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Abstract

In the 1990s, the constant error carousel and gating were introduced as the central
ideas of the Long Short-Term Memory (LSTM). Since then, LSTMs have stood
the test of time and contributed to numerous deep learning success stories, in
particular they constituted the first Large Language Models (LLMs). However,
the advent of the Transformer technology with parallelizable self-attention at its
core marked the dawn of a new era, outpacing LSTMs at scale. We now raise a
simple question: How far do we get in language modeling when scaling LSTMs to
billions of parameters, leveraging the latest techniques from modern LLMs, but
mitigating known limitations of LSTMs? Firstly, we introduce exponential gating
with appropriate normalization and stabilization techniques. Secondly, we modify
the LSTM memory structure, obtaining: (i) sLSTM with a scalar memory, a scalar
update, and new memory mixing, (ii) mLSTM that is fully parallelizable with a
matrix memory and a covariance update rule. Integrating these LSTM extensions
into residual block backbones yields xLSTM blocks that are then residually stacked
into xLSTM architectures. Exponential gating and modified memory structures
boost xLSTM capabilities to perform favorably when compared to state-of-the-art
Transformers and State Space Models, both in performance and scaling.
Code available at: https://github.com/NX-AI/xlstm

1 Introduction

The Long Short-Term Memory (LSTM) ideas (Hochreiter, 1991; Hochreiter & Schmidhuber,
1997b,a), i.e., the constant error carousel and gating, were introduced to overcome the vanishing
gradient problem of recurrent neural networks (Hochreiter, 1991; Hochreiter et al., 2000):

ct = ft ct−1 + it zt , ht = ot ψ( ct ) . (1)

The constant error carousel is the additive update of the cell state ct−1 (green) by cell inputs zt and
moderated by sigmoid gates (blue). The input gate it and the forget gate ft control this update, while
the output gate ot controls the output of the memory cell, i.e. the hidden state ht. The cell state is
normalized or squashed by ψ and then output gating gives the hidden state.

LSTMs have been successfully applied to various domains (Hochreiter et al., 2001, 2007; Schmid-
huber, 2015), and prevailed over text generation until the dawn of Transformers in 2017 (Vaswani
et al., 2017). The effectiveness of LSTMs has been demonstrated at numerous sequence-related tasks
such as generating text (Graves, 2013; Karpathy, 2015), generating handwritings (Graves, 2013),
sequence-to-sequence translation (Sutskever et al., 2014), evaluating computer programs (Zaremba
& Sutskever, 2014), generating image captions (Karpathy & Fei-Fei, 2015; Hossain et al., 2019),
generating source code (Karpathy, 2015), rainfall-runoff modeling (Kratzert et al., 2018, 2019),
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or hydrological models for flooding warnings (Nearing et al., 2024). In reinforcement learning,
LSTMs are the best performing sequence models, e.g., the AlphaStar model for StarCraft II (Vinyals
et al., 2017), the OpenAI Five model for Dota 2 (Karpathy, 2019), and models of the magnetic
controller for nuclear fusion (Degrave et al., 2022). LSTMs excel at learning abstractions, i.e., adeptly
extracting semantic information and storing it in their memory cells (Karpathy, 2015), which for
example became evident by number and syntax neurons (Lakretz et al., 2019), linguistic neurons (Bau
et al., 2019), and sentiment neurons (Radford et al., 2017). LSTMs are still used in highly relevant
applications (Degrave et al., 2022; Nearing et al., 2024) and have stood the test of time.

Figure 1: LSTM limitations. Left: Nearest Neighbor Search
problem in terms of mean squared error (MSE). Given a
reference vector, a sequence is scanned sequentially for the
most similar vector with the objective to return its attached
value at sequence end. LSTM struggles to revise a stored
value when a more similar vector is found. Our new xLSTM
overcomes this limitation by exponential gating. Right: Rare
Token Prediction. The perplexity (PPL) of token prediction
on Wikitext-103, in partitions of token frequency. LSTM
performs worse on predicting rare tokens because of its lim-
ited storage capacities, whereas our new xLSTM solves this
problem via a matrix memory.

Despite their tremendous successes,
LSTMs have three main limitations:
(i) Inability to revise storage deci-
sions. We exemplify this limitation
via the Nearest Neighbor Search prob-
lem (see also Appendix D): With a ref-
erence vector given, a sequence must
be scanned sequentially for the most
similar vector in order to provide its
attached value at sequence end. The
left panel of Figure 1 shows the mean
squared error at this task. LSTM strug-
gles to revise a stored value when a
more similar vector is found, while
our new xLSTM remediates this limi-
tation by exponential gating. (ii) Lim-
ited storage capacities, i.e., informa-
tion must be compressed into scalar
cell states. We exemplify this limita-
tion via Rare Token Prediction. In the
right panel of Figure 1, the perplex-
ity of token prediction on Wikitext-
103 (Merity et al., 2017) is given for
partitions of different token frequency. LSTM performs worse on rare tokens because of its limited
storage capacities. Our new xLSTM solves this problem by a matrix memory. (iii) Lack of paralleliz-
ability due to memory mixing, i.e., the hidden-hidden connections between hidden states from one
time step to the next, which enforce sequential processing.

