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Abstract
With the rise of Machine Learning as a Service (MLaaS) platforms,
safeguarding the intellectual property of deep learning models is
becoming paramount. Among various protective measures, trigger
set watermarking has emerged as a flexible and effective strategy
for preventing unauthorized model distribution. However, this pa-
per identifies an inherent flaw in the current paradigm of trigger set
watermarking: evasion adversaries can readily exploit the shortcuts
created by models memorizing watermark samples that deviate
from the main task distribution, significantly impairing their gen-
eralization in adversarial settings. To counteract this, we leverage
diffusion models to synthesize unrestricted adversarial examples
as trigger sets. By learning the model to accurately recognize them,
unique watermark behaviors are promoted through knowledge
injection rather than error memorization, thus avoiding exploitable
shortcuts. Furthermore, we uncover that the resistance of current
trigger set watermarking against removal attacks primarily relies
on significantly damaging the decision boundaries during embed-
ding, intertwining unremovability with adverse impacts. By opti-
mizing the knowledge transfer properties of protected models, our
approach conveys watermark behaviors to extraction surrogates
without aggressive decision boundary perturbation. Experimental
results on CIFAR-10/100 and Imagenette datasets demonstrate the
effectiveness of our method, showing not only improved robust-
ness against evasion adversaries but also superior resistance to
watermark removal attacks compared to state-of-the-art solutions.

CCS Concepts
• Security and privacy→ Human and societal aspects of security
and privacy; • Information systems→ Multimedia information
systems; • Computing methodologies→ Artificial intelligence.
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1 Introduction
Over the past decade, significant advancements in deep learning
have led to its widespread application in fields such as computer
vision, natural language processing, and speech recognition [37].
Recent breakthroughs in Large Language Models (LLMs), such as
ChatGPT, underscore the potential strides toward General Arti-
ficial Intelligence (AGI) [58]. These advancements have enabled
companies such as OpenAI and Google to offer Machine Learning
as a Service (MLaaS) via APIs, transforming sophisticated mod-
els into paid services accessible to the public. However, this also
presents opportunities for adversaries to steal models [51], seeking
to produce knockoffs and establish pirated API services for profit.
The stolen victims involve significant investment including data
annotation, expert knowledge and computational resources. For
instance, training GPT-3 incurs a cost of approximately 12 million
USD [4]. Therefore, model thefts severely damage the intellectual
property and legitimate rights of the model owners.

Model stealing typically occurs via two approachs. First, adver-
saries may directly steal the parameters, highlighted by the leak of
Facebook’s LLaMa model [25, 60]. Second, attackers might prepare
unlabeled data to query the target API, employing the probability
labels to distill knowledge into a surrogate model. Known as model
extraction or functionality-stealing attacks [52], this strategy ex-
ploits legitimate black-box access, making it challenging for owners
to distinguish between benign users and potential thieves.

Preventing model theft at source is exceedingly difficult. Inspired
by digital watermarking used to protect multimedia content [32],
model watermarking is proposed as copyright identifiers to deter-
mine if a suspect model is a knockoff [76].White-box watermarks
[11] directly embed secret patterns into parameters, but require
access to the suspect model parameters during verification, which
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may not be feasible in real-world scenarios. Thus, black-box water-
marks [1] have emerged as the predominant approach, requiring
only access to the model’s outputs for the trigger sets. Typically,
model owner generates a set of secret watermark samples with
deliberately incorrect labels, using techniques like backdoor injec-
tion to ensure the model memorizes this trigger set. If a suspect
model produces the predefined labels for the trigger set with a high
probability, it is identified as a copy of the protected model.

Memorizing a trigger set that deviates from the main task dis-
tribution will inevitably impair the generalization performance.
However, due to benign overfitting [53], if the size of the trigger
set is maintained within capacity limits [39], poisoning-style wa-
termark embedding does not significantly degrade performance on
standard testing benchmarks [1]. Consequently, the adverse effects
of trigger set watermarks are often underestimated [3, 31, 33, 46, 85].

In this work, we identify that all poisoning-style watermarks,
even those crafted with random label noise trigger sets, embed
shortcuts into the protected model [20]. Evasion adversaries can
readily exploit these shortcuts, employing efficient optimization
frameworks to achieve significantly higher attack success rates
than unwatermarked models. Hence, while designed to protect
intellectual property from theft, poisoning-style watermarking in-
advertently introduces severe vulnerabilities to evasion attacks.
Furthermore, we identify a robustness pitfall phenomenon: current
watermarks aggressively disrupt the decision boundary, generat-
ing misclassifications around watermark samples to achieve resis-
tance against removal attacks. This trivial mechanism inadvertently
entangles watermark unremovability with its adverse effects. To
ensure effective watermark verification, representational capacity
of the model must be sacrificed to focus on watermark behavior,
laying severe risks for generalization in adversarial scenarios.

In response to the vulnerabilities identified in this paper, we
revisit the pipeline of trigger set watermarks, proposing a reliable
algorithm that resists removal attacks without increasing evasion
risks. Instead of error memorization, knowledge injection is utilized
to foster unique watermark behaviors. Specifically, we leverage
diffusion models to generate Unrestricted Adversarial Examples
(UAEs) from random noise, ensuring diversity, hardness, and fidelity
in creating a versatile trigger set. Building on this foundation, we
identify optimization difficulties in replicating the protected model
as the primary reason for watermarks failing to survive extraction.
Thus, we enhance the knowledge transfer properties of the water-
marked model during embedding, learning it as a "friendly teacher"
to effectively guide the surrogate model in acquiring watermark be-
havior from a limited query set, without relying on any robustness
pitfall phenomenon. The whole pipeline is shown in Figure 1.

Our contributions are summarized as follows:
(1) We reveal that all poisoning-style watermarks embed ex-

ploitable shortcuts into the model and provide a detailed
assessment of the evasion vulnerabilities introduced.

(2) We propose utilizing diffusion models to synthesize UAEs as
the trigger set, devising effective generation algorithms that
enable harmless watermarking via knowledge injection.

(3) We identify the robustness pitfall that brings contradictions
between generalization and watermark unremovability. We
reconceptualize the embedding process by focusing on knowl-
edge transfer properties of the protected model.

(4) Integrating analyses and designs above, we propose the
first reliable watermarking algorithm that demonstrates im-
proved evasion robustness and surpasses current state-of-
the-art methods in watermark unremovability.

