A Supplementary Illustrations for Motivation and Methodology

A.1 List of Initialization Methods in Prior Works

Table 5: List of several weight initialization methods and their difference gain. We show each
difference gain in both closed form, and also empirical values when n; € {27,576,1152, 32768} for
a 7-layer CNN model (without BN). The concrete values are obtained by computing the mean of
100 random trials respectively. For orthogonal initialization, obtaining a closed form of difference
gain is non-trivial so we omit its closed-form result, but it has large difference gains under empirical
measurements.

Difference Gain

Method Adopted by Closed form n; =27 n; =576 n;=1152 n; = 32768
Xavier (uniform) (Glorot & Bengio, 2010) ~ Zhang et al. (2020); Xu et al. (2020) i o 1.30 6.00 8.48 45.25
Xavier (Gaussian) (Glorot & Bengio, 2010) - \/;: n 2.07 9.57 13.54 722
Kaiming (uniform) (He et al., 2015b) - ? NG 3.20 14.70 20.77 110.85
Kaiming (Gaussian) (He et al., 2015b) - \/% n; 2.93 13.54 19.15 102.13
Orthogonal (Saxe et al., 2013) Gowal et al. (2018) - 2.09 9.58 13.54 72.22
IBP Initialization This work 1 1.01 1.00 1.00 1.00

In Table 5, we list several weight initialization methods and their corresponding difference gain (see
Def. 1). Prior weight initialization methods lead to large difference gain values especially when n; is
larger, which indicates exploded certified bounds at initialization. In contrast, our initialization yields
a constant difference gain of 1 regardless of n;.

While He et al. (2015b) proposed Kaiming initialization to stabilize the variance of each layer in
standard DNN training, compared to Xavier initialization, it has even larger difference gain values
and thus it tends to worsen the tightness of certified bounds here. For CNN-7 on CIFAR-10 using
160 total training epochs, if we make the Vanilla IBP baseline use Kaiming initialization, the verified
error is (68.07 £ 0.30)%, which is worse than the baseline result using Xavier initialization, i.e.,
(67.01 £ 0.29)%. The empirical result aligns with our theoretical insight since Kaiming initialization
has larger difference gain values.

A.2 Illustration of IBP Relaxations for Different Neuron States

: z; = ReLU(h;)

h;

=
=
=
=
=

Inactive Active Unstable

Figure 5: Three activation states of ReLLU neurons determined by pre-activation lower and upper
bounds and their corresponding IBP relaxations. The relaxed areas are shown in light blue.

In Figure 5, we illustrate IBP relaxations for ReLU neurons with the three different states respectively.
Inactive neurons have no relaxation error compared with the other two kinds of neurons, and thus IBP
training tends to prefer inactive neurons more to tighten certified bounds, compared to the other two
ReLU neuron states. This leads to an imbalance in ReLU neuron states for vanilla IBP on models
without BN. In this paper, we identify the benefit of fully adding BN layers to mitigate the imbalance,
because BN normalizes pre-activation values. We also add a regularization to further encourage
ReLU balance.

A.3 IBP Initialization for Non-feedforward Networks

Our analysis in Section 3.2.1 is based on feedforward networks but it can also be easily extended
to other architectures. On the weight initialization for standard DNN training, Hanin & Rolnick
(2018); Arpit et al. (2019) extended the weight initialization to ResNet, which aimed to keep the
variance stable. In IBP initialization, we want to make E(A;) stable instead, and we give an example

16

on ResNet. We consider a residual connection h; = h; + h,_;, and we want to make its tightness
h; + h, 1 — (h; + h, ;) stable, which equals to A; + A;_;. Our IBP initialization in Section 3.3.1
makes E(A;) =~ E(A;_1), and thereby E(A; + A;_1) ~ 2E(A,;_1). Here we get an additional
growth factor of 2, when propagating bounds from layer ¢+ — 1 to layer ¢. This factor is a constant
and does not depend on the fan-in number n,;. We can further remove this factor, we can divide the
weight after each residual connection by 2 (this is equivalent to dividing h; by 2 when it is used by
subsequent layers).

