
APPENDIX A
UNDER LS RECONSTRUCTION, ∆1 ≤ 0

For LS we have:

RS = Uk(MSUk)
†.

Lemma 1. For any matrix A, ||UkA||2F = ||A||2F
Proof.

||UkA||2F = tr(UkAATUT
k ) = tr(UT

k UkAAT )

= tr(AAT ) = ||A||2F .

Lemma 2. For LS, ξ1(S) = k − rank(MSUk).

Proof. Using Lemma 1,

ξ1(S) = ||Uk −RSMSUk||2F
= ||Uk −Uk(MSUk)

†MSUk||2F
= ||Ik − (MSUk)

†MSUk||2F
Let Π = (MSUk)

†MSUk. Π is of the form A†A, so is a
symmetric orthogonal projection onto the range of (MSUk)

T

[23, p. 258]. Orthogonal projections are idempotent (Π =
Π2) hence have eigenvalues which are 0 or 1, and therefore
tr(Π) = rank((MSUk)

T ) = rank(MSUk). We then have:

ξ1(S) = ||Ik −Π||2F
= tr((Ik −Π)(Ik −Π)T )

= tr((Ik −Π)(Ik −Π))

= tr(Ik − 2Π+Π2)

= tr(Ik −Π)

= tr(Ik)− tr(Π)

= k − rank(MSUk).

Lemma 3. For LS, ∆1(S, v) ∈ {0,−1}.

Proof. Removing a vertex from S removes a row from
MSUk, reducing the rank by 0 or 1.

∆1(S, v) = ξ1(S)− ξ1(S\{v})
= −rank(MSUk) + rank(MS\{v}Uk)

∈ {0,−1}.

Non-positivity of ∆1 immediately follows from Lemma 3.

APPENDIX B
UNDER LS RECONSTRUCTION, ∆1 < 0 ⇐⇒ ∆2 > 0

We first need the following lemmas.

Lemma 4.
ξ2(S) =

∑
λS
i ̸=0

1

λS
i

(20)

where λS
i is the ith eigenvalue of (MSUk)(MSUk)

T .

Proof. By definition and Appendix A, Lemma 1

ξ2(S) = ||RS ||2F
= ||Uk(MSUk)

†||2F
= ||(MSUk)

†||2F
which is the sum of the squares of the singular values of
(MSUk)

† [23, Corollary 2.4.3]. The pseudoinverse maps
the singular values of MSUk onto the singular values of
(MSUk)

† in the following way [23, Section 5.5.2]:

σi((MSUk)
†) =

{
0 if σi(MSUk) = 0

σi(MSUk)
−1 otherwise

(21)

and the squares of the singular values of MSUk are λi [23,
Eq. (8.6.1)]. Summing them gives the result.

Lemma 5.

rank((MSUk)(MSUk)
T ) = rank(MSUk) ≤ k.

Proof. For the equality: rank(MSUk) is the number of
strictly positive singular values it has [23, Corollary 2.4.6].
By [23, Eq. (8.6.2)], this is the same as the number of
strictly positive eigenvalues of (MSUk)(MSUk)

T ), which is
rank((MSUk)(MSUk)

T ).
For the inequality: MSUk has k columns and so must have

column rank less than or equal to k. Row rank being equal to
column rank gives the result.

Lemma 6. For LS, ∆1 = 0 ⇐⇒ ∆2 ≤ 0.

Proof. Note that (MS\{v}Uk)(MS\{v}Uk)
T is a principal

submatrix of (MSUk)(MSUk)
T . Write the eigenvalues of

(MS\{v}Uk)(MS\{v}Uk)
T as λ1, . . . , λn and the eigenval-

ues of (MSUk)(MSUk)
T as µ1, . . . µn+1. Then by Cauchy’s

Interlacing Theorem [24, p. 59],

0 ≤ µ1 ≤ λ1 ≤ · · · ≤ λn ≤ µn+1 ≤ 1 (22)

where the outer bounds come from the fact that both matrices
are principal submatrices of UkU

T
k , an orthogonal projection

matrix.
1) ∆1 = 0 =⇒ ∆2 ≤ 0: ∆1 = 0 implies the

rank of MSUk does not change with the removal of v, so
neither does the rank of (MSUk)(MSUk)

T . As the rank is
unchanged, (MSUk)(MSUk)

T has one more zero-eigenvalue
than (MS\{v}Uk)(MS\{v}Uk)

T . This means:

µ1 = 0 (23)
λi = 0 ⇐⇒ µi+1 = 0 (24)

By Cauchy’s Interlacing Theorem, λi ≤ µi+1 and so
1

λi
≥ 1

µi+1
if λi ̸= 0 and µi+1 ̸= 0. (25)