2 Related Work
2.1 Model Stealing and Watermarking
With the widespread application of deep learning, associated mod-
els have increasingly become targets for theft. Parameters Stealing
directly acquiring models through cyberattacks and social engi-
neering [65], or reversing model parameters through side channels
[60, 82]. Functionality Stealing utilize unlabeled data to query the
target API and leverage the soft labels to train a surrogate model via
maximum likelihood estimation, approximating the functionality
of the stolen victim on the target task [52, 56, 75, 84]. Based on the
principles of knowledge distillation [26, 78], functionality stealing
is scalable to large language models (LLMs) [35, 73], and is highly
feasible in open world scenarios.

To effectively counteract complex and varied thefts, embedding
digital watermarks into protected models is a straightforward and
effective strategy [32]. This allows the tracking of infringing actions
by transferring watermarks to knockoffs obtained by adversaries.
Parameter embedding watermarks [11, 76] directly implant secret
patterns into model parameters, but the verification requires white-
box access, which can be denied by the model owner. Furthermore,
these patterns are often fragile [40, 54]. Hence, trigger set water-
marks [1], which only require black-box access to the suspect model
have become themost popular method. Poisoning-style watermarks
embed a trigger set that deviates from the main task distribution,
exploiting unique behaviors on the trigger set during verification
to assert model copyright [1, 3, 31, 33, 46, 85]. Alternatively, water-
mark behaviors can be reflected by directly modifying the API’s
probability outputs [70, 79], though it may not be secure against
parameter stealing. Notably, non-intrusive fingerprints that charac-
terize decision boundaries are feasible [45], yet are easier to remove
[33, 79, 83] and prone to false alarms [69].

2.2 Watermark Removal and Countermeasures
In the ongoing challenge for intellectual property protection, at-
tackers strive to remove watermarks from stolen models while
preserving their generalization performance. Model modification
[44] involve slight alterations such as fine-tuning [43] or pruning
[15] to make the model forget the trigger set. Input preprocessing
[44] transforms input samples [23] to evade from watermark trig-
gering, or employs anomaly detection [41] to filter out suspicious
watermark inputs. Model extraction [44], primarily used for func-
tionality stealing, also effectively removes watermarks since the
trigger set usually does not appear in the extraction query set, com-
plicating the transfer of watermark behaviors during the process
of functionality approximating .

In response to removal attempts, robust embedding algorithms
are proposed to fortify watermark behavior. Entangled Watermark
Embedding (EWE) [31] tightly couples watermark samples with the
task distribution through soft nearest neighbor loss regularization.
Random smoothing (RS) in parameter space [3] provides certifica-
tion of unremovability against minor parameter changes. Margin-
based watermarking (MBW) [33] increases the margin between
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Figure 1: Comparison of Watermark Embedding Pipeline in this Work and Previous Works.

watermark samples and the decision boundary via adversarial train-
ing, increasing the likelihood of watermark retention during model
extraction. MEA-Defender [46] employs mixed samples from differ-
ent source classes as watermarks, binding the trigger set to main
task distribution by minimizing the Kullback-Leibler divergence.
Overall, robust watermarking algorithms embed the trigger set
deeper within the original distribution, significantly altering the
decision boundary to boost resilience of the watermarks.

3 Exploiting Watermark Shortcut
Recent studies have shown that various failures in machine learn-
ing systems can be attributed to shortcut learning—models prefer
easy-to-learn patterns over complex, generalizable ones [20]. Dur-
ing standard training, models seek to map inputs to outputs via
empirical risk minimization (ERM), a process prone to capturing
superficial correlations [62]. While such models excel in controlled
test environments, their performance deteriorates in the real world
characterized by distribution shifts or adversarial attacks, stemming
from the reliance on domain-specific or non-robust features [19, 29].
Shortcuts often arise from dataset biases or learning dynamics of
ERM optimizers [74]. Yet, we reveal that poisoning-style water-
marking deliberately introduces shortcuts into models, creating
hidden pathways adversaries can exploit, significantly amplifying
vulnerabilities under evasion attacks.

First, we formally define the process of trigger set watermark
embedding to expose why shortcuts exist.

3.1 Formulation of Trigger Set Watermarking
In a 𝐾-class classification problem, a model 𝑓 parameterized by
𝜃 , maps inputs 𝑋 ∈ {0, 1, ..., 255}𝐶×𝑊 ×𝐻 to labels 𝑌 ∈ {1, . . . , 𝐾}.
Model owner generates a training dataset D𝑡𝑟 ∈ 𝑋 × 𝑌 from the
underlying distribution 𝑃 (𝑋,𝑌 ), minimizingL(𝑓 (𝑥), 𝑦) over𝐷𝑡𝑟 to
learn the mapping. Model performance is evaluated on a validation
set 𝐷𝑣𝑎𝑙 with accuracy score(𝜑𝑎𝑐𝑐 (𝑓 ,D𝑣𝑎𝑙 ) = 1

|D𝑣𝑎𝑙 |
∑
I(𝑓 (𝑥) =

𝑦)). For trigger set watermark, a secret dataset D𝑤𝑚 with unique
mappings 𝑥𝑤𝑚 → 𝑦𝑤𝑚 not present in 𝑃 (𝑋,𝑌 ) is selected by the
owner. Training on D𝑤𝑚 endows the watermarked model 𝑓𝑤𝑚
with the capability to generate predetermined outputs on 𝑥𝑤𝑚 .
Analog to its counterpart, watermark accuracy 𝜑𝑤𝑚 (𝑓𝑤𝑚,D𝑤𝑚) =

1
|D𝑤𝑚 |

∑
I(𝑓𝑤𝑚 (𝑥𝑤𝑚) = 𝑦𝑤𝑚) measures 𝑓𝑤𝑚 ’s adherence toD𝑤𝑚 .

The selection of triggers set can be categorized into two types:

Pattern-basedwatermark.This backdoor style[80] approach[1,
3, 31, 61, 85] enables the model to map samples with a specific trig-
ger pattern to a predetermined target class. Watermark samples are
created by overlaying the trigger pattern 𝛿 ∈ {0, 1, ..., 255}𝐶×𝑊 ×𝐻
with mask 𝑚 ∈ {0, 1}𝐶×𝑊 ×𝐻 onto samples 𝑥𝑠 from the source
class 𝑠 , resulting in 𝑥𝑤𝑚 = 𝑥𝑠 ⊙ (1 − 𝑚) + 𝛿 ⊙ 𝑚. For water-
mark embedding, the model 𝑓𝑤𝑚 is adjusted to classify any sample
with the trigger pattern into target class 𝑡 through optimization
min𝜃𝑤𝑚

L(𝑓𝑤𝑚 (𝑥𝑤𝑚) = 𝑦𝑡 ). Given the secrecy of 𝛿 , 𝑚, 𝑠 , and 𝑡 ,
knowledge of this backdoor serves as the proof of ownership.

