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ABSTRACT
Scaling large language models (LLMs) demands extensive data and computing resources, which are traditionally
constrained to data centers by the high-bandwidth requirements of distributed training. Low-bandwidth methods
like federated learning (FL) could enable collaborative training of larger models across weakly connected GPUs or
weakly connected clusters of GPUs if they can effectively be used for pre-training. Building robust low-bandwidth
training systems can: (a) significantly reduce communication infrastructure costs, (b) minimize the impact of
hardware failures, (c) widen the pool of usable GPUs, (d) enable collaborative training over the internet, and
(e) allow dynamic compute sourcing based on factors like electricity prices. Such advancements would lessen
the dependence on specialized data centers, making large-scale AI training more accessible, cost-effective, and
adaptable to real-time demands. To achieve this, we introduce Photon, the first complete system for federated
end-to-end LLM training, leveraging cross-silo FL for global-scale training with minimal communication
overheads. Using Photon, we train the first federated family of decoder-only LLMs from scratch. We show that:
(1) Photon can train model sizes up to 7B in a federated fashion while reaching an even better perplexity than
centralized pre-training; (2) Photon model training time decreases with available compute, achieving a similar
compute-time trade-off to centralized; and (3) Photon outperforms the wall-time of baseline distributed training
methods by 35% via communicating 64×–512× less. Our proposal is robust to data heterogeneity and converges
twice as fast as previous methods like DiLoCo. This surprising data efficiency stems from a unique approach
combining small client batch sizes with extremely high learning rates, enabled by federated averaging’s robustness
to hyperparameters. Photon thus represents the first economical system for global internet-wide LLM pre-training.
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Appendix

In this appendix, we provide the details omitted in the main
paper and more analyses and discussions.

• Appendix A: Hyperparameters we used for various ex-
periments in our paper, including architectural details
and both centralized and federated hyperparameters.

• Appendix B: Implementation details, which include i)
full algorithms (pseudo-codes) of the proposed meth-
ods (Appendix E); ii) implementation of wall time in
the paper (subsection B.1).

• Appendix C: Additional discussions that are helpful
for the readers to better understand the background,
including federated optimization of LLM pre-training
(subsection C.1).

• Appendix D: Additional evaluations of the systems,
e.g., the downstream evaluations.

• Appendix E: Full algorithms for Distributed Data Par-
allelism (DDP) and cross-silo federated learning.

A HYPER-PARAMETERS

As shown in Table 1, we trained models ranging in size from
125 million parameters to 7 billion for the causal language
modeling task. We used the tokenizer presented in (Black
et al., 2022) with a vocabulary size of 50 368. The local
optimizer the clients use in our experiments is AdamW
(Loshchilov & Hutter, 2019), while the server optimizer is
FedMom (Huo et al., 2020). For all of our non-DiLoCo
experiments, we default to FedAvg with server learning rate
1.0 and server momentum 0.0. The hyperparameters we
used are reported in Table 2. We chose to train decoder-
only models, although our system could train any LLM
architecture because they have become the de-facto standard
in language modeling and text generation owed to their
sample efficiency.

We also note that the billion-scale experiments assume inter-
mittent client availability, reflecting real-world scenarios in
which participants may occasionally allocate free computing
resources to federated pre-training. To accommodate this,
we employ a stateless local optimization procedure, and
resetting optimizer states each round. This enables Photon
to operate seamlessly in sparse-compute scenarios, unlike
standard distributed data parallelism (DDP), which requires
fully dedicated and synchronized GPU workers. Stateless
local optimization also eliminates the communication costs
of synchronizing optimizer states, making it easier to ensure
that federated pre-training remains compute-bound.

Table 1. Architecture details and local training parameters for our
125M, 350M, 1.3B, 3B, and 7B models. We report the number of
transformer blocks, hidden model dimension d, number of atten-
tion heads, the linear layer expansion ratio, and Adam’s parameters
(β1 and β2). We also report the vocabulary size of the tokenizer
we used (Black et al., 2022) and the sequence length l.
Model #Blocks d #Heads Exp. Ratio (β1, β2) |Vocab| lSize

75M 3 896 16 4 (0.9, 0.95) 50 368 1024
125M 12 768 12 4 (0.9, 0.95) 50 368 2048
350M 24 1024 16 4 (0.9, 0.95) 50 368 2048
1.3B 24 2048 16 4 (0.9, 0.95) 50 368 2048

3B 32 2560 20 4 (0.9, 0.95) 50 368 2048
7B 32 4096 32 4 (0.9, 0.95) 50 368 2048

Table 2. Hyperparameters used in our experiments. The federated
learning rate ηs and momentum µs (Huo et al., 2020) are applied
by the Photon Agg. SC are the parameters of the learning rate
scheduler synchronized across sequential steps. α is the factor
to be applied to the maximum learning rate ηmax to obtain the
minimum learning rate for the cosine scheduler, i.e., ηmin =
α× ηmax. T is the duration, in steps, of the cosine scheduler for
fed/cent variants. We also report the batch size used in the local
training by the Photon clients and the centralized batch size.
Model

