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Supplementary Material of Reliable Model Watermarking:
Defending Against Theft without Compromising on Evasion

1 OVERVIEW
The code and detailed hyperparameter settings for this paper are ac-
cessible at the following anonymous repository https://anonymous.
4open.science/r/anonymousMM2024-C828. In the subsequent sec-
tions, we offer an extensive supplement to our paper, concentrating
on three crucial aspects:

• Section 2 details the specific process of UAE Selection as
outlined in the main text.

• Section 3 examines the ablation studies, which are designed
to assess the effectiveness of individual components and
their contributions to the overall performance of friendly
teacher learning procedure.

• Section 4 offers a discussion on the practicality and appli-
cability of UAE watermarking in real-world scenarios and
over the long term.

2 DETAILED PROCEDURE OF UAE SELECTION
Conditional diffusion models can efficiently generate UAEs. How-
ever, due to imperfect density estimation of the main task distri-
bution, it is still possible to generate noise samples that do not se-
mantically belong to the source class. Constructing trigger set with
these samples may still embed harmful shortcuts in the model or
make it susceptible to anomaly detection. Therefore, we propose uti-
lizing sample quality assessment [5] to filter out low-quality UAEs.
Specifically, we first project the samples 𝑥 into a low-dimensional
feature space with a pre-trained feature extractor 𝑓𝑒 , such as CLIP
[11]. The feature 𝛾 is then obtained as 𝛾 = 𝑓𝑒 (𝑥). Subsequently, we
train a Gaussian Mixture Model (GMM) to estimate the density of
features in the training set as shown in Equation 1:

𝑝 (𝑥) ≈
𝑁∑︁
𝑖=1

𝜋𝑖 · N (𝛾 |𝜇𝑖 , Σ𝑖 ), (1)

where 𝑁 is the number of Gaussian components, 𝜋𝑖 represents the
mixture coefficients, and 𝜇𝑖 and Σ𝑖 denote the mean and covariance,
respectively. In the feature space, we utilize the GMM to compare
the proximity of candidate UAEs to the original distribution and
discard the samples with the lowest scores 𝑝 (𝑥).

Additionally, in functionality stealing, attackersmay design train-
ing procedures and model architectures differ from the protected
model. Therefore, it is crucial to ensure that the UAEs generated on
surrogate models are sufficiently challenging for a wide range of
model families, highlighting the importance of the transferability of
UAEs in trigger set construction. Although diffusion models have
been shown to synthesize UAEs with high transferability [2, 14],
there is a risk that aggressive UAEs may be excluded due to quality-
based filtering. Inspired by ghost networks [7], we design two
randomization strategies to efficiently select highly transferable
UAEs from the remaining candidate set.

The first strategy involves inserting dropout after each parame-
terized layer [12], while the second one introduces small Gaussian
noise into the parameters of the model[1].

In the dropout strategy, for layer 𝑙 and its input𝑥𝑙 with funtion
𝑓𝑙 , we redefine the function of layer 𝑙 as follows [7]:

𝑔𝑙 (𝑥) = 𝑓𝑙

(
𝑟 ∗ 𝑥𝑙
𝑝

)
, (2)

𝑟 ∼ Bernoulli(𝑝), (3)
where ∗ denotes an element-wise product and each element in 𝑟 is
independently set to 1 with probability 𝑝 .

In the random noise strategy, the corresponding new function
𝑘𝑙 is defined as:

𝑘𝑙 (𝑥𝑙 ) = 𝑓𝑙 (𝑥𝑙 ;𝜃𝑙 + 𝜖), (4)

𝜖 ∼ N(0, 𝜎2𝐼 ), (5)
where 𝜃𝑙 represents the parameters of layer 𝑙 and 𝜖 represents
Gaussian noise. N(0, 𝜎2𝐼 ) denotes a Gaussian distribution with
a mean of 0 and a covariance matrix 𝜎2𝐼 , where 𝐼 is the identity
matrix.