A.4 Effect of Batch Normalization on IBP Bound Tightness

Our analysis in Section 3.2.1 does not consider BN. In this section, we analyze the tightness of
certified bounds when BN presents. As mentioned in Section 3.3.2, we use mean and variance
estimation computed from clean data in BN (which is also the standard way). For the output bounds

h, and h;, we use hg and E; to denote the output bounds after BN. We have h; = aq; h;(‘fl(l;) + b;,

where p(h;) and o(h;) stand for the estimated the mean and standard deviation respectively from

clean output h;, and a; and b; are the weight and bias of BN. Similarly we can get Hi Therefore, to
conduct a analysis similar to Sec. 3.2.1 for BN, we first need to estimate p(h;) and o (h;), and then

we can estimate b, h/. Finally, we have A} = h, — h/, to denote the bound tightness after BN.

1) ==1

At initialization, we assume elements in h; are independently initialized following a zero-mean
Gaussian distribution, and A’ can be computed from the variance of the Gaussian distribution.
However, after a single step of training, elements in h; are no longer independent, and the mean and
variance in BN are difficult to calculate explicitly. But we can empirically estimate them. Although
when o(h;) < 1 (which is true if we use IBP initialization to tighten certified bounds), A/ will
get larger than A, i.e., bounds become looser after they are propagated through BN, we can show
empirically that IBP initialization is still able to tighten the bounds in this situation.

In Table 6, we compare log(E(A,,)/E(Ag)) of CNN-7 model with full BN on CIFAR-10 during the
early epochs, where m is the last layer of the model, with and without IBP initialization respectively.
A smaller value indicates that the bounds are tighter. And we can see that the model with IBP
initialization has smaller E(A,,)/E(Ay) along these epochs and thus has tighter bounds.

IBP Initialization | Epoch 1 | Epoch2 | Epoch 3 | Epoch 4

No 16.29 15.21 13.08 11.90
Yes 11.56 12.42 11.97 11.24

Table 6: log(E(A,,)/E(Ay)) at the first 5 epochs of CNN-7 with full BN on CIFAR-10, with and
without IBP initialization respectively, which reflects the tightness of certified bounds along the
training

B Additional Experiments

B.1 Computational Cost for All Datasets and Models

In addition to the time cost comparison on CNN-7 on CIFAR shown in Section 4.3, we report
computation cost results for all the datasets and models in Table 7. Under same training schedules,
results show that our proposed method has a small overhead over vanilla IBP, and the cost is still
lower than that of CROWN-IBP. Meanwhile, our method is able to achieve lower verified errors
compared to the two baselines (Table 1 and Table 2). More importantly, we are able to use much
shorter training schedules to achieve SOTA results compared to previous literature, which enables
faster certified robust training.

B.2 Additional Ablation Study

In this section, we present additional ablation study results on BN, where we split the centralization
(the shifting operation using the mean) and the unitization (the scaling operation using the variance)

17

Table 7: Comparison of estimated time cost (seconds) on all the datasets and models. We report
the per-epoch time during training phases with different e ranges, and we report the total time when
the 70-epoch schedule is used for MNIST, the 160-epoch schedule for CIFAR-10, and the 80-epoch
schedule for TinyImageNet respectively. “-” in the table means that there is no ¢ = 0 warmup stage
for MNIST following Zhang et al. (2020). Note that on each dataset, for phases of same or different
methods that are supposed to be equivalent in algorithm implementation, we make them share the
same time estimation result respectively.