ηs µs α ηmax T T cent
Batch Batch

Size Size Size
Cent

125M {0.0, 0.1, 0.3, 0.5, 0.7, 1.0} {0.9, 0.0} 10−1 6.0× 10−4 40 960 5120 32 256
1.3B 1.0 0.0 10−1 2× 10−4 24 800 24 800 512 512
3B 1.0 0.0 10−1 1.6× 10−4 51 500 51 500 512 512
7B 1.0 0.0 10−1 1.2× 10−4 63 900 63 900 1024 1024

B IMPLEMENTATION DETAILS

B.1 Modeling Wall Time

We implement a comprehensive wall time model to analyze
the temporal efficiency of our federated learning system
across different communication architectures. The wall
time calculations account for both computation and com-
munication costs, considering factors such as local training
time, model broadcast time, gradient collection time, and
aggregation overhead.

Local Training Time The local training time (TL) for
each client is determined by the number of local training
steps and the client’s computational throughput:

TL =
τ

ν
, (1)

where τ represents the number of local training steps and
ν is the local throughput measured in batches per second.
Notably, TL doesn’t scale with the number of clients per
round K as we assume the ideal case where they all execute
the same local training recipe in parallel on equipollent hard-
ware. In our experiments, τ represents a hyperparameter
that we vary to observe its influence on the final perfor-
mance. During deployment, τ is one of the most important
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Table 3. Hyperparameters for our federated experiments. P repre-
sents the total number of clients per federations, K the number of
clients sampled per round, D the dataset, τ the number of steps
per round.
Model

P K D τSize

125M {1, 2, 4, 8, 16} {1, 2, 4, 8, 16} C4 (Raffel et al., 2020), The Pile (Gao et al., 2020) 64, 128, 512
1.3B 8 8 C4 (Raffel et al., 2020) 500

3B 4 4 C4 (Raffel et al., 2020) 500
7B 4 4 C4 (Raffel et al., 2020) 500

hyperparameters to tune to achieve a pre-defined objective,
i.e., target perplexity value at some target wall time. The
value of ν depends on the computing resources available and
the distributed strategy that Photon adopts at local clients.
Throughout our evaluation of the 125M parameter model,
we used an empirical value of ν = 2 batches per second for
both centralized and federated models. For the 1B model,
we used an empirical ν value of 0.147 for federated mod-
els and 0.839 for centralized models. For the 3B model,
we used ν = 0.144 and 0.395 respectively, and for the 7B
model, we used ν = 0.032 and ν = 0.12.

Communication Time The communication overhead
varies based on the chosen architecture. We implement
a bandwidth scaling factor for systems with more than θ
channels (default: 100) to account for network congestion.

For Parameter Server (PS) architecture, the total communi-
cation time (TP

C ) is:

TPS
C =


KS
B if K ≤ θ;

KS
B if K > θ,

(2)

where:

• K is the number of clients per round;

• S is the model size in megabytes;

• B is the server bandwidth in MBps.

For AllReduce (AR) architecture, the communication time
(TAR

C ) is:

TAR
C =

(K − 1)S

B
, (3)

For Ring AllReduce (RAR), we optimize the communica-
tion pattern, resulting in:

TRAR
C =

2S(K − 1)

KB
. (4)

We admit that accounting for congestion and real-world mea-
surements could further improve these models. However,
we find them to provide sufficiently accurate results.

Total Wall Time The total wall time for one round (Tr)
combines local computation and communication costs:

Tα
r = TL + Tα

C , (5)

where α ∈ {PS,AR,RAR} represents the chosen archi-
tecture.

The total wall time for the entire training process (T ) is:

Tα = RTα
r , (6)

where R is the total number of federated learning rounds.

The aggregation time Tagg is calculated by:

Tagg =
KS

ζ
, (7)

where ζ is the server computational capacity. The default
value of ζ is 5TFLOPS per second. For simplicity, the
aggregation time at the server is currently considered negli-
gible compared to communication costs, as shown in Equa-
tion 6. Still, the model allows for future extensions to in-
clude server-side computational overhead in cases where
its computational capabilities are highly constrained. Our
implementation accounts for exceptional cases as well, such
as single-client scenarios without communication.