Pattern-free watermark. Pattern-based watermark is chal-
lenged by the continuous evolution of backdoor defenses [21]. Re-
cent strategies advocate for the use of any sample deviates from the
main distribution 𝑃 (𝑋,𝑌 ) as the trigger set D𝑤𝑚 , eliminating the
reliance on a fixed trigger pattern. Pattern-free watermarks could
be mixed samples from two classes [46] or purely label noises [33].

Trigger set watermarking hinges on overfitting to a unique set
distinct from the main distribution 𝑃 (𝑋,𝑌 ), leading to shortcuts
from 𝑥𝑤𝑚 to 𝑦𝑤𝑚 . Although the potential harm of these shortcuts
is often overlooked in literature, we then introduce straightforward
optimization frameworks demonstrating how evasion adversaries
can effortlessly exploit these shortcuts, significantly compromis-
ing the model’s performance in adversarial settings.

3.2 Evasion Attacks via Watermark Shortcut
In evasion attacks, adversaries craft a distortion 𝛿 within an 𝑙𝑝
norm boundary, changing prediction of 𝑓𝑤𝑚 when added to an
original sample 𝑥 so that 𝑓𝑤𝑚 (𝑥 + 𝛿) ≠ 𝑓𝑤𝑚 (𝑥). Equation 1 aims
to find a perturbation 𝛿 that leads 𝑓𝑤𝑚 to incorrectly classify in-
stances from class 𝑠 to 𝑡 , analog to the standard trigger inversion
framework [74, 77]. Though trigger inversion has been evaluated
in watermarking to neutralize suspicious inputs [31, 46, 77], it is
dismissed as ineffective due to mismatches between recovered and
actual patterns. Nonetheless, minimal modifications can activate
backdoors [55], indicating exact pattern matching is unnecessary
for evasion. By blindly optimizing 𝛿 , we demonstrate the feasibility
of deceiving 𝑓𝑤𝑚 .

Additionally, with source and target classes hidden, a brute-force
search across class pairs is computationally challenging [77]. Thus,
we investigate a universal attack as shown in Equation 2, aiming to
maximize classification errors for global 𝛿 .
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Successfully solving Equations 1 and 2 reveals that while wa-
termarked models maintain high accuracy on natural samples, the
embedded shortcuts greatly increase susceptibility to evasion at-
tacks. Moreover, secrecy of the trigger pattern in pattern-based
watermarks does not safeguard against adversarial exploitation.

𝛿∗ = arg min
∥𝛿 ∥𝑝⩽𝜀

L (𝑓𝑤𝑚 (𝑥𝑠 + 𝛿) , 𝑦𝑡 ) ,∀(𝑥𝑠 , 𝑠) ∈ D𝑡𝑟 . (1)

𝛿∗ = arg min
∥𝛿 ∥𝑝⩽𝜀

−L (𝑓𝑤𝑚 (𝑥 + 𝛿), 𝑦) ,∀(𝑥,𝑦) ∈ D𝑡𝑟 . (2)

The question arises: can forgoing patterns in watermarking pre-
vent associated vulnerabilities? Theory indicates that memorizing
any noisy data undermines robustness to adversarial attacks [53].
Notably, risk from purely random label noise can rival that of the
most sophisticated poisoning attacks [53]. To illustrate this empir-
ically, we conduct adversarial attacks on 𝑓𝑤𝑚 guided by an opti-
mization goal akin to Equation 2. Here, 𝛿 is customized for specific
samples rather than a universal pattern, showing higher flexibility.

For noise label watermarks, beyond empirically exploring the
increased adversarial risk, we delve into model vulnerability, explic-
itly linking decreased robustness to shortcut exploitation. Recent
studies illustrate that backdoors can be implanted bymerely altering
labels [30]. Exploring the reverse scenario, we investigate whether a
trigger pattern can be extracted from arbitrarily mislabeled samples
to deceive the model. Algorithm 1 establishes a stochastic gradient
approach (NLTI) to solve this problem. It operates on noise set
samples in 𝑋𝑛𝑜𝑖𝑠𝑒 where 𝑦𝑛𝑜𝑖𝑠𝑒 = 𝑓𝑤𝑚 (𝑥𝑛𝑜𝑖𝑠𝑒 ) ≠ 𝑦𝑜𝑟𝑖 . The intu-
ition is to assume a pattern 𝛿 has already been added to all samples
in 𝑋𝑛𝑜𝑖𝑠𝑒 , causing the model to learn the corresponding incorrect
labels in a backdoor injection manner. The algorithm aims to find
this pattern such that all 𝑥 − 𝛿 can be correctly classified:
𝛿∗ = arg min

∥𝛿 ∥𝑝⩽𝜀
L (𝑓𝑤𝑚 (𝑥 − 𝛿), 𝑦) , ∀𝑥 ∈ 𝑋𝑛𝑜𝑖𝑠𝑒 , 𝑦 ∈ 𝑌𝑜𝑟𝑖 . (3)

Algorithm 1 Noise Label Trigger Inversion.
1: Input: sample set 𝑋𝑛𝑜𝑖𝑠𝑒 , ground truth set 𝑌𝑜𝑟𝑖 , watermark

model 𝑀 and its wrong prediction 𝑌𝑛𝑜𝑖𝑠𝑒 = {𝑓𝑤𝑚 (𝑥) | 𝑥 ∈
𝑋𝑛𝑜𝑖𝑠𝑒 }, learning rate 𝛼 , schedule 𝑆 , perturbation bound 𝜀.

2: Output: trigger pattern 𝛿 .
3: for epoch = 1 . . . 𝑁 do
4: for all (𝑥,𝑦,𝑦′) ∈ (𝑋𝑛𝑜𝑖𝑠𝑒 , 𝑌𝑜𝑟𝑖 , 𝑌𝑛𝑜𝑖𝑠𝑒 ) do
5: 𝛿 ← 𝛿 − 𝛼 · ∇𝛿L(𝑥 + 𝛿,𝑦,𝑦′).
6: Project 𝛿 to the 𝑙𝑝 ball with bound 𝜀.
7: end for
8: Update 𝛼 with learning rate schedule 𝑆 .
9: end for
The pattern 𝛿 represents the source of misclassifications from

the noise set, reflecting the shortcut created by noise memorization.
Thus, applying 𝛿 to new samples is likely to confuse the model
(𝑓𝑤𝑚 (𝑥 + 𝛿) ≠ 𝑓 (𝑥)). During optimization, the logits loss [5, 9]
shown in Equation 4 is applied to enhances the correct class logits
𝑧𝑦 while pushing outputs away from the noise labels. Additionally,
the learning rate is updated according to a schedule to balancie
exploration and exploitation [9].