Therefore ∑
λS
i ̸=0

1

λS
i

≥
∑
µS
i ̸=0

1

µS
i

(26)

as we have the same number of non-zero terms in each of
these terms by (23) and (24), and the inequality is proved by



summing over the non-zero terms using (25). Equation (26) is
exactly

ξ2(S\{v}) ≥ ξ2(S). (27)

Rearranging gives ∆2 ≤ 0.
2) ∆1 = 0 ⇐= ∆2 ≤ 0: We prove the equivalent

statement
∆1 ̸= 0 =⇒ ∆2 > 0. (28)

By Lemma 3, if ∆1 ̸= 0 then ∆1 = −1. This means that the
rank of MSUk is reduced by 1 by the removal of v, therefore
(MSUk)(MSUk)

T has one more non-zero eigenvalue than
(MS\{v}Uk)(MS\{v}Uk)

T . This means:

µn+1 > 0 (29)
λi ̸= 0 ⇐⇒ µi ̸= 0 (30)

By Cauchy’s interlacing theorem, λi ≥ µi and so

1

λi
≤ 1

µi
if λi ̸= 0 and µi ̸= 0. (31)

Let I be the number of zero eigenvalues of
(MSUk)(MSUk)

T . Then∑
I≤i≤n

1

λS
i

≤
∑

I≤i≤n

1

µS
i

<
∑

I≤i≤n+1

1

µS
i

. (32)

With the left inequality by matching terms via (30) and then
summing over (31), and the right inequality because (29)
means 1

µn+1
> 0. We then note the left and the right terms in

this equality say: ∑
λS
i ̸=0

1

λS
i

<
∑
µS
i ̸=0

1

µS
i

(33)

or equivalently,
ξ2(S\{v}) < ξ2(S). (34)

Rearranging gives ∆2 > 0.

We finally have the following:

Lemma 7. For LS, ∆1 < 0 ⇐⇒ ∆2 > 0.

Proof. By Lemma 3 and Lemma 6.

APPENDIX C
PROOF OF THEOREM 1

Proof. For brevity, we fix S and v and write ∆1 = ∆1(S, v)
and ∆2 = ∆2(S, v).

Rearranging (14) gives us that v improves S if and only if

∆1 + σ2 ·∆2 > 0 (35)

or equivalently if and only if

∆1 > −σ2 ·∆2. (36)

By definition, σ2 = k
N ·SNR , so this condition is equivalent to

∆1 > − k

N · SNR
∆2 (37)

and as SNR is strictly positive, this is equivalent to

SNR ·∆1 > − k

N
∆2. (38)

We can now use the major lemmas from the previous
appendices. By Lemma 3, we have two possible values of
∆1(S, v):

∆1 = 0:

Lemma 6 means ∆2 < 0, so

∆1 + σ2 ·∆2 = σ2 ·∆2 < 0 (39)

and so v does not improve S.

∆1 = −1:

Eq. (38) simplifies to:

− SNR > − k

N
∆2 (40)

which is equivalent to

SNR <
k

N
∆2. (41)

On the one hand, v improves S implies ∆1 = −1, which
implies (41). On the other hand, (41) implies ∆2 > 0 which in
turn implies ∆1 = −1, which means (41) implies (38), which
implies v improves S.

Noting that the right-hand side of (41) is τ(S, v), which
completes the proof.

APPENDIX D
PROOF OF THEOREM 2

We restate the theorem:

Theorem 4. Consider any sequence of vertices v1, . . . , vN
with no repeated vertices, and let Si = {v1, . . . , vi}. Then
there are exactly k indices I1, . . . , Ik such that under LS
reconstruction of a noisy k-bandlimited signal,

∀1 ≤ j ≤ k : τ(SIj , vIj ) > 0 (42)

and so for some SNR > 0 removing vIj would improve SIj .

Proof. By Appendix C, Lemma 2:

ξ1(Si) = k − rank(MSiUk). (43)

By Appendix C, Lemma 3, ∆1 ∈ {0,−1} and as rank(Uk) =
k, ξ1(SN ) = 0. As ξ1(S0) = k, we must have exactly k indices
for which ∆1(Si, vi) = −1, and by Appendix C, Lemma
6 we have exactly k indices for which ∆2(Si, vi) > 0. As
τ(Si, vi) =

k
N∆2(Si, vi), we’re done.



APPENDIX E
PROOF OF THEOREM 3

Proof. By Appendix C, Lemma 2, the noiseless error

ξ1(S) = k − rank(MSUk) (44)

must be 0, as we can perfectly reconstruct any k-bandlimited
signal. Therefore, rank(MSUk) = k.