B.2 Performance impact of the Link component

The Link component provides the crucial connection be-
tween the aggregator (Agg) and client (LLM-C). The band-
width available to the link of each LLM-C dictates how
quickly the model parameters can be exchanged for aggre-
gation. As discussed in Appendix B.1, in standard Dis-
tributed Data Parallel (DDP) training, gradients have to be
synchronized before every gradient descent step. The most
efficient implementations use the Ring-AllReduce algorithm
to synchronize gradients while having workers communi-
cate in a peer-to-peer fashion using RDMA network, such
as InfiniBand and RoCE. When using the same aggre-
gation/synchronization algorithm, e.g., Ring-AllReduce, for
both DDP and Photon, the Link bandwidth determines the
gap in communication time between the two methodologies.
Using the methodology presented in Appendix B.1 and as-
suming a given aggregation algorithm, one can estimate the
communication time for a given model size and bandwidth.
Factoring in that Photon communicates less frequently by a
constant factor τ (e.g., 500×), the minimal Link bandwidth
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BPhoton required for Photon to match DDP’s communica-
tion time at bandwidth BDDP follows from:

BPhoton ≥
BDDP

τ
.

This ignores the optimization aspects of model training,
which may increase the compute time of Photon, which is
why it represents a mere minimum bandwidth. If the above
inequality does not hold, it is necessary to either increase
the available bandwidth or to make the communication of
Photon more infrequent, which may impact the machine
learning performance.

B.3 Overlapping communication and cleaning up

When partial participation is involved in the federated set-
ting, clients may sporadically become available or drop out
of the federation at any time. When they disconnect after
they finish executing their local work for a specific federated
round, the Photon LLM Client can offload the communi-
cation process and simultaneously clean up the memory
allocated by the training pipeline to allow for the prompt
return to idle state. This routine quickly makes computing
resources available for another workload, which is particu-
larly important when using shared computing facilities.

B.4 Advanced sharing for reducing memory footprint

Every Photon LLM Client comprises a multiprocessing
stack managed by a leader process that coordinates subor-
dinate processes handling the hardware accelerators. Such
a leader process is also in charge of the communication
endpoint, so it receives and sends model parameters as the
algorithm requires. To minimize the RAM footprint up to
8×, the model parameters exchanged are stored in shared
memory, accessible by all subordinate processes.

C EXTENDED DISCUSSION

C.1 Federated Optimization of LLM Pre-training

Federated optimization differs significantly from standard
data-parallel training due to infrequent synchronization,
which affects the multitude of assumptions upon which
centralized pre-training of LLMs is built. In a centralized
context, previous works have shown the following: (a) the
number of parameters |θ| and the number of tokens T seen
by the model should be scaled roughly equally (Hoffmann
et al., 2022) for compute-optimal training; (b) the batch
size B should be chosen based on the available hardware
resources, with larger batch sizes providing benefits until a
critical batch sizeBcrit, is reached (McCandlish et al., 2018);
(c) the learning rate should be scheduled using cosine decay
with a period equal to the total number of optimization-
steps/batches T/B. All of these components need to be

modified for effective federated optimization.

From a theoretical perspective, infrequent parameter aver-
aging methods such as Local SGD (Lin et al., 2020) or
FedAvg (McMahan et al., 2017) are expected to provide
an effect similar to scaling the batch size in a centralized
setting (Lee et al., 2020) when scaling the number of clients
per round, however, given the many moving parts of the
centralized recipe obtaining such improvements requires
successfully adapting it to a federated context. We need to
distinguish between the batch size of a given client Bc and
the effective batch size of a given round Beff =

∑
c∈Cr

Bc,
which depends on the batch size of all sampled clients.
While smaller batch sizes are known to provide generaliza-
tion benefits (Keskar et al., 2017), for the sake of efficiency,
using the largest batch size that can fit inside a given accel-
erator is preferable. Thus, we assume that each client uses a
fixed Bc determined by their hardware and that, for the sake
of simplicity, all clients have access to the same hardware

Bi = Bj ,∀i, j ∈ C × C.

In cases where clients have sufficiently powerful hardware,
we assume that they use a batch size Bc = Bcrit to avoid
wasting compute. With this simplifying assumption, the
compute-time trade-off in federated optimization depends
only on the number of clients sampled in a given round
|Cr| and the number of local iterations Tc performed on
each client, both assumed constant. In the case of Tc = 1,
this coincides, when assuming full participation, with the
centralized setting, allowing the critical batch size Bcrit to
be determined using the gradient noise scale as done in the
work of McCandlish et al. (2018). We perform numerous
experiments to understand how the number of local steps Tc

changes the Pareto-frontier of the compute-time trade-off.