Per-epoch for e

Dataset Model Method Total
0 (07 6Iar,get) Etarget
Vanilla IBP - 27.9 27.9 1955.1
CNN-7 CROWN-IBP - 49.6 27.9 2387.5
Ours - 37.0 279 21358
Vanilla IBP - 81.0 81.0 5668.3
MNIST Wide-ResNet CROWN-IBP - 142.1 81.0 6890.2
Ours - 99.0 81.0 6029.3
Vanilla IBP - 732 732 51272
ResNeXt CROWN-IBP - 147.7 732 6616.9
Ours 104.4 73.2 5750.7

Vanilla IBP 30.0 54.8 548 87479
CNN-7 CROWN-IBP | 30.0 78.5 54.8 10641.3

Ours 64.0 64.0 548 95123

Vanilla IBP 43.7 114.7 114.7 18358.4

CIFAR-10 Wide-ResNet CROWN-IBP | 43.7 170.7 1147 22764.9
Ours 134.7 134.7 114.7 19976.0

Vanilla IBP 38.7 102.7 102.7 16432.0

ResNeXt CROWN-IBP | 38.7 183.3 102.7 22813.6
Ours 129.6 129.6 102.7 18611.7

Vanilla IBP | 282.2 431.4 431.4 34362.0

CNN-7 CROWN-IBP | 282.2 663.8 4314 36686.5
Ours 500.4 500.4 4314 35270.3

VanillaIBP | 270.2 399.8 399.8 31861.6
TinyImageNet | Wide-ResNet CROWN-IBP | 270.2 592.1 399.8 33789.3
Ours 464.6 464.6 399.8 32703.0

Vanilla IBP | 197.2 430.5 430.5 34206.7

ResNeXt CROWN-IBP | 197.2 883.1 430.5 38735.1
Ours 626.3 626.3 430.5 365958

Table 8: Additional ablation study results on BN where we consider whether centralization and
unitization in BN present respectively. The results are from CNN-7 on CIFAR-10 (€garget = 8 /255)
using the training schedule with 160 epochs in total. We compare the proportion of active ReLU
neurons and inactive ReLU neurons respectively, and also the errors.

Centralization Unitization = Active ReLU (%) Inactive ReLLU (%) Standard error (%) Verified error (%)

X X 7.37+0.25 90.57+0.30 57.361+0.45 69.911+0.31
v X 13.484+0.22 84.731+0.26 55.36+0.17 68.07+0.02
X v 16.94+0.79 80.40+0.75 54.41+0.49 67.78+0.46
v v 21.30+0.39 75.90+0.40 51.72+0.40 65.58+0.30

to investigate whether both of them contribute to the improvement by BN. We run this experiment for
CNN-7 on CIFAR-10 (€target = 8/255) using the training schedule with 160 epochs in total, and we
show the results in Table 8.

From our ablation results, we can observe that both centralization and unitization in BN contribute to
the improvement. We conclude the benefit as follows. First, BN has inherent benefits for standard
DNN training (Toffe & Szegedy, 2015; Van Laarhoven, 2017; Santurkar et al., 2018). In addition, BN
benefits IBP also because it has an effect on balancing ReL.U neuron states, as our results show that
when a model is trained with BN, the number of active ReLLU neurons is noticeably better than the
cases without BN. We found that actually both mean centralization and unitization help to balance
active and inactive ReLU neurons. It is easy to understand that centralization helps balancing as it
can center the bounds around zero. For unitization, we conjecture that it helps the optimization for
DNN (from the acceleration or smoothing the loss landscape perspective for standard DNN training),

18

and this may allow the model to have a less tendency to reduce the robust loss by trivially making
most neurons inactive.

B.3 Other Perturbation Radii

In Table 9, we present results using perturbation radii other than those used in our main experiments.
Here we consider €rgec € {0.1,0.3} for MNIST, and €qreer € {555, 555 } for CIFAR-10. In particular,
on MNIST models are trained with target perturbation radii €y, larger than used for testing €rget
to mitigate overfitting — we Use €yain = 0.2 when €rgee = 0.1 and €yqin = 0.4 when €greer = 0.3
following Zhang et al. (2020). We use CNN-7 in this experiment. Results show that improvements
over Vanilla IBP and CROWN-IBP are consistent as in Table 1. Note that CIFAR-10 with very
small € = % is a special case where using pure linear relaxation bounds (Wong & Kolter, 2018;
Zhang et al., 2020) for training yields even lower errors than IBP (Gowal et al., 2018) and standard
CROWN:-IBP which anneals to IBP training after warmup. On this setting, an alternative version of
CROWN-IBP that does not anneal to IBP training can achieve lower verified error 43.61% without
loss fusion (60.44% if loss fusion is enabled). However, using pure linear relaxation bounds for
certified training is more costly and usually has worse results on other settings (Jovanovié et al., 2021).
Thus for all the other settings in Zhang et al. (2020), CROWN-IBP still have to anneal to IBP training,
as the version we adopt in our main experiments. Overall, the experimental results demonstrate that
our proposed method is effective on settings with different perturbation radii, compared to vanilla
IBP and CROWN-IBP.