L(𝑥 + 𝛿,𝑦,𝑦′) = −𝑧𝑦 + 𝑧𝑦′ . (4)
NLTI mirrors the approach of universal adversarial perturbations

(UAP) [64]. However, a key difference is that NLTI focuses on cor-
recting the model’s responses to de-noised samples while inducing
errors in new samples with added 𝛿 . Ultimately, the optimization

strategies offer an optimistic upper bound on the robustness against
evasion. With persistent shortcuts, the exploitation capabilities of
evasion adversaries will escalate with advancing attack techniques,
progressively undermining generalization of watermarked models.

4 Towards Harmless Watermarking
Even memorizing random label noise in poison-style watermarks
inevitably introduces exploitable shortcuts to the model [53]. Thus,
methods relying on misclassification of specific samples for
ownership verification are fundamentally flawed. Safe trigger-set
watermarking is possible only by ensuring unique correct re-
sponses to specific samples. Building on this principle, we pro-
pose a harmless watermarking scheme focusing on trigger-set gen-
eration, watermark embedding and watermark verification.

4.1 Trigger-set Generation
4.1.1 Motivation. While the optimization in modern deep net-
works produces diverse solutions [28], predictions by various mod-
els on in-distribution samples often converge. The challenge lies in
identifying a set of samples that prompts models to exhibit uniquely
correct behavior. First, we summarize the conditions that samples
used to construct a harmless trigger set should satisfy:

(1) Clarity: Possess clear semantics with a definite correct label;
(2) Hardness: Sufficiently difficult to ensure that correct pre-

dictions highlight distinct capabilities;
(3) Stealth: Closely resemble the original data distribution to

bypass anomaly detection;
(4) Resilience: Maintain uniqueness against adaptive attacks.
Straightforward choices such as out-of-distribution and adver-

sarial examples are challenging enough but either detectable [41]
or highly fragile [8, 23]. In this paper, we introduce Unrestricted
Adversarial Examples (UAEs) [66] as the trigger set. Free from 𝑙𝑝
norms constraints, UAEs provide superior flexibility in fooling clas-
sifiers and higher resistance to defenses [67]. We further design
a pipeline for synthesizing UAEs via diffusion models [27], with
powerful distribution prior [38] ensuring UAEs to be stealth [6, 81].
Moreover, diffusion models can synthesize infinitely realistic and
diverse samples from random noise, producing elusive trigger sets.

4.1.2 UAE Generation. Diffusion models introduce Gaussian noise
to samples in the forward process, leading to an isotropic Gaussian
distribution. Conversely, the reverse process reconstruct samples
from Gaussian noise [27]. This is achieved by training a denoising
model 𝑅Φ (𝑥𝜏 , 𝜏) progressively removes noise during the 𝑇 -step
schedule, ultimately recovering sample 𝑥0 as shown in Equation 5:

𝑝 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝜏=1

𝑝Φ (𝑥𝜏−1 | 𝑥𝜏 ) . (5)

Here, 𝑥𝑇 is the initial Gaussian seed for the reverse process,
guided by the denoising model 𝑅Φ (𝑥𝜏 , 𝜏) as 𝑝Φ (𝑥𝜏−1 | 𝑥𝜏 ). Intro-
ducing a conditioning variable 𝑐 allows for a conditional diffusion
model 𝑅Φ (𝑥𝜏 , 𝜏, 𝑐) [13]. Class-conditioned diffusion provides dis-
tribution priors to align generated samples with class semantics,
guaranteeing UAEs bear unambiguous labels. Synthesizing UAEs
involves steering the generation process to fool classifiers while
preserving class semantics. The adversarial nature emerges in three
stages: seed selection, denoising trajectory, and final adjustment.
We develop efficient methods for crafting UAEs at each stage:
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Adversarial Warm-up. The objective is to subtly modify the
seed 𝑥𝑇 such that its denoised result can deceive the classifier
(𝑓 (𝑥0) ≠ 𝑐). EvoSeed [34] uses a genetic algorithm to add adver-
sarial perturbations to 𝑥𝑇 , yet it demands thousands of iterations
to converge. Therefore, we propose directly maximizing the loss of
the classifier 𝑓 mapping 𝑥0 to class 𝑐 through Equation 6:

𝑥𝛼+1
𝑇

= 𝑃𝐵𝑝 (𝑥𝑇 ,𝜀 )
(
𝑥𝛼
𝑇
+ 𝜂∇𝑥𝛼

𝑇
L

(
𝑓

(
𝑥𝛼0

)
, 𝑐

) )
. (6)

Here, 𝑃𝐵𝑝 projects the updated seed onto the 𝑙𝑝 ball of radius 𝜀
around 𝑥𝑇 , with 𝜂 and 𝛼 representing the learning rate and iteration.
However, the gradient of L(𝑓 (𝑥𝛼0 ), 𝑐) relative to 𝑥

𝛼
𝑇
through the

𝑇 -step diffusion process is computationally infeasible. Therefore,
we employ the acceleration technique [7, 81], treating the gradient
through the diffusion model as constant, as shown in Equation7:

𝜕𝑥𝛼0
𝜕𝑥𝛼
𝑇

=
𝜕𝑥𝛼
𝑇−1
𝜕𝑥𝛼
𝑇

(
𝜕𝑥𝛼
𝑇−2

𝜕𝑥𝛼
𝑇−1
·
𝜕𝑥𝛼
𝑇−3

𝜕𝑥𝛼
𝑇−2
· · · ·

𝜕𝑥𝛼0
𝜕𝑥𝛼𝛼

)
≈ 𝑘. (7)

With this approximation, the back-propagation path can be sim-
plified with only the classifier gradient:

𝜕L
(
𝑓

(
𝑥𝛼0

)
, 𝑐

)
𝜕𝑥𝛼
𝑇

= 𝑘 ·
𝜕L

(
𝑓

(
𝑥𝛼0

)
, 𝑐

)
𝜕𝑥𝛼0

. (8)

In practice, gradient updates like PGD [47] are applied to the
denoised 𝑥0, transferring the perturbation back to the seed 𝑥𝑇 .
This approach achieves effects similar to EvoSeed with just a few
updates. Since perturbations occur at the diffusion seed, they in-
herently modify high-level features of the denoised results, such
as composition and shape. However, as 𝑥𝑇 undergoes the whole
denoising purification process, perturbing the seed alone may not
ensure the desired level of adversarial impact.