Assuming that the findings of Hoffmann et al. (2022) hold
in a federated context, the compute-optimal number of total
steps, T = R × Tc, that should be performed depends on
the number of tokens appropriate for the given model size,
roughly 20× |θ| according to the work of Hoffmann et al.
(2022), and on the effective batch size as follows:

R× Tc =
20× |θ|
Beff

, (8)

with the large caveat that this compute-optimal point was
chosen, assuming that training would be conducted using
the centralized critical batch size. However, accounting
for this in the learning rate schedule is not trivial for two
reasons. First, the averaging-based aggregation procedure
will limit the impact of any individual update. This is true
both from a simple mathematical perspective, the norm of
the average update being less than the average of the up-
date norms, and because client updates in federated learning
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have been shown to produce near-orthogonal updates which
tend to result in small pseudo-gradient norms (Charles et al.,
2021). Second, clients take several optimization steps using
their hardware-determined batch size before aggregation,
with smaller batch sizes being known to require smaller
learning rates (McCandlish et al., 2018) in centralized set-
tings. Since we expect the client hardware batch size to be
generally smaller than Bcrit, they are likely to fall in the
regime of small-batch training. Thus, in our work, we pro-
pose decaying the learning rate following a cosine scheduler
appropriate for the hardware batch size Bc, using Eq. (8) to
obtain the period by replacing Beff with Bc. Having fixed
this period, we only have to tune one hyperparameter in
the form of the maximum learning rate ηmax with the min-
imum learning rate being computed as ηmin = ηmax

10 . In
contrast, we find that neither square root nor linear learning
rate scaling (Granziol et al., 2022a;b) sufficiently stabilize
centralized training across varying batch sizes.

The momenta stabilize the local optimization direction
for a given local momentum-based optimizer, such as
AdamW (Loshchilov & Hutter, 2019). Since they are gen-
erally implemented using exponential decay, the impact of
any individual gradient step is reduced. In the case of fed-
erated optimization, this poses a challenge as we aim to
update the momentum vectors to reflect the information re-
ceived during the aggregation step. Directly communicating
and averaging the momenta of all clients would increase
the communication costs by the number of momenta of the
optimizer relative to transmitting only the parameters, e.g.,
it would be three times higher for AdamW. To avoid such
increases in communication costs, we keep the momenta
local and rely on only the parameter update to regularize
training.

C.2 Recent Advances in Federated Optimization

Recent works such as Cheng & Glasgow (2025) and Ia-
cob et al. (2025) have shown that federated optimization
algorithms can be competitive with standard Distributed
Data-Parallel methods in specific circumstances.

Cheng & Glasgow (2025) prove the convergence of a Lo-
cal AdamW variant that averages both model parameters
and optimizer states every round. They further show that,
depending on the task and data distribution, local-update op-
timizers can converge faster than standard minibatch SGD,
particularly under IID data across workers/clients (where
update variance is low).

Iacob et al. (2025) demonstrate the effectiveness of fed-
erated optimization even when data heterogeneity is high.
They observe that the noise introduced by averaging model
updates from diverse data distributions can yield a more
robust set of parameters for the transformer body, poten-
tially improving generalization or adaptation to new data

distributions.

D ADDITIONAL EVALUATION
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Figure 1. We report the split of the total wall time in two parts: the
local compute time (LC) the clients endure to achieve the desired
perplexity value and the communication time. The communica-
tion time is reported for three different aggregation implementa-
tions: parameter server (PS), which is necessary when privacy
constraints are present; AllReduce (AR), more scalable than PS;
Ring-AllReduce (RAR), the most scalable approach bounded by
the slowest link across the ring topology. As we expected, commu-
nication represents a more important cost as the number of clients
increases. Still, when implemented efficiently (RAR), the wall
time benefits of scaling the computing resources are maintained.
At the top of each bar, we report the percentage of time spent com-
municating for the respective experiments and implementation.

D.1 Communication Efficiency and Scalability

We present additional results on the communication effi-
ciency and scalability of Photon when using 64 local steps
per round( Fig. 1) and 128 local steps per round( Fig. 2).
While using 128 steps results in a slightly increased total
computational load due to minor reductions in convergence
speed, reducing communication frequency by half signifi-
cantly lowers the communication burden, particularly with
higher numbers of clients per round. This trend is especially
pronounced in communication-inefficient PS implementa-
tions and also applies to the faster RAR and AR methods.

D.2 Photon Robustness to Node Failures

In centralized data center training, strong synchronization
and a fixed communication topology mean that a single hard-
ware failure can halt training, requiring a complete restart
from a past checkpoint. Such hardware failures, even limited
to one accelerator, are common and account for 98% of train-
ing restarts (Dubey et al., 2024). In contrast, our federated
approach offers a more robust and communication-efficient
alternative to distributed data parallelism (DDP). Photon
only needs one pseudo-gradient update to progress a fed-
erated round while asynchronously restarting edge compo-
nents (LLM Clients), unlike centralized systems that require
a full restart to reinitialize the distributed process group (Li
et al., 2020). Thus, Photon is completely robust to any fail-
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Figure 2. We report the split of the total wall time in two parts: the
local compute time (LC) the clients endure to achieve the desired
perplexity value and the communication time. The communica-
tion time is reported for three different aggregation implementa-
tions: parameter server (PS), which is necessary when privacy
constraints are present; AllReduce (AR), more scalable than PS;
Ring-AllReduce (RAR), the most scalable approach bounded by
the slowest link across the ring topology. As we expected, commu-
nication represents a more important cost as the number of clients
increases. Still, when implemented efficiently (RAR), the wall
time benefits of scaling the computing resources are maintained.
At the top of each bar, we report the percentage of time spent com-
municating for the respective experiments and implementation.