MSUk is a k × k matrix of full rank, so its rows must be
linearly independent. Any subset of linearly independent rows
is linearly independent, so for any non-empty R ⊂ S, MRUk

has linearly independent rows.
Greedy schemes pick increasing sample sets: that is, if asked

to pick a vertex sample set Sm of size m for m < k and a
sample set S of size k, Sm ⊂ S. Therefore for any sample
set Sm of size m ≤ k picked by the scheme, MSmUk has
independent rows.

If MSm
Uk has independent rows, then removal of any row

(corresponding to removing any vertex) reduces its rank by 1;
that is,

∀m ≤ k : ∀v ∈ Sm : ∆1(Sm, v) = −1 (45)

Then, by Appendix C, Lemma 7,

∀m ≤ k : ∀v ∈ Sm : ∆2(Sm, v) > 0 (46)

and as τ(Sm, v) = k
N∆2(Sm, v) and k

N > 0,

∀m ≤ k : ∀v ∈ Sm : τ(Sm, v) > 0. (47)

This proves (18).
As MSk

Uk has k independent rows, it is of rank k.
Adding further rows can’t decrease its rank, so for m′ > k,
rank(MSm′Uk) ≥ k. As Uk is of rank k, rank(MSm′Uk) ≤
k. This means for all samples sizes m′ > k, rank(MSm′Uk) =
k. This says that further additions of rows do not change rank;
that is:

∀m′ > k : ∀v ∈ Sm′\Sk : ∆1(Sm′ , v) = 0 (48)

Then, by Appendix C, Lemma 6,

∀m′ > k : ∀v ∈ Sm′\Sk : ∆2(Sm′ , v) ≤ 0 (49)

and, like for (18, as τ(Sm, v) = k
N∆2(Sm, v) and k

N > 0,

∀m′ > k : ∀v ∈ Sm′\Sk : τ(Sm′ , v) ≤ 0. (50)

This proves (19).

APPENDIX F
PROOF OF REMARK 4

A-Optimality

A-optimality depends on the existence of the inverse of
(MSUk)(MSUk)

T existing, which requires it to be of full
rank. By Appendix C, Lemma 5, if an A-optimal scheme picks
a set S of size k, then rank(MSUk) = k. Therefore, S is
a uniqueness set [17] and can perfectly reconstruct any k-
bandlimited signal.

D- and E-optimality

We show that for sample sizes less than k we can always
pick a row which keeps (MSUk)(MSUk)

T full rank (of rank
|S|), and that D- and E-optimal schemes do so.

By Appendix C, Lemma 5, rank(MSUk)(MSUk)
T =

rank(MSUk), so we only need to ensure rank(MSUk) = |S|.
We proceed by induction: given S1 with |S1| = 1,

rank(MS1Uk) = 1. Assume that for Si with |Si| = i < k,
rank(MSi

Uk) = i. As rank(Uk) = k and i < k, we can find
a row to add to MSi

Uk which will increase its rank (else all
other rows would lie in the i-dimensional space spanned by the
rows of MSiUk, which would imply rank(Uk) = i, which is a
contradiction as i < k). Adding the vertex which corresponds
to the row to Si gives Si+1 with rank(MSi+1

Uk) = i+ 1.
We have shown that we can greedily choose to keep

rank(MSUk) = |S|. We now show that D- and E-optimal
schemes do so. The eigenvalues of (MSUk)(MSUk)

T are
non-negative (see Appendix C, Eq. (22)), so any invertible
(MSUk)(MSUk)

T will have a strictly positive determinant
and minimum eigenvalue, which are preferable under the D-
and E- optimality criterion respectively to a non-invertible
(MSUk)(MSUk)

T , which has a determinant and minimum
eigenvalue of 0. Therefore, greedy D- and E- optimal sampling
schemes will make sure (MSUk)(MSUk)

T is invertible,
and thus keep rank(MSUk) = |S| for |S| ≤ k. Therefore
when D- and E- optimal schemes pick a set S of size k,
rank(MSUk) = k. Therefore, S is a uniqueness set [17] and
can perfectly reconstruct any k-bandlimited signal.

APPENDIX G
ADDITIONAL RESULTS

We show thresholds for the ER, BA and SBM graphs with
100 vertices (Fig. 3). We also present MSE plots for the larger
BA (Fig 4) and SBM (Fig 5) graphs.



(a) Erdos-Renyi (b) Barabasi-Albert (c) SBM

Fig. 3: τ for different random graph models under LS reconstruction (#vertices = 100, bandwidth = 10)

(a) SNR = 10−1 (b) SNR = 102 (c) SNR = 1010

Fig. 4: Average MSE for LS reconstruction on BA Graphs (#vertices=1000, bandwidth = 100) with different SNRs

(a) SNR = 10−1 (b) SNR = 102 (c) SNR = 1010

Fig. 5: Average MSE for LS reconstruction on SBM Graphs (#vertices=1000, bandwidth = 100) with different SNRs