These limitations of LSTM have paved the way for the emergence of Transformers (Vaswani et al.,
2017) in language modeling. What performances can we achieve in language modeling when
overcoming these limitations and scaling LSTMs to the size of current Large Language Models?

2 Extended Long Short-Term Memory

To overcome the LSTM limitations, Extended Long Short-Term Memory (xLSTM) introduces two
main modifications to the LSTM idea of Equation (1). Those modifications — exponential gating
and novel memory structures — enrich the LSTM family by two members: (i) the new sLSTM (see
Section 2.2) with a scalar memory, a scalar update, and memory mixing, and (ii) the new mLSTM
(see Section 2.3) with a matrix memory and a covariance (outer product) update rule, which is fully
parallelizable. Both sLSTM and mLSTM enhance the LSTM through exponential gating. To enable
parallelization, the mLSTM abandons memory mixing, i.e., the hidden-hidden recurrent connections.
Both mLSTM and sLSTM can be extended to multiple memory cells, where sLSTM features memory
mixing across cells. Further, the sLSTM can have multiple heads without memory mixing across the
heads, but only memory mixing across cells within each head. This introduction of heads for sLSTM
together with exponential gating establishes a new way of memory mixing. For mLSTM multiple
heads and multiple cells are equivalent.

Integrating these new LSTM variants into residual block modules results in xLSTM blocks (see
Section 2.4). Residually stacking those xLSTM blocks in architectures provides xLSTM architectures
(see Section 2.4). See Appendix Figure 6 for the xLSTM architecture with its components.
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2.1 Review of the Long Short-Term Memory

The original LSTM idea (Hochreiter, 1991; Hochreiter & Schmidhuber, 1997b,a) introduced the
scalar memory cell as a central processing and storage unit that avoids vanishing gradients (Hochreiter,
1991; Hochreiter et al., 2000) through the constant error carousel (cell state update). The memory cell
contains three gates: input, output, and forget gate. The latter was introduced by Gers et al. (2000).
The LSTM memory cell update rules at time step t are:

ct = ft ct−1 + it zt cell state (2)

ht = ot h̃t , h̃t = ψ
(
ct

)
hidden state (3)

zt = φ (z̃t) , z̃t = w⊤
z xt + rzht−1 + bz cell input (4)

it = σ
(̃
it
)
, ĩt = w⊤

i xt + ri ht−1 + bi input gate (5)

ft = σ
(
f̃t

)
, f̃t = w⊤

f xt + rf ht−1 + bf forget gate (6)

ot = σ (õt) , õt = w⊤
o xt + ro ht−1 + bo output gate (7)

The weight vectors wz , wi, wf , and wo correspond to the input weight vectors between inputs xt

and cell input, input gate, forget gate, and output gate, respectively. The weights rz , ri, rf , and ro
correspond to the recurrent weights between hidden state ht−1 and cell input, input gate, forget gate,
and output gate, respectively. bz , bi, bf , and bo are the corresponding bias terms. φ and ψ are the
cell input and hidden state activation functions (typically tanh). ψ is used to normalize or squash
the cell state, which would be unbounded otherwise. All gate activation functions are sigmoid, i.e.,
σ (x) = 1/(1+exp(−x)). In later formulations, multiple scalar memory cells ct ∈ R were combined
in a vector ct ∈ Rd, which allows the usage of recurrent weight matrices R ∈ Rd×d for each gate to
mix the cell outputs of memory cells (Greff et al., 2015), for more details see Appendix B.1. Ablation
studies showed that all components of the memory cell are crucial (Greff et al., 2015).

2.2 sLSTM

To empower LSTMs with the ability to revise storage decisions, we introduce exponential gates
(red) together with normalization and stabilization. In particular, input and forget gates can have
exponential activation functions. For normalization, we introduce a normalizer state that sums up the
product of the input gate times all future forget gates. The scalar sLSTM forward pass is:

ct = ft ct−1 + it zt cell state (8)

nt = ft nt−1 + it normalizer state (9)

ht = ot h̃t , h̃t = ct / nt hidden state (10)

zt = φ (z̃t) , z̃t = w⊤
z xt + rzht−1 + bz cell input (11)

it = exp
(̃
it
)
, ĩt = w⊤

i xt + ri ht−1 + bi input gate (12)

ft = σ
(
f̃t

)
OR exp

(
f̃t

)
, f̃t = w⊤

f xt + rf ht−1 + bf forget gate (13)

ot = σ (õt) , õt = w⊤
o xt + ro ht−1 + bo output gate (14)

We transfer the original LSTM gating techniques, i.e., input- and/or hidden-dependent gating plus bias
term, to the new architectures. Exponential activation functions can lead to large values that cause
overflows. Therefore, we stabilize gates with an additional state mt (Milakov & Gimelshein, 2018),
see Equations (49) – (51) in the appendix.