ure affecting less than 100% of the system. The decoupling
between LLM Clients and the data source, along with the
Aggregator’s ability to seamlessly add new Clients, allows
Photon to maintain the same process group even as Clients
are added or removed.

To test the robustness of Photon against node failures, we
run a series of experiments simulating various node dropout
ratios. We configured the federated pre-training of a 125M
parameters model as if we were not expecting any failure
between our clients: 8 clients per round, 32 samples in
each local batch, 32 local steps per round, and a target num-
ber of total tokens to train on equal to ∼ 2.5 × 109 (5120
sequential steps and 160 federated rounds at full client par-
ticipation), i.e., 20 token per parameter considering that we
used a model with 125M parameters. The other training
hyperparameters were the same as the main paper experi-
ments referring to the 125M parameter models unless stated
otherwise.

This setting corresponds to the centralized environment
where at least a GPU in any node fails every 32 training
steps, for a total of Nfailures = 5120

32 = 160, i.e., a rate of
3.125% failures per step. Notably, for the standard central-
ized approach, different numbers of GPUs or nodes failing
may have the same impact on the training procedure as the
entire process group often needs to be restarted.

We model IID data distribution across clients by ran-
domly partitioning the C4 (Raffel et al., 2020) dataset
uniformly into 8 equally sized shards. For nonIID ex-
periments, unlike the main work, which uses the well-
known C4 dataset, we adopt the newer state-of-the-art data
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Figure 3. The robustness of Photon for IID data distributions across
clients. We show the training perplexity against (top) the number
of tokens trained and (bottom) the number of federated rounds
for different dropout ratios r ∈ {0, 0.125, 0.5, 0.875} correspond-
ing to {0, 1, 4, 7} clients dropping out at every federated round
respectively. With the highest value of r, the training procedure
fails to converge as there is not sufficient training data per round
to leverage the hyperparameter setting. For all other values of r,
the federated training succeeds, potentially reaching a final better
perplexity with the same number of total tokens. However, values
of r > 0 result in longer training executions as the number of fed-
erated rounds to reach the target number of total tokens increases
proportionally to the number of clients dropping out.

mixture used by SmolLM-V2 (Allal et al., 2025), specifi-
cally we randomly partition each of the following datasets
into 16 IID shards: (1) FineWeb-EDU (Penedo et al.,
2024), a high-quality general language dataset sourced
from Common Crawl, (2) Cosmopedia V2 (Ben Al-
lal et al., 2024), a synthetic dataset generated by
the Mixtral-8x7B-Instruct-v0.1 model, (3)
Python-EDU, a high-quality subset of The Stack
V2 (Lozhkov et al., 2024) code dataset, (4) FineMath
4+ (Allal et al., 2025), a high-quality math subset
of Common Crawl, (5) Infi-WebMath 4+, a high-
quality variant Infi-WebMath (Han et al., 2024) released
by Allal et al. (2025). Following the recipe of Allal et al.
(2025), we then compose shards to construct clients whose
data is comprised of: 70% FineWeb-EDU data, 10%
Cosmopedia V2, 10% Python-EDU, 5% FineMath
4+, and 5% Infi-WebMath 4+.

The relevant comparisons we show in this evaluation relate
to how the convergence, in terms of local training perplex-
ity, is impacted by the absence of updates due to clients
dropping out. Figures 3 and 4 show that only extreme and
unrealistic dropout ratios (r = 0.875) can completely dis-
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Figure 4. The robustness of Photon for non-IID data distributions
across clients. We show the training perplexity against (top) the
number of tokens trained and (bottom) the number of federated
rounds for different dropout ratios r ∈ {0, 0.125, 0.5, 0.875} cor-
responding to {0, 1, 4, 7} clients dropping out at every federated
round respectively. With the highest value of r, the training pro-
cedure fails to converge as there is not sufficient training data per
round to leverage the hyperparameter setting. For all other values
of r, the federated training succeeds, potentially reaching a final
better perplexity with the same number of total tokens. However,
values of r > 0 result in longer training executions as the number
of federated rounds to reach the target number of total tokens in-
creases proportionally to the number of clients dropping out.

rupt the training independently on the heterogeneity of the
data distributions. Notably, for the other values of r and for
both IID and non-IID data, more dropouts correspond to
better final perplexity when effectively training on the same
number of total tokens, i.e., executing far more federated
rounds (taking more time). When comparing the final per-
plexity at different values of r with the number of federated
rounds, which are directly proportional to the real wall time,
more clients dropping out result in longer training times to
achieve the target number of total tokens, as expected.