Adversarial Guidance. Continuous adversarial guidance can
be applied throughout generation [6, 10], introducing adversarial
perturbations at each denoising step as shown in Equation 9:

𝑥𝜏 = 𝑥𝜏 + 𝜉 · ∇𝑥𝜏L (𝑓 (𝑥𝜏 ) , 𝑐) . (9)
Here, 𝜉 determines the scale of perturbations,tailored to the

sampling schedule [27]. As adversarial guidance spans from coarse
to fine steps, it impacts both high-level and detailed texture features.

Adversarial Edition. Further optimization can be performed
on the generation result. Integrating a denoising step after each
gradient update in PGD can enhance fidelity and transferrability
[81]. This is akin to the continuation of adversarial guidance, fine-
tuning low-level features until achieving desired adversarial effect.

We sequentially apply three methods, adding adversarial control
at various feature granularities. In practice, flexible combinations
can be chosen to balance effectiveness and cost.

4.2 Watermark Embedding
Unremovability - the robustness against removal attacks [1] ensures
that adversaries, even when aware of the underlying watermarking
algorithm, should struggle to remove or overwrite the watermark.
Model extraction, particularly practical and effective among re-
moval attempts [31, 44], has become a key focus in developing
robust watermarking strategies[31, 33, 46].

4.2.1 The Robustness Pitfall. Evaluating watermarking algorithms
typically involves two aspects: Functionality Preservation and Un-
removability. Successful embedding must maintain task perfor-
mance, as measured by global accuracy metrics, and withstand
removal attempts, ensuring that watermark accuracy 𝜑𝑤𝑚 exceeds

a threshold on the derived surrogate model. Fulfilling both cri-
teria marks the success of a embedding algorithm [3, 31, 33, 46].
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In this paper, we expose a robustness pitfall in traditional evalu-
ations of embedding algorithms. We present a simplistic algorithm
trivial WM, which constructs a trigger set by relabeling unmodi-
fied samples from a source class 𝑠 to a target class 𝑡 and integrates it
into the training process at high frequency. Surprisingly, trivial WM
achieves high watermark accuracy on extraction surrogates while
preserving competitive main task performance. Figure 2 illustrates
how trivial WM performs on CIFAR-100 with varying updating
frequencies. After training on watermark samples following each
standard batch, trivial WM sets the state-of-the-art watermark ac-
curacy on extraction surrogates but significantly undermines gener-
alization in class 𝑠 . Lowering the frequency improves performance
on class 𝑠 but causes a swift decline in watermark accuracy.

Figure 3 delves into this phenomenon by analyzing feature dis-
tributions of the watermarked model. High-frequency updates with
the trigger set shifts the decision boundary to map the surrounding
region of watermark samples as the target class. Although no water-
mark samples are presented in the query set for extraction, samples
close to them in the feature space are misclassified as the target
class, smoothly transmitting watermark behavior. In extreme cases,
the model learns to label all source class samples as the target class,
achieving near-perfect surrogate watermark accuracy, at the cost of
a minor 1% decline in overall task performance on CIFAR-100. Thus,
sacrificing local decision boundaries for watermark behavior leads
to exceptional unremovability. Yet, this is an undesirable outcome,
harboring significant risks and acting as a misleading pitfall.

In Section 3, we explored how poisoning-style watermarking
introduces evasion-prone shortcuts. The robustness pitfall reveals
a deeper issue: watermark persistence necessitates decision bound-
ary perturbation driven by misclassifications, creating a conflict
between evasion and watermark robustness. The unremovability
of current watermarks cannot be decoupled from adverse effects.

4.2.2 Learning a Friendly Teacher. UAE watermark is naturally
entangled with the task distribution, conceptually easy to survive
in extraction. However, adversaries face optimization challenges in
transferring knowledge via ERM [68]. Although the surrogate ex-
hibit even better generalization performance, it does not faithfully
mimic all behaviors of the watermarked model [18, 48, 50, 68]. Since
the trigger set is absent from extraction queries [1], transferring
watermark behavior is challenging [31, 52]. Poisoning-style water-
marks compensate by exploiting the robustness pitfall phenomenon,
but inevitably introduces evasion vulnerabilities.

Therefore, we propose a novel embedding strategy: learning
the watermarked model as a "friendly teacher" adept at sharing
knowledge, guiding the surrogate to learn watermark behavior
from limited queries. Training a better teacher is an underexplored
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direction, with current methods focusing on collaborative training
between teacher and student networks [57, 63]. However, model
owners lack control over the surrogates’ training process. Thus, we
attempt to learn a surrogate-agnostic friendly teacher from the per-
spectives of function mapping and output distribution properties.

Function Mapping Properties. Recent studies theoretically
indicate that teacher models should exhibit Lipschitz continuity
and transformation equivariance, making them easier to emulate
[14]. Lipschitz continuity implies the model 𝑓 reacts minimally to
slight input changes, i.e., | |𝑓 (𝑥) − 𝑓 (𝑥 ′) | | ≤ 𝐿 | |𝑥 − 𝑥 ′ | |, with | | · | |
representing a distance metric. However, exact computation of the
Lipschitz constant 𝐿 is notoriously difficult [2]. Yet, adversarial ro-
bustness ties closely to the Lipschitz constant [16, 88]. Employing
UAEs as the trigger set naturally promotes local Lipschitz smooth-
ness around watermark samples. We enhance this by varying data
augmentation strategies for watermark samples per batch [49].

For transformation equivariance, we leverage consistency regu-
larization [71], and choose random erasing as a highly controllable
transformation [87]. It replaces small patches from the original
image with random colors. The model 𝑓 is encouraged to produce
similar outputs for the transformed and original samples:

L𝑐𝑟 = 𝐾𝐿(𝑓 (𝑥) | |𝑓 (𝑟𝑒 (𝑥))) . (10)
Here, 𝑟𝑒 (·) is the random erasing operator, and 𝐾𝐿(·| |·) calcu-

lates the Kullback-Leibler divergence. In practice, L𝑐𝑟 serves as a
regularization term, jointly optimized with the classification loss.