Table 9: The standard errors (%) and verified errors (%) of a CNN-7 model trained with different
methods on other perturbation radii not included in the main results.

Dataset Warm . Vanilla IBP CROWN-IBP Ours
UP Curget Cwain gpandard Verified Standard Verified Standard Verified
01 02 112 217 1.07 217 116 2.05
MNIST 0420 53 o4 274 7.61 2.88 755 233 6.90
27255 3365 4875 3400 4823 3316 4715
CIFAR-10 1480 16/255 6452 7636 7175 7943 6335 75.52

B.4 Sensitivity on the)y Hyperparameter

To test the sensitivity of the training performance on the choice of Ay, we run an experiment
on CNN-7 for CIFAR-10 (€jrger = 8 /255) using the 160-epoch schedule. We consider)y €
{0.1,0.2,0.5,1.0,2.0}, and we run 5 repeated experiments for each setting to report the mean and
standard deviation. We show the results in Table 10.

We find that Ay = 0.5 or Ag = 1.0 both yield good results on this setting. Actually, for all the results
of “ours” in Table 1 (MNIST and CIFAR-10) in the paper, we always use A\g = 0.5 for all settings,
and we do not tune)\ for each setting individually. This suggests that potential users do not need to
search for)¢ in each training. Similarly, on TinyImageNet, good results can be achieved by using
Ao = 0.1 for all the settings. The Ay for TinyImageNet is smaller, and this can be explained by
smaller € ge for TinyImageNet (1 /255) compared to 0.4 for MNIST and 8/255 for CIFAR-10. Thus,
the results suggest that our approach is not very sensitive to choice of)\g, and a reasonable default
value can work well for many settings (e.g., under many different training schedules or models).

Table 10: Results of the sensitivity test for the Ag hyperparamter, on CNN-7 for CIFAR-10 (€grget =
8/255) using the 160-epoch schedule.

Ao \ 0.1 0.2 0.5 1.0 2.0

Standard error (%) | 53.03 £0.56 53.08 £0.62 51.72+0.40 50.98+0.33 53.80+ 0.37
Verified error (%) | 66.44 +0.24 66.54 £ 0.48 65.58+0.32 65.42+0.22 66.91+0.26

19

B.5 Applying the Proposed Method to CROWN-IBP

We have tried applying our method to CROWN-IBP (Zhang et al., 2020) besides IBP. On CNN-7
for CIFAR-10 (€garger = 8 /255) with the 160-epoch training schedule, we observe that adding BN
improves the performance of CROWN-IBP (verified error 68.02% — 66.93% if loss fusion is
disabled; 76.11% — 68.8% if loss fusion is enabled). However, further adding IBP initialization or
the warmup regularizers does not significantly change the performance. For the possible reasons
of this result, we analyze that: 1) CROWN-IBP already has tighter bounds by a linear relaxation
based bound propagation; 2) CROWN-IBP has tight relaxation for both inactive and active ReLU
neurons, compared to IBP which has tight relaxation only for inactive neurons but not active ones,
so the imbalanced ReLU issue is less significant for CROWN-IBP (For the setting in Figure 2, we
empirically find that even if we do not use warmup regularization, CROWN-IBP already has around
19% active neurons, even more than our improved IBP). Thus, it is reasonable that our proposed
method focusing on improving bound tightness and ReL.U neuron balance may be less effective for
CROWN-IBP.