The takeaways of this evaluation are: (1) federated train-
ing converges for all dropout ratios r < 0.875, making it
suitable for highly unreliable hardware configurations, (2)
since nodes train in isolation, a node failure does not re-
quire interrupting the entire federated round, rather it only
reduces the number of pseudo-gradients used for an update,
(3) to compensate for such failures, it is sufficient to extend
training until the target number of tokens is reached, and (4)
configurations with higher dropout ratios correspond to a
reduction in the effective batch size of the training, which
may improve the final performance at the cost of longer
training times.

Table 4. In-context learning comparison between Photon models.
Our biggest model wins 3 out of 3 comparisons in this group.

Name ARC-Challenge
(Clark et al., 2018)

BigBench
QA Wikidata

(Srivastava et al., 2023)

HellaSwag
(Zellers et al., 2019)

Photon-7B 0.265 0.447 0.524
Photon-3B 0.247 0.360 0.455
Photon-1B 0.243 0.215 0.349

Table 5. In-context learning comparison between Photon models.
Our biggest model wins 3 out of 3 comparisons in this group.

Name PIQA
(Bisk et al., 2020)

Winogrande
(Sakaguchi et al., 2020)

ARC-Easy
(Clark et al., 2018)

Photon-7B 0.729 0.522 0.508
Photon-3B 0.705 0.512 0.461
Photon-1B 0.676 0.516 0.390

D.3 Downstream evaluation of Photon’s models

To evaluate the downstream task performance of our mod-
els, we test across a series of in-context learning bench-
marks. Our results, shown in Tables 4 to 7, demonstrate
that the downstream performance of models trained with
Photon scales as expected with model size, with our largest
model winning 10 out of 14 comparisons. This proves the
downstream utility of Photon models even when using a
pre-training dataset not optimized for downstream perfor-
mance. We expect that as we increase the model size and
incorporate a broader and more qualitative data mixture,
the downstream performance of Photon models will keep
improving.

Table 6. In-context learning comparison between Photon models.
Our biggest model wins 2 out of 3 comparisons in this group.

Name BoolQ
(Clark et al., 2019)

Openbook QA
(Mihaylov et al., 2018)

Winograd
(Lo et al., 2023)

Photon-7B 0.530 0.358 0.681
Photon-3B 0.591 0.316 0.656
Photon-1B 0.612 0.274 0.604

Table 7. In-context learning comparison between Photon models.
Our biggest model wins 3 out of 4 comparisons in this group.
Name LAMBADA (OpenAI)

(Paperno et al., 2016)
Bigbench Strategy QA
(Srivastava et al., 2023)

COPA
(Roemmele et al., 2011)

MMLU
(Hendrycks et al., 2021)

Photon-7B 0.457 0.466 0.710 0.263
Photon-3B 0.381 0.464 0.620 0.252
Photon-1B 0.298 0.470 0.630 0.248
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E FULL ALGORITHMS

Algorithm 1 Distributed Data Parallel (DDP) Training Algorithm
Require: N : Number of devices (workers), fθ: Model with parameters θ,T : Number of epochs
Require: D: Dataset partitioned across devices Di where i ∈ {1, 2, . . . , N}
Require: RingAllReduce: All-reduce operation to aggregate across devices on a ring
Require: Opt: Optimizer for updating θ with gradients

1: Initialize: Randomly initialize model parameters θ0 on each device
2: for t = 1 to T do
3: Step 1: Parallel Local Training
4: for each device i ∈ {1, 2, . . . , N} in parallel do
5: Compute local mini-batch loss Li(θt−1,Di)
6: Compute local gradients∇θt−1

Li(θt−1)

7: Step 2: Distributed RingAllReduce Gradient Aggregation
8: ∇θt−1L = 1

N

∑N
i=1∇θt−1Li

9: Each device now possesses the global gradient∇θt−1L
10: Step 3: Parallel Model Update
11: for each device i ∈ {1, 2, . . . , N} in parallel do
12: θt = Opt(θt−1,∇θt−1

L)
13: Output: Trained model parameters θT

Algorithm 2 Cross-silo Federated Learning (FL) Algorithm
Require: N : Number of clients, fθ: Model with parameters θ
Require: T : Number of federated rounds, K: Number of local steps
Require: {Di}: Federated dataset, i.e., a set of private Di, i ∈ {1, . . . , N}
Require: ClientOpt: local client optimizer, ServerOpt: server optimizer