New Memory Mixing. sLSTM can have multiple memory cells like the original LSTM (see
Appendix B.2). Multiple memory cells enable memory mixing via recurrent connections Rz , Ri,
Rf , Ro from hidden state vector h to memory cell input z and the gates i, f , o, respectively. A new
aspect in memory mixing is the effect of exponential gating. The new sLSTM can have multiple

3



heads with memory mixing within each head but not across heads. The introduction of heads for
sLSTM together with exponential gating establishes a new way of memory mixing.

2.3 mLSTM

To enhance storage capacities of LSTMs, we increase the LSTM memory cell from a scalar c ∈ R to
a matrix C ∈ Rd×d. Hence, retrieval is performed via a matrix multiplication. At time t, we want to
store a pair of vectors, the key kt ∈ Rd and the value vt ∈ Rd (we use the Transformer terminology).
Later at time t+ τ , the value vt should be retrieved by a query vector qt+τ ∈ Rd. This is the setting
of Bidirectional Associative Memories (BAMs) (Kohonen, 1972; Anderson, 1972; Nakano, 1972;
Anderson et al., 1977). The covariance update rule (Sejnowski, 1977; Dayan & Willshaw, 1991) for
storing a key-value pair is

Ct = Ct−1 + vt k
⊤
t . (15)

We assume a layer-norm before projecting inputs to keys and values, therefore they have zero mean.
The covariance update rule is optimal (Dayan & Willshaw, 1991) for a maximal separability of
retrieved binary vectors, which is equivalent to a maximal signal/noise ratio. Higher separability is
possible when limiting retrieval to pairwise interactions and conceding quadratic complexity like
attention (Krotov & Hopfield, 2016, 2017; Ramsauer et al., 2021). The covariance update rule is
equivalent to Fast Weight Programmers (Schmidhuber, 1992; Schlag et al., 2021), which have later
been equipped with a constant decay rate multiplied to Ct−1 and a constant learning rate multiplied
to vtk

⊤
t (Ba et al., 2016a). In this spirit, we integrate the covariance update rule into the LSTM

framework, where the forget gate corresponds to decay rate and the input gate to the learning rate,
while the output gate scales the retrieved vector.

For this matrix memory, the normalizer state is the weighted sum of key vectors, where each key
vector is weighted by the input gate and all future forget gates. Again, the normalizer state keeps
record of the strength of the gates. Since the dot product between query and normalizer state can
be close to zero, we use the absolute value of this dot product and lower bound it by a threshold
(typically 1.0) as done previously (Sun et al., 2023). The mLSTM forward pass is:

Ct = ft Ct−1 + it vt k
⊤
t cell state (16)

nt = ft nt−1 + it kt normalizer state (17)

ht = ot ⊙ h̃t , h̃t = Ct qt / max
{∣∣∣ n⊤

t qt

∣∣∣, 1} hidden state (18)

qt = Wq xt + bq query input (19)

kt =
1√
d
Wk xt + bk key input (20)

vt = Wv xt + bv value input (21)

it = exp
(̃
it
)
, ĩt = w⊤

i xt + bi input gate (22)

ft = σ
(
f̃t

)
OR exp

(
f̃t

)
, f̃t = w⊤

f xt + bf forget gate (23)

ot = σ (õt) , õt = Wo xt + bo output gate (24)

mLSTM can have multiple memory cells like the original LSTM. For mLSTM, multiple heads and
multiple cells are equivalent as there is no memory mixing. In order to stabilize the exponential gates
of mLSTM, we use the same stabilization techniques as for sLSTM (see Equation 49). Since the
mLSTM has no memory mixing, this recurrence can be reformulated in a parallel version. For more
details we refer to Appendix B.3.

