, in the construction of the base data
for FSOD, there are many unlabeled novel instances in the base
data. This may result in some novel instances being misclassified
as background. Our method continuously learns on the test data,
which helps alleviate this issue. As shown in the column 3 and
column 4 of the bottom group in Fig. B, our method can prevent
the omission of novel classes, such as cows and birds.
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