1: Initialize: Randomly initialize global model parameters θ0 on the server
2: for t = 1 to T do
3: Step 1: Broadcast model parameters
4: Server sends θt to all N clients
5: Step 2: Parallel Local Training
6: for each client i ∈ {1, 2, . . . , N} in parallel do
7: ωi,0 ← θt−1

8: for each local iteration k ∈ {1, 2, . . . ,K} do
9: Compute local mini-batch loss Li(ωi,k−1,Di)

10: Compute local gradients∇ωi,k−1
Li(ωi,k−1)

11: ωi,k ← ClientOpt(ωi,k−1,∇ωi,k−1
Li(ωi,k−1))

12: ∆θt−1,i ← ωi,K − θt−1

13: Step 3: Global Model Update (on the server)
14: θt = ServerOpt(θt−1, {∆θt−1,i})
15: Output: Trained model parameters θT
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F ARTIFACT APPENDIX

F.1 Abstract

This Artifact Appendix provides the instructions, scripts,
and configurations necessary to run the experiments of
our paper on federated large language model (LLM) pre-
training using the Photon system. We focus on the script,
scripts/fed 125m example.sh, that orchestrates
the entire process: downloading dependencies, launch-
ing the federated server, spinning up clients, and train-
ing a 125M-parameter model end to end. However, we
recommend following carefully the README.md file and
the provided example scripts for a more detailed under-
standing of the setup and execution. By running the
scripts/fed 125m example.sh script, users can
witness how Photon handles Hydra-based configuration res-
olution, aggregator (server) bootstrapping, and client partic-
ipation.

F.2 Artifact check-list (meta-information)
• Algorithm: LocalSGD-based federated optimization with

integrated distributed data-parallel (DDP) or fully sharded
data parallel (FSDP) when applicable.

• Program: Python scripts employing PyTorch, integrated
with Flower (for federated coordination) and Ray for model
updates communication.

• Compilation: No explicit compilation. A Python-based
environment setup is mandatory.

• Transformations: Data tokenization, normalization, op-
tional data pre-processing (compression), and partitioning in
client shards.

• Binary: No direct binaries; entire artifact is Python-based.

• Data set: A small subset of C4 is included for demonstration.
For larger training, full C4 or The Pile can be substituted
(scripts not included here).

• Run-time environment: Linux system (Ubuntu 22.04 rec-
ommended), Python 3.11, CUDA(12.4)-enabled PyTorch
2.1.5, plus Hydra for configuration resolution.

• Hardware: At least one NVIDIA GPU (NVIDIA A40,
RTX2080Ti, V100, A100, H100, etc.), stable network links
(1–10Gbps) if multiple machines are used.

• Run-time state: Users can run everything on a single ma-
chine with multiple GPUs, or distribute across multiple
nodes.

• Execution: A single script
scripts/fed 125m example.sh that performs
the entire flow (setup, server launch, client launches, local
training).

• Metrics: Primary metric is validation perplexity, with sec-
ondary metrics including GPU utilization, throughput, and
communication overhead. Wandb logging is supported but
requires custom configuration for which guidelines are pro-
vided in the code docstrings.

• Output: Model checkpoints, logs of training progress, final
perplexity.

• Experiments: Demonstration of the federated pre-training
and centralized training of a 125M-parameter decoder-only
LLM, which can be scaled up if desired.

• Disk space required: Approximately 5/15GB for the small
subset of C4 plus checkpoints. (Larger experiments may
require 300/1000GB).

• Time needed to prepare workflow: Approximately 1 hour
for environment setup, 30/60 minutes to download and pre-
process the small dataset.

• Time needed to complete experiments: A few hours for
the 125M demonstration. Larger-scale runs can take days.

• Publicly available: Yes, code repository is licensed (Apache-
2.0 license) and will be made public.

• Code licenses (if publicly available): Apache License 2.0.

• Data licenses (if publicly available): C4 is under the ODC-
BY license.

• Workflow framework used: Flower + Ray + PyTorch +
Hydra, plus a single orchestrating shell script.

• Archived: DOI on Zenodo.

• Public permalink: Flower Labs Research.

F.3 Description

F.3.1 How delivered

The artifact is provided in a zipped repository containing:

• README.md: A quick overview and key instructions.

• scripts/system setup.sh: Installs base de-
pendencies, sets up the environment.

• scripts/convert c4 dataset.sh: Acquires
a small version of C4 for demonstration. Prepare the
dataset for training.

• scripts/fed 125m example.sh:
The single script that launches everything for a 125M-
parameter model. It internally invokes Hydra-based
configs for server and clients, then orchestrates the run.

• scripts/cen 125m example.sh:
The single script that launches centralized training of
a 125M-parameter model. It internally invokes Hydra-
based configs. It is prepared to operate on a single
machine setup launching a parallelized training on the
available GPUs.