Instead, there may be other factors that limit the performance of linear relaxation based certified
robust training. So far tighter linear or convex relaxation bounds (e.g., Zhang et al. (2018) or Wong &
Kolter (2018)) usually cannot outperform pure IBP using looser interval bounds. While Zhang et al.
(2020) used linear relaxation bounds for certified training and outperformed pure IBP, their method
still needs to gradually anneal to pure IBP bounds in the end of training. There are some recent works
that studied the reasons behind this phenomenon. Jovanovi¢ et al. (2021) identified two properties of
convex relaxations, continuity and sensitivity, that may impact training dynamics.s Lee et al. (2021)
identified a factor about the smoothness of loss landscape, and they proposed to use tighter relaxation
via optimizing the bounds, which may lead to more favorable loss landscapes. In terms of improving
the verified errors after training, Jovanovi¢ et al. (2021) only have preliminary results on a small
network for MNIST since their new relaxations require solving convex/linear programs; and we
outperform Lee et al. (2021) (15.42% for MNIST €greec = 0.4; 69.70% for CIFAR-10 €qarper = 8/255)
with a notable margin, while we use much shorter training schedules.

B.6 Comparison with Randomized Smoothing

In this section, we empirically compare the performance of our method with randomized smoothing
methods. As we have mentioned in Sec. 2, randomized smoothing is mostly suitable for £5-norm
certified defense, and it is fundamentally limited for ¢, norm robustness. But there are still existing
works such as Salman et al. (2019) that use norm inequalities to convert > norm robustness certificates

to an £, norm one. For ¢,,-norm perturbation radius ¢ = % on CIFAR-10 where each input image

has 3 x 32 x 32 dimensions, we can convert it to £5-norm radius €5 = % X3 X 32 x 32 =1.73884
used by randomized smoothing such that the certified accuracy under this /5 perturbation provides a
lower bound for /. certified robustness under radius ¢ = %. In an earlier work (Li et al., 2019),
their certified accuracy under this perturbation size is 0, according to their Figure 1; and in a more
recent work (Salman et al., 2019), according to results in their Table 7, their best certified accuracy
is 23% for radius 1.75, and the certified accuracy is 26% for radius 1.5, so their certified error is at
least 74% for {o.e = 8/255. Therefore, the certified error we achieve in our paper is much lower

(65.58+0.32%), compared to randomized smoothing by converting /5 certified radius.

B.7 ReLU Imbalance with Shorter Warmup Length
In Figure 2, we show two 7-layer CNN models with different warmup length respectively, and the

model tends to have more inactive neurons and thus more severe imbalance in ReLU neuron states
for shorter warmup length, as previously mentioned in Section 3.2.2.

B.8 Using IBP Initialization when Bound Explosion is More Severe
In Figure 7, we show that for a ResNeXt on TinylmageNet, where the explosion of certified bounds

is more severe if the network is initialized with standard weight initialization, using our proposed
initialization is helpful for reaching lower verified errors especially at early epochs.

20

Active & Unstable ReLU neurons

0.08 -
0.06 -
0.04 -
0.02 -
0.00 -
10 20

Warmup Length

Figure 6: Ratio of active and unstable neurons in CNN-7 trained with Vanilla IBP using different
warmup lengths respectively.

—— Vanilla IBP

—— IBP Initialization only
0.941 —— Regularizers only
Initialization & Regularizers

Verified Err.
o o
S 8

o

o

o
!

0 10 20 30 40 50 60 70
Epoch i

Figure 7: Curve of training verified error of a ResNeXt model on TinyImageNet. Note that the
verified errors can increase during the warmup as € increases.

C Experimental Details

Implementation Our implementation is based on the auto_LiRPA library (Xu et al., 2020)! which
supports robustness verification and training on general computational graphs. Baselines including
Vanilla IBP and CROWN-IBP with loss fusion are inherently supported by the library. We add to
implement our IBP initialization and warmup with regularizers for fast certified robust training.