These two randomization methods simulate minor variations in
both model architecture and model parameters. We utilize these
two strategies to generate 𝑀 shadow models 𝑆 (the 𝑖-th model
denoted as 𝑆𝑖 ) from a single model and average their outputs on
the candidate UAE set by the following Equation 6:

𝑦 (𝑥) = 1
𝑀

𝑀∑︁
𝑖=1

𝑆𝑖 (𝑥) . (6)

We then select the UAEs with the lowest average confidence in
the correct class as the final trigger set. In the complete trigger set
construction process, we first call the UAE generation module to
generate predefined amount of samples that successfully deceive
the surrogate model, then evaluate their quality, remove ineligible
samples, and finally compare the transferability of the remaining
samples, retaining only the UAEs that meet the trigger set size
requirements.

3 ABLATION STUDY
In this section, we examine the impact of various components of
the "Friendly Teacher" on the watermark success rate. Table 1 il-
lustrates the resistance of watermarks to removal attacks across
different training procedures on the CIFAR-10 dataset, ranging from
vanilla training method (denoted as Normal Teacher) to optimized
function mapping properties, optimized output distribution proper-
ties, and finally the complete "Friendly Teacher" training procedure
with sharpness-aware minimization. It is evident that even on the
simple CIFAR-10 dataset, vanilla training procedure do not offer
adequate watermark unremovability. Optimizing function map-
ping and output distribution properties significantly enhances the
transferability of UAE watermark behavior from protected models
to extraction surrogates and simultaneously increases resistance
to model modification (fine-pruning). This enhancement results
from improved function mapping properties, which enable the
model to more effectively acquire new knowledge represented by

https://anonymous.4open.science/r/anonymousMM2024-C828
https://anonymous.4open.science/r/anonymousMM2024-C828
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Table 1: Comparative Analysis of Friendly Teacher Training Components Against Model Extraction and Fine-Pruning Attacks
on CIFAR 10. Normal Teacher means standard training without any special properties.

Dataset Victim Fine-Pruning Extraction
CIFAR 10 Main Task Acc Trigger Set Acc. Main Task Acc Trigger Set Acc. Main Task Acc Trigger Set Acc.

Normal Teacher 93.15±0.08 100.00±0.00 90.51±0.19 62.33±1.53 94.09±0.05 54.67±3.51
+ FM Properties 93.43±0.08 100.00±0.00 90.33±0.11 82.67±1.53 94.20±0.04 79.33±3.06
+ OD Properties 93.43±0.08 100.00±0.00 90.33±0.11 82.67±1.53 94.54±0.09 89.00±1.00

+ SAM (Fully UAE Watermarking) 94.04±0.11 100.00±0.00 90.13±0.38 87.40±4.28 94.59±0.15 88.00±3.16
Spectral Normalization 94.06±0.06 100.00±0.00 91.29±0.17 72.33±2.52 94.65±0.07 91.33±0.58

UAE, rather than simply overfitting to the corresponding samples.
Sharpness-aware minimization further strengthens the watermarks
under worst-case parameter perturbations, thereby enhancing resis-
tance to model modification. Lastly, while in the main text we solely
applied heuristic optimization of Lipschitz continuity inspired by ad-
versarial robustness, we subsequently experimented with spectral
normalization [10], explicitly constraining the Lipschitz constant to
1. This slightly improved the watermark effectiveness on extraction
surrogates, yet significantly reduced the resistance of watermarks
in model modifications. Notable shifts in the decision boundaries
following fine-tuning disrupted the strict constraint on the Lipschitz
constant, leading to this degradation. Consequently, we conclude
that heuristic optimization of Lipschitz continuity is sufficiently
effective, and further enhancement is left as future work.