• configs/: YAML files specifying hyperparameters
(learning rate, batch size, etc.), aggregator properties,
and Hydra overrides.

https://doi.org/10.5281/zenodo.15187915
http://flower.ai/research
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F.3.2 Hardware dependencies

• GPU:

– For the 125M example, a single GPU with
≥12GB memory is sufficient, even though a larger
memory (≥40GB) is recommended.

– For multi-node, each node should have a CUDA-
capable GPU and at least 1–10Gbps network con-
nectivity.

F.3.3 Software dependencies

• OS: Linux (Ubuntu 22.04+).

• Python: 3.11 or higher.

• CUDA/CuDNN: Version 12.4 is recommended, be-
ing compatible with PyTorch 2.1.5 and your specific
GPU driver. These can be installed automatically via
scripts/system setup.sh

• Package managers: Poetry is supported for depen-
dency management.

• Libraries: PyTorch 2.1.5, Flower (custom ver-
sion), Ray, Hydra, and standard Python utili-
ties (NumPy, Pandas, etc.). Installed automati-
cally via the scripts/system setup.sh and
scripts/install env.sh scripts.

F.3.4 Data sets

• A small subset of C4 is included for demonstration.

• It is fetched, unpacked locally, and tokenized by
scripts/convert c4 dataset.sh.

Users can later replace this with the full C4 or other corpora
by adjusting parts of the code and configuration files.

F.4 Installation and Usage

Refer to the README.md file for a more detailed guide.
Below is a quick start guide to run the federated pre-training
of a 125M-parameter model.

System prep and environment:

1. Download the code: The code is maintained and made
available through the Flower Labs Research webpage.

2. Run the setup script: Once the repository has been
obtained, run the setup script to install the necessary
dependencies and prepare the environment.

cd <path>/<to>/<photon>
cd scripts
. system_setup.sh

This can install build tools, CUDA drivers (Ubuntu-
based).

3. Install dependencies:

cd scripts
. install_env.sh

Download, prepare/convert dataset with the provided
script.

bash scripts/convert_c4_dataset.sh

Run the single script for federate pre-training of the
125M model:

bash scripts/fed_125m_example.sh

This command executes the following steps internally:

• Hydra configs interpretation: Hydra interprets
the configs and dumps them to a file that
is read by the other processes. The file
photon/hydra resolver.py is used.

• Launch Flower Superlink: The command used is
poetry run flower-superlink.

• Launch Flower ServerApp: The command
used is poetry run flower-server-app
photon.server app:app.

• Launch Flower ClientApps: The command
used is poetry run flower-client-app
photon.client app:app

• Federated rounds: The aggregator orchestrates lo-
cal training (LocalSGD) across clients, synchronizes
updates after each round.

• Checkpoints and logs: Intermediate global check-
points and logs are saved in checkpoints/ and
runs/ respectively.

• Completion: The script logs periodically several met-
rics, e.g., perplexity and throughput.

F.5 Evaluation and expected result

Targets of interest:

• Validation perplexity: For the 125M demo, you
should observe perplexity dropping towards the low
40s or upper 30s after sufficient rounds, depending on
configuration.

https://flower.ai/research
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• Runtime logs: Both aggregator and client logs are
found under runs/, indicating the number of to-
kens processed, average GPU utilization, and steps
per round.

• Checkpoints: Partial and final checkpoints are saved
in the
checkpoints/ folder.

F.6 Experiment customization

• Config override: Edit
scripts/fed 125m example.sh or pass Hydra
overrides to change client count or hyperparameters.

• Hardware scaling: By default, the script spawns
multiple clients on a single node. For multi-node,
adapt the aggregator IP and client addresses in
scripts/fed 125m example.sh.

• Batch sizes / epochs: Controlled by Hydra configs in
the
configs/ folder.

• Dataset: Replace the small C4 path with your own
local data for more extended training.

F.7 Notes

• Partial or intermittent clients: If a client crashes or is
not reachable, the aggregator continues with remaining
clients in subsequent rounds.

• Performance considerations: For minimal overhead,
ensure a stable GPU environment. Larger-scale runs
(1.3B+) require more disk space, memory, and multi-
GPU setups.

F.8 Methodology

We adhere to artifact evaluation guidelines:

• Single-blind AE with emphasis on reproducibility and
clarity.

• Clear build (ffrom the scripts
scripts/system setup.sh and
scripts/install env.sh), run (using the
script
scripts/fed 125m example.sh), and analysis
(logs, final checkpoint) phases.

• ACM Artifact Badging best practices: code will be
made public, well-documented, and tested on a stan-
dard environment.
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Tang, E., Erdem, E., Chang, E., Chi, E. A., Dyer, E.,
Jerzak, E. J., Kim, E., Manyasi, E. E., Zheltonozhskii, E.,
Xia, F., Siar, F., Martı́nez-Plumed, F., Happé, F., Chol-
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