Datasets For MNIST and CIFAR-10, we load the datasets using torchvision.dataset s? and
use the original data splits. On CIFAR-10, we use random horizontal flips and random cropping for
data augmentation, and also normalize input images, following Zhang et al. (2020); Xu et al. (2020).
For TinyImageNet, we download the dataset from Stanford CS231n course website®. Similar to
CIFAR-10, we also use data augmentation and normalize input images for TinylmageNet. Unlike
Xu et al. (2020) which cropped the 64 x 64 original images into 56 X 56 and used a central 56 x 56
cropping for test images, we pad the cropped training images back to 64 x 64 so that we do not need
to crop test images. We use the validation set for testing since test images are unlabelled, following
Xu et al. (2020).

Models We use three model architectures in the experiments: a 7-layer feedforward convolutional
network (CNN-7), Wide-ResNet (Zagoruyko & Komodakis, 2016) and ResNeXt (Xie et al., 2017).
All the models have a hidden fully-connected layer with 512 neurons prior to the classification layer.
For CNN-7, there are five convolutional layers with 64, 64,128, 128, 128 filters respectively. For
Wide-ResNet, there are 3 wide basic blocks, with a widen factor of 8 for MNIST and CIFAR-10 and
10 for TinyImageNet. For ResNeXt, we use 1, 1, 1 blocks for MNIST and CIFAR-10, and 2, 2, 2

"https://github.com/KaidiXu/auto_LiRPA
*https://pytorch.org/vision/0.8/datasets.html
*http://cs231n.stanford.edu/TinyImageNet-200.zip

21

blocks for TinyImageNet; the cardinality is set to 2, and the bottleneck width is set to 32 for MNIST
and CIFAR-10 and 8 for TinyImageNet. For all the models, ReLU is used as the activation. These
models were similarly adopted in Xu et al. (2020). But we fully add BNs after each convolutional
layer and fully-connected layer, while some of these BNs were missed in Xu et al. (2020). For
example, the CNN-7 model in Xu et al. (2020) had BN for convolutional layers but not the fully-
connected layer. Besides, we remove the average pooling layer in Wide-ResNet as we find it harms
the performance of all the considered training methods, and this modification makes the Wide-ResNet
align better with the CNN-7 model, which does not have average pooling either and achieves best
results compared to other models (Table 1 and Table 2).

Training During certified training, models are trained with Adam (Kingma & Ba, 2014) optimizer
with an initial learning rate of 5 x 10~%, and there are two milestones where the learning rate decays
by 0.2. We determine the milestones for learning rate decay according to the training schedule and
the total number of epochs, as shown in Table 11. Gradient clipping threshold is set to 10.0. We
train the models using a batch size of 256 on MNIST, and 128 on CIFAR-10 and TinylmageNet. The
tolerance value 7 in our warmup regularization is fixed to 0.5. For Vanilla IBP and IBP with our
initialization and regularizers, we train the models on a single NVIDIA GeForce GTX 1080 Ti or
NVIDIA GeForce RTX 2080 Ti GPU for each setting. For CROWN-IBP, we train the models on two
GPUs for efficiency, while in time estimation we still use one single GPU for fair comparison. The
number of training and evaluation runs is 1 for each experiment result respectively. In the evaluation,
the major metric is verified error, which stands for the rate of test examples such that the model
cannot certifiably make correct predictions given the ¢, perturbation radius. For reference, we also
report standard error, which is the standard error rate where no perturbation is considered.

Table 11: Milestones for learning rate decay when different total number of epochs are used. “Decay-
1” and “Decay-2” denote the two milestones respectively when the learning rate decays by a factor of
0.2.