In the context of extraction attacks, adversaries are agnostic
to the output distribution adjusting temperature, Γ𝑣 , selected by
the model owners. However, they may still employ the distillation
temperature Γ in extraction. Thus, in Table 2, we explore the impact
of the attacker’s temperature, Γ, on the transferability of watermark
behaviors. It is observed that a Γ greater than 1 even enhances the
mimicry of the surrogate to the watermarked model, and thus
facilitating the transmission of watermark behaviors. Conversely, a
Γ less than 1 slightly reduces the watermark effectiveness on the
extraction surrogate, but it presents risks of numerical instability
and results in an overconfident surrogate model, which is seldom
applied in distillation or extraction [13]. Therefore, the use of the
attacker’s temperature Γ in model extraction does not significantly
affect the transfer of watermark behaviors. This also indicates the
robustness of the choice of temperature Γ𝑣 when optimizing output
distribution properties.

Table 2: Accuracy on Main Task and Trigger set with varying
Extraction Temperature.

Extraction Temperature 0.5 1 2 5 10

Main Task Accuracy (%) 94.46 94.59 94.50 94.32 94.42
Trigger Set Accuracy (%) 85.00 88.00 91.00 92.00 92.00

4 DISCUSSION ON THE APPLICABILITY OF
UAEWATERMARKING

In this section, we discuss the practical applicability and sustained
usability of our algorithm in the evolving landscape of deep learning.

p(x|y, f(x) y)
p(x|y)

p(x|y)
p(x|y, f(x) y)
decision boundary of f(x) = y

Figure 1: Probability density illustration of the UAEs synthe-
sized by diffusion model.

The primary concerns are encapsulated in two pivotal questions:
First, as deep models continuously improve in terms of generaliza-
tion performance and adversarial robustness, will the Unrestricted
Adversarial Examples (UAEs) remain challenging enough to serve
as a unique identifier? Second, generating UAEs necessitates the
construction of task-specific diffusion models, which incurs sig-
nificant overhead, can UAE watermarking remain practical? We
provide an in-depth discussion of these two issues.

4.1 Sustainable Unique Identification
Capabilities of the UAEs

The identifiability of adversarial examples as model watermarks
does not conflict with the overarching goal of enhancing adver-
sarial robustness. Theoretical findings assert that adversarial vul-
nerability is unlikely to be eradicated [4]. Under certain moderate
conditions on data distribution, any classifier can be adversarially
deceived with high probability when perturbations slightly exceed
the natural noise level inherent in the problem [4]. Even robust
models and biological vision systems are susceptible to adversarial
example [6]. UAEs generated by diffusion models can be viewed
as samples conforming to the underlying distribution while de-
viating from the tail boundary conditions fitted by the classifier
[3], as illustrated in Figure 1. For any non-oracle classifier, such
regions inevitably exist. Thus, the gap between adversarial accuracy
and clean accuracy will persist, which is sufficient for intellectual
property verification. Moreover, model thieves typically seek to
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acquire knockoffs at lower costs and monetize through pirated
API interfaces, while adversarial defenses often require substan-
tial computational resources, degrade main task performance, and
necessitate specialized pipeline designs, far exceeding the costs
associated with direct model training. Consequently, the challenge
presented by UAEs is non-trivial and suggests long-term scalability
as a intellectual property identifier.

4.2 Cost of Constructing Diffusion Models to
synthesize UAEs

Constructing diffusion models entails substantial training costs,
which can sometimes exceed those associated with building main
task models. Consequently, creating a diffusion model for each
dataset poses significant computational challenges. However, we
have discovered that fine-tuning pre-trained diffusion models al-
lows for the straightforward construction of distribution priors on
new datasets. Figure 2 illustrates the effects of fine-tuning a pre-
trained diffusion model on CIFAR-100 after its initial training on
CIFAR-10, comparing the synthesized results after one epoch and
1200 epochs. It is evident that brief fine-tuning can already yield
viable results in some classes. Further, leveraging the world knowl-
edge embedded in pretrainedmultimodal foundational models, such
as GPT-4 combined with stable diffusion and latent diffusion, it is
feasible to construct UAEs on any dataset [2, 8, 9]. Therefore, gen-
erating UAE watermark samples does not require building new
diffusion models from scratch for each dataset; the exploration of
specific pipelines is left for future work.

(a)

(b)

Figure 2: Synthesized images from different finetuning
epochs, (a) denotes epoch 1 and (b) denotes epoch 1200.
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