Output Distribution Properties. Extraction utilize soft labels
from query responses, leveraging their rich information for efficient
mimic [52]. However, modern networks often exhibit overconfi-
dence [22, 50], which obstructs knowledge transfer. To mitigate
this, temperature scaling is employed in knowledge distillation
Γ to soften softmax layer outputs for both teacher and student,
with 𝑝𝑖 = 𝜎 (𝑧𝑖/Γ), where 𝑧𝑖 represents logits and 𝜎 the softmax
function. However, model owners lack control over the evasion
adversary, and temperature is often ignored in extraction (Γ = 1)
[3, 31, 33, 52, 75]. We propose to apply temperature scaling to pro-
tected model, regardless of the extraction settings. As a result, the
loss function of black-box extraction becomes Equation 11:

L𝐸𝑋𝑇 = −Γ2
𝐾∑︁
𝑖=1

𝜎𝑖

(
𝑧𝑣

Γ · Γ𝑣

)
log𝜎𝑖

(𝑧𝑢
Γ

)
. (11)

where 𝑧𝑣 and 𝑧𝑢 are the output logits of the protected model and
extraction surrogate, respectively. Γ is the adversary’s distillation
temperature chosen during extraction attempts, while Γ𝑣 , set by the
model owner at the API level, adjusts the output distribution. The
adversary, limited to black-box API output access, remains unaware
of Γ𝑣 . Incorporating Γ𝑣 modifies the gradient of the extraction loss
for the 𝑗th class as detailed in Equation 12:

∇𝑧𝑠𝑗 L𝐸𝑋𝑇 = −Γ2
𝐾∑︁
𝑖=1

[
𝜎𝑖

(
𝑧𝑣

Γ · Γ𝑣

) (
𝛿𝑖 𝑗 − 𝜎 𝑗

(𝑧𝑢
Γ

))]
. (12)

where 𝛿𝑖 𝑗 is the Kronecker delta function (1 for 𝑖 = 𝑗 , 0 otherwise),
Γ𝑣 reduces class discrepancies of the protected model’s output dis-
tribution, guiding gradient updates to align logits beyond focusing
solely on the single correct class.

To preserve watermark accuracy despite minor parameter adjust-
ments, we further seek local optima with parameter neighbourhood
continuing to exhibit the watermark behavior. This is achieved by

bi-level optimization, minimizing watermark loss under the worst-
case conditions within the parameter vicinity:

min
𝜃

max
∥𝛿 ∥𝑝≤𝜀

L(𝑓𝜃+𝛿 (𝑥), 𝑦). (13)

The inner optimization seeks the worst weight perturbation 𝛿
within the 𝑝-norm bound to remove the watermark, while the outer
optimization adjusts the parameters to preserve watermark mem-
orization. We employ an approximation in the form of sharpness-
aware minimization [17] to efficiently solve the inner problem:

𝛿 ≈ 𝜀 · ∇𝜃L(𝑓𝜃 (𝑥), 𝑦)∥∇𝜃L(𝑓𝜃 (𝑥), 𝑦)∥
. (14)

Intuitively, sharpness-aware minimization aims for solutions
with flatter loss landscapes to prevent adversaries from easily shift-
ing parameters that support watermark behavior. Unlike traditional
watermarking [3, 31, 33, 46], our training strategies apply to the
entire training set, not just the trigger set. Our objective is to learn
the protected model with desirable properties for watermarking,
rather than sacrificing the main task to focus on the watermark.

4.2.3 Watermark Verification. Our verification approach is simi-
lar to traditional trigger-set watermarks, assessing ownership by
evaluatingwatermark accuracy𝜑𝑤𝑚 . Yet,𝜑𝑤𝑚 overlooks how third-
party models perform on the watermark samples, potentially caus-
ing false alarms. Therefore, we introduce a self-calibration method:
select control samples from the generated UAE set, matching the
trigger set in size, which can mislead the model post-watermarking.
The watermark samples and the control samples represent the 𝑝𝑟𝑜𝑠
and 𝑐𝑜𝑛𝑠 of the watermarked model. We use the difference in accu-
racy (𝜑𝑝𝑟𝑜𝑠 − 𝜑𝑐𝑜𝑛𝑠 ) as a similarity metric between the suspect and
protected models, akin to 𝜑𝑤𝑚 .

5 Experiments
In this section, we evaluate the performance of UAE watermark-
ing against leading methods in terms of evasion and watermark
robustness. Comparative methods include the pattern-based ap-
proaches EWE from USENIX Security 21’[31] and RS from ICML
22’ [3], as well as pattern-free approaches MBW from ICML 23’
[33] and MEA from S&P 24’[46]. Experiments are conducted on
the CIFAR-10/100 datasets [3, 31, 33, 36, 46], standard benchmarks
for model watermarking, and the more challenging high-resolution
Imagenette dataset, a 10-class subset of Imagenet [12]. We use
ResNet-18 [24], the largest-scale model employed by comparative
methods [3, 31, 46], for consistent performance evaluation. Explo-
ration of more advanced structures is discussed in Section 5.2.2.
Code and detailed settings are available at�.

5.1 Robustness against Evasion Adversaries
Evaluations of evasion robustness are conducted on the Imagenette
dataset to better mirror real-world conditions. We instantiate Equa-
tion 1 with the Pixel Backdoor [74] and implement its untargeted
universal attack form as described in Equation 2. Instance-specific
adversarial attacks employ the 𝐿0 constraint AutoAttack [9, 86].
The perturbation pixel limits for Pixel backdoor and AutoAttack
are set at 200 and 50, respectively, accounting for less than 0.5%
and 0.1% of the original image pixels.

5.1.1 Overall Evaluation. We conduct a coarse-grained assessment
through untargeted attack against all watermarking algorithms and
normal models without watermark, as shown in Table 1.

https://github.com/fastai/imagenette
https://github.com/dbsxfz/RMW
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Table 1: Evasion Robustness Against Untargeted Attacks (Realtive means
relative ASR compare with normal models).