Dataset Total epochs Decay-1 Decay-2
50 40 45
MNIST 70 50 60
70 50 60
CIFAR-10 160 120 140
TinyImageNet 80 60 70

Warmup scheduling During the warmup stage, after training with e = 0 for a number of epochs,
the perturbation radius € is gradually increased from O until the target perturbation radius €prget
during the 0 < € < €ger phase. Specifically, during the first 25% epochs of the ¢ increasing
stage, € is increased exponentially, and after that € is increased linearly. In this way, € remains
relatively small and increases relatively slowly during the beginning, to stabilize training. We use
the SmooothedScheduler in the auto_LiRPA as the scheduler for € similarly adopted by Xu et al.
(2020). On CIFAR-10, unlike some prior works which made the perturbation radii used for training
1.1 times of those for testing respectively (Gowal et al., 2018; Zhang et al., 2020), we find this setting
makes little improvement over using same perturbation radii for both training and testing in our
experiments as also mentioned in Lee et al. (2021), and thus we directly adopt the later setting for
simplicity.

D Mathematical Proofs

D.1 Proof of Eq. (5)

In this section, we provide a proof for Eq. (5):
= 1
E(;) = B(ReLU(h;)) — ReLU(h,)) = SE(A), (1)

where A; = h; — h,, and §;, = z; — z;.

22

Proof. We first have
E(5;) =E(ReLU(h;)—ReLU(h;))

AV A
=E(ReLU(e; + =) ~ReLU(c; — 7)) (12)
:]E(ReLU(ciJr%))*E(RGLU(Q‘*%))-

Note that ¢; = 1W,(z; + Z;) and A, = |W,|d;, and thus p(—c; | |[W;|) = p(c; | [W;]) and
(—ci|A;) = p(c;|A;), where we use p(-) to denote the probability density function (PDF). Thereby,

E(ReLU(cl—i—— / / cl—i—— p(ci|A:)p(A;)de;dA;,
13)
E(ReLU(c; / / p(ci|A:)p(A;)de;dA;.
And thus A
E(ReLU(c; + 2‘)) E(ReLU(c; 21‘))
2i A;
/ N A —|—/A (c; + 5 “Nplei|Ad)p(A;)de;dA;
KA El (14)
0 —oo 2
1
O

D.2 Proof on the Bounds of Var(h;) and Var(h;)

In this section, we show that Var(h;) and Var(h;) will not explode or vanish at initialization, so that
the magnitude of forward signals will not vanish or explode when we use IBP initialization which
focuses on stabilizing the tightness of certified bounds.

We can derive that
Var(E-) = Var(Wi,JrZ-,l —+ Wi’,gi_l)
= Var([W; 1Zi—1+ W, -2z, 4];) (0<j <)

_ Var(z”" (W kB i H(Wil > 0)

k=

3 (Wil H([Wm,kso»).

Since W is initialized with mean 0, the numbers of negative elements and positive elements are
approximately equal, and thus

Var(Hi) ~ %Var(Wi,in_l) + %VM(WL_ZZ;I)

_ % (Var(w,»,+)E(zi1)2

T Var(z 1 JE(W 4)+ Var(Wi,)E(z,_, >+ Var(z, 1>E<Wi,>2)
= 2 (1= D)B@)+ o Var(Eia)+ (1= DB)+ Ver(a).

Note that E(z;) > FE(5;) and we have made E(4;) stable in each layer. Thus Var(h;) >
% Var(W; 4)E(2Z;—1)? and will not vanish when the network goes deeper. Also note that n; > 1 in

neural networks, and therefore Var(h;) will not explode. The same analysis can also be applied to h,.

23

However, when we use the IBP initialization, variance of the standard forward value h; will be
smaller than that of Xavier and Kaiming Initialization. Following the analysis in He et al. (2015a),
we have

n

Var(h;) = EiVar(W,;)Var(hi_l).

In IBP initialization, we have Var(W;) = i—z and the variance of h; can become smaller after going

through each affine layer. Therefore, as mentioned in Section 4.4, simply adding IBP initialization
may not finally improve the verified error, because it may harm the early warmup when € is small
and certified training is close to standard training. In this paper, in addition to IBP initialization, we
further add regularizers to stabilize certified bounds and the balance of ReLU neuron states, while
the variance is stabilized by fully adding BN. The effect of these parts of our proposed method is
discussed in Section 4.4.

24