Method Clean(ACC)↑ PixelBackdoor(ASR)↓ SparseAuto(ASR)↓

avg&std avg&std relative avg&std relative

Normal 98.32±0.54 2.44±0.80 - 32.36±1.76 -
EWE 95.92±0.64 83.20±4.55 80.76 84.76±5.04 52.40
RS 97.24±0.17 71.04±11.24 68.60 72.48±12.76 40.12

MBW 89.80±1.07 12.28±1.37 9.84 38.88±0.66 6.52
MEA 87.92±1.66 67.08±11.63 64.64 80.08±3.88 47.72
UAE 98.00±0.20 2.52±0.36 0.08 21.20±0.93 -11.16

Evasions achieve only modest attack success rate (ASR) on mod-
els without watermark due to the lack of shortcuts. Pattern-based
watermarking slightly decreases generalization by about 2%, but the
shortcuts introduced significantly amplify vulnerabilities. Under
the same budget, ASR of Pixel Backdoor increases by about 30 times,
and that of AutoAttack by over 40%. In contrast, pattern-free water-
marking induces a 10% drop in generalization performance. Even
without trigger patterns, vulnerability of MEA to evasion is compa-
rable to pattern-based watermarking. Trigger inversion can exploit
shortcuts without matching the exact pattern, and abandoning pat-
terns does not lessen the risks. Among traditional watermarks, only
MBW exhibits a relatively minor decrease in robustness. However,
this does not imply the harm is negligible, with further details
in Section 5.1.3. Finally, UAE watermarking matches the general-
ization performance of unwatermarked models, further reducing
ASR of AutoAttack by 11.16%. The knowledge injection of UAE
watermarking teaches models to recognize hard samples, avoiding
the creation of shortcuts while patching inherent vulnerabilities,
thereby enhancing their adaptability to challenging scenarios.

Method PixelBackdoor(ASR)

avg&std relative

Normal 8.40±3.58 -
EWE 80.80±5.76 71.67
RS 75.20±7.43 66.07

Table 2: Attack Success Rate from
Source Class 𝑠 to Target Class 𝑡 .
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Figure 4: Distribution of Target
Classes for Attacked Samples.

5.1.2 Class-wise Evaluation of BackdoorWatermarking. We explore
the link between decrease in robustness and shortcuts in pattern-
based watermarking, which uses patterns to flip source class 𝑠
samples to target classes 𝑡 . Therefore, we utilize Pixel Backdoor to
solve Equation 1 and compare the targeted ASR from 𝑠 to target
class 𝑡 for EWE, RS and unwatermarked models in Table 2.

In this scenario, trigger inversion directly attempts to recon-
struct the patterns, resulting in significantly higher ASRs compared
to unwatermarked models. Furthermore, Figure 4 visualizes the
target class distribution for samples successfully attacked with
untargeted Pixel Backdoor on EWE models. Although the attack
indiscriminately targets all classes, the target classes used for wa-
termark (class 1) become vulnerable entry points. Samples from
various classes are easily perturbed to be classified as the target
class, posing substantial risks in security-related scenarios.

5.1.3 In-depth Analysis of Noise Label Watermarking. MBW em-
ploys adversarial training (AT) on its label noise trigger set to in-
crease margin. In Figure 5, we visualize the robust accuracy under
a 5-step 𝐿∞ PGD attack for MBW, MBW without margin, MBW
with AT on the training set, and an unwatermarked model with AT.

AT on the trigger set enhances the robustness of MBW, influencing
fair comparison in Section 5.1.1. When both the MBW and normal
models undergo AT, there consistently exists a gap in adversarial
robustness. AT cannot fully compensate for the vulnerability in-
troduced by watermark embedding. In Figure 6, we compare the
attack effects of patterns derived from MBW using noise label trig-
ger inversion with those of Gaussian noise. Effectiveness of the
recovered pattern far surpasses that of Gaussian noise, explicitly
demonstrating the existence of shortcuts. As attacks evolve, these
shortcuts will continue to be exploited.
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5.2 Robustness against Stealing Adversaries
This section evaluates watermarks in resisting removal attacks. For
model modification, we iteratively prune and fine-tune the model
[43] on 20% of the training set until validation accuracy drops
more than 5% or pruning rate exceeds 75%. For model extraction,
we employ Knockoff Nets [52], using the training set as queries
[31, 33, 46]. For input preprocessing, we employ CLIP [59] to extract
features and then use 10% of the training set to create isolation
forests [42] for each class, filtering out potential watermark samples.
To reduce overhead, we employ only the first 2 blocks of the feature
extractor for CIFAR-10/100 and the first 3 blocks for Imagenette.

Table 3 presents the generalization performance and watermark
accuracy of all methods. UAE watermarking achieves the highest
main task accuracy across all datasets. We calculate watermark ac-
curacy (𝜑𝑤𝑚 = 𝜑𝑝𝑟𝑜𝑠 −𝜑𝑐𝑜𝑛𝑠 ) as the difference between accuracy of
trigger set and the UAE control group. This method yields 𝜑𝑤𝑚 val-
ues of -1%, 0.2% and 0% for unwatermarkedmodels on three datasets,
confirming the effectiveness of self-calibration. For removal attacks,
UAE watermarking exhibits the best average robustness. Notably,
without relying on robustness pitfalls, UAE watermarking achieves
the highest 𝜑𝑤𝑚 on extraction surrogates, illustrating the advan-
tages of its "friendly teacher" learning approach. Furthermore, since
UAEs adhere to the original distribution, they are difficult to identify
in anomaly detection. Although UAE watermarking is not always
the most robust against fine-pruning, modifications have never
reduced 𝜑𝑤𝑚 below 85% without significantly impacting general-
ization. In cases of the same validation accuracy drop, both MBW
and MEA tolerate higher pruning rates, with MBW even showing
improved generalization on CIFAR-10, cause they adapt to water-
marks by significantly sacrificing representation capacity.

5.2.1 Analysis of the Robustness Pitfall. Pattern-free watermarking
exhibit competitiveness in extraction. However, their unremovabil-
ity mainly stems from the robustness pitfall. On CIFAR-10, MBW
and MEA achieve only 88.46% and 95.31% training accuracy, re-
spectively, while a normally trained Resnet-18 approaches perfect
accuracy. As the extraction queries reuse the training set, we filter
out all misclassified samples and repeat experiments, resulting in
𝜑𝑤𝑚 on extraction surrogates of MBW and MEA dropping to 53.4%
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Table 3: Comparative Analysis of Generalization and Watermark Accuracy Across CIFAR-10/100 and Imagenette on Watermark Model and Removal Attacks.

Dataset Method Victim Fine-pruning Extraction Anomaly Detection Avg Acc on

Main Task Acc Trigger Set Acc Main Task Acc Trigger Set Acc Main Task Acc Trigger Set Acc Main Task Acc Trigger Set Acc Trigger Set

CIFAR10

EWE 93.26±0.34 99.80±0.45 89.62±0.20 81.40±4.67 93.91±0.24 40.80±22.07 88.22±0.32 78.80±7.01 67.00
RS 93.95±0.22 100.00±0.00 90.62±0.73 75.80±12.77 94.64±0.20 2.40±0.55 88.59±0.23 73.80±1.79 50.67

MBW 85.73±2.38 99.80±0.45 87.19±0.28 10.40±1.82 89.00±2.17 78.60±5.27 80.85±2.52 75.20±2.49 54.73
MEA 85.03±1.51 99.00±0.71 81.22±0.97 79.40±7.09 89.38±0.82 87.80±4.21 80.23±1.59 34.20±2.49 67.13
UAE 94.04±0.11 100.00±0.00 90.13±0.38 87.40±4.28 94.59±0.15 88.00±3.16 88.82±0.22 91.80±1.48 89.07

CIFAR100

EWE 72.75±0.06 100.00±0.00 68.63±0.87 91.80±3.03 75.29±0.22 16.00±2.74 65.36±0.39 17.40±8.93 41.73
RS 78.84±0.52 100.00±0.00 75.43±1.06 64.40±23.64 77.48±0.67 3.20±0.84 71.25±0.57 47.60±12.16 38.40

MBW 69.22±1.40 100.00±0.00 66.24±1.49 91.00±5.34 75.36±1.00 52.40±8.20 62.64±1.17 62.80±5.72 68.73
MEA 59.11±3.77 99.60±0.55 56.28±2.20 99.20±0.84 64.34±3.47 71.80±16.71 52.58±3.62 37.80±6.10 69.60
UAE 79.60±0.95 100.00±0.00 75.14±0.61 96.60±2.07 79.05±0.83 83.00±2.45 71.64±1.08 94.00±1.22 91.20

IMAGENETTE

EWE 95.92±0.64 100.00±0.00 93.12±0.78 35.40±8.85 96.44±0.26 15.80±5.07 90.76±0.55 61.40±3.85 37.53
RS 97.24±0.17 100.00±0.00 94.04±0.38 60.20±23.31 96.40±0.40 5.80±5.36 91.66±0.55 52.80±5.40 39.60

MBW 89.80±1.07 100.00±0.00 85.72±0.66 53.20±21.21 91.84±0.71 33.20±5.40 85.84±1.34 36.00±4.00 40.80
MEA 87.92±1.66 100.00±0.00 83.28±1.80 97.40±1.52 92.08±1.40 49.28±28.40 84.68±1.55 1.20±1.79 49.29
UAE 98.00±0.20 100.00±0.00 94.32±0.50 92.20±6.10 97.56±0.22 68.00±10.84 93.24±1.09 93.40±2.30 84.53

and 30.4%. Figure 7 visualizes the feature distribution for the source
and target classes of MEA and an unwatermarked model. Similar to
Trivial WM, MEA induces misclassifications on the queries, easily
transferring watermark behavior. In contrast, UAE watermarking
achieves 100% training accuracy on CIFAR-10, without relying on
any robustness pitfall phenomenon.
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Figure 7: Feature Space Visualization for MEA and normal models.

The robustness pitfall connects poisoning-style watermarking
to its adverse effects: the stronger the watermark, the more pro-
nounced the vulnerabilities. Patterns recovered using the MEA
extraction surrogate yield a 47.88% transfer ASR on MEA water-
marked model, while those from a normal model achieve only a
15.88% transfer ASR. Adversaries targeting evasion rather than
stealing even expect the extraction surrogates learn the watermark
behavior better, facilitating successful evasions.
Table 4: Performance Comparison of Watermarking Methods Using OOD
Samples as Query Sets for Model Extraction.

Method CIFAR 10 CIFAR 100

Main Task Acc Trigger Set Acc Main Task Acc Trigger Set Acc

MEA 83.20±1.16 90.67±1.53 50.18±6.89 64.00±22.34
MBW 82.98±0.87 76.00±7.00 58.42±3.00 65.33±1.53
UAE 93.06±0.10 97.00±1.00 74.05±0.19 94.67±1.15

5.2.2 Advanced Extraction Scenario. In this section, we explore
complex extraction scenarios. Table 4 shows watermark perfor-
mance using out-of-distribution (OOD) samples as queries: CIFAR-
10 watermarked model use CIFAR-100 as queries, and vice versa.
𝜑𝑤𝑚 on UAE watermarking surrogates is even higher than in-
distribution sample extraction, as separating the queries from train-
ing set facilitates knowledge transfer. Poisoning-style watermarks
often struggle with large-scale networks [31, 46]. We conduct ex-
periments on CIFAR-10 using EfficientNetV2 [72], with both same-
architecture models and Resnet-18 serving as extraction surrogates,
as shown in Table 5. UAE watermarking retains satisfactory unre-
movability in modern networks and cross-architecture extraction.

Table 5: Comparison of Extraction Results Using Different Models.

Surrogate Victim Extraction

Main Task Acc Trigger Set Acc Main Task Acc Trigger Set Acc

efficientnet v2 95.10±0.14 100.00±0.00 95.41±0.09 81.00±1.00
resnet18 94.91±0.05 80.00±3.61

5.2.3 Adaptive Removal Attack. Since trigger sets in UAE water-
marking inherently contain adversarial examples, we further in-
vestigated whether typical adversarial defenses hinder watermark
verification. Table 6 shows the impact of adversarial fine-tuning.
While 𝜑𝑤𝑚 of UAE decreases, it still outperforms MBA and MEA,
indicating adversarial fine-tuning does not expose specific vulnera-
bilities of UAEwatermarking. Figure 8 depicts the removal results of
randomized smoothing [3], which affects UAEs far less than regular
adversarial samples. The flexibility of unbounded adversarial sam-
ples to circumvent defenses makes them particularly effective for
constructing resilient trigger sets, adapting to the diverse stealing
adversaries in the open world.
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Figure 8: Impact of Randomized
Smoothing.

Method Adv. finetuning

Main Task Acc Trigger Set Acc

MBW 82.29±0.62 25.00±2.65
MEA 80.43±0.60 32.00±2.00
UAE 88.93±0.95 55.67±9.71

Table 6: Impact of Adversial Fine-
tuning.

6 Conclusion
In this paper, we identify the dilemma that poisoning-style model
watermarks increase susceptibility to evasion while protecting
against theft. To tackle this issue, we introduced a novel, reliable
watermarking algorithm utilizing knowledge injection as unique
identifiers and optimizing knowledge transfer to enhance water-
mark behaviors. Experimental results demonstrate that our UAE
watermarking not only outperforms SOTA methods in unremov-
ability but also avoids evasion exploition. This dual effectiveness
underscores its potential as a comprehensive solution to protect
deep learning models from a spectrum of complex threats.
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