2.4 xLSTM Architecture

xLSTM Blocks. An xLSTM block should non-linearly summarize the past in a high-dimensional
space to better separate different histories or contexts. Separating histories is the prerequisite to cor-
rectly predict the next sequence element such as the next token. We resort to Cover’s Theorem (Cover,
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1965), which states that in a higher dimensional space non-linearly embedded patterns can more
likely be linearly separated than in the original space. We consider two residual block architectures:
(i) A residual block with post up-projection (like Transformers), which non-linearly summarizes the
past in the original space, then linearly maps into a high-dimensional space, applies a non-linear
activation function, and linearly maps back to the original space; see Appendix Figure 7 for details.
(ii) A residual block with pre up-projection (like State Space Models), which linearly maps to a
high-dimensional space, non-linearly summarizes the past in the high-dimensional space and then
linearly maps back to the original space. See Appendix Figure 8 for more details. For an xLSTM
block containing an sLSTM, we mostly use the post up-projection block. For an xLSTM block
containing an mLSTM, we use the pre up-projection block since the memory capacity becomes larger
in the high-dimensional space.

xLSTM Architecture. An xLSTM architecture is constructed by residually stacking build-
ing blocks (Srivastava et al., 2015; He et al., 2016). We rely on the most commonly used pre-
LayerNorm (Ba et al., 2016b) residual backbones as used in contemporary Large Language Models.
See last two columns (from the left) in Figure 6.

2.5 Memory and Speed Considerations

Contrary to Transformers, xLSTM networks have a linear computation and a constant memory
complexity with respect to the sequence length. Since the xLSTM memory is compressive, it is
well suited for industrial applications and implementations on the edge. The memory of mLSTM
does not require parameters, but is computationally expensive through its d× d matrix memory and
d× d update. We trade off memory capacity against computational complexity. Nevertheless, the
computations can be done in parallel on GPUs, therefore these computations have only a minor effect
on the wall clock time.

While mLSTM is parallelizable analog to FlashAttention (Dao et al., 2022; Dao, 2024) or GLA (Yang
et al., 2023), sLSTM is not parallelizable due to the memory mixing (hidden-hidden connections).
However, we developed a fast CUDA implementation with GPU memory optimizations to the register
level which is typically less than two times slower than mLSTM.

3 Related Work

Conceptually, the closest models to xLSTM are Retention (Sun et al., 2023), RWKV (Peng et al.,
2023, 2024), GLA (Yang et al., 2023), HGRN2 (Qin et al., 2024) and Mamba (Gu & Dao, 2024).
These models share the concepts matrix memory and/or gating. However, in contrast to the new
sLSTM, they do not allow memory mixing. Memory mixing enables to solve state tracking problems,
and therefore LSTMs are more expressive than State Space Models (SSMs) and Transformers (Merrill
et al., 2024; Delétang et al., 2023). Other closely related work is discussed further in Appendix C.

4 Experiments

We experimentally evaluate xLSTM and compare it to existing methods with a focus on language
modeling. We investigate xLSTM’s specific capabilities on synthetic tasks in Section 4.1. In
Section 4.2, we compare the validation set perplexity of various current language modeling methods
that have been trained on 15B tokens from SlimPajama (Soboleva et al., 2023). On the same dataset,
we perform ablation studies for xLSTM. Then, we compare xLSTM and the best performing methods
from Section 4.2 after being trained on 300B tokens from SlimPajama (Soboleva et al., 2023)
on downstream tasks, assess their scaling behavior analogous to Kaplan et al. (2020) and Brown
et al. (2020), and compare the text generation times and the maximal throughput of the xLSTM in
Section 4.3. For all experiments, we use the notation xLSTM[a:b] for the ratio a/b of mLSTM-based
versus sLSTM-based xLSTM blocks. For example, xLSTM[7:1] means that out of eight blocks,
seven are mLSTM-based blocks and one is an sLSTM-based block. For a common total block number
of 48, this translates to 6 sLSTM-based blocks and 42 mLSTM-based blocks.
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4.1 Synthetic Tasks and Long Range Arena

Firstly, we test the effectiveness of xLSTM’s new exponential gating with memory mixing on formal
languages (Delétang et al., 2023). Then, we assess the effectiveness of xLSTM’s new matrix memory
on the Multi-Query Associative Recall task (Arora et al., 2023). Finally, xLSTM’s performance at
processing long sequences in the Long Range Arena is evaluated (Tay et al., 2021).

Test of xLSTM’s Exponential Gating with Memory Mixing. We test xLSTM’s new exponential
gating with memory mixing, which should enable it to solve state tracking problems (Merrill
et al., 2024; Merrill & Sabharwal, 2023). We implement and extend the formal language tasks
from Delétang et al. (2023) to enable multi-length training for length extrapolation. For a detailed
description of all tasks and extended results see Appendix D.1.1. We compare xLSTM to other
methods including Transformers, State Space Models, and Recurrent Neural Networks. The accuracy
of the tested methods is evaluated on those tokens relevant to the task. The accuracy is scaled between
0 (random) and 1 (perfect). We compare 2-block architectures of the following methods on these
tasks: xLSTM[0:1] (i.e., only sLSTM), xLSTM[1:0] (i.e., only mLSTM), xLSTM[1:1], Llama,
Mamba, RWKV, Retention, Hyena, LSTM, and LSTM in Transformer blocks (LSTM (Block)). The
results of this experiment are shown in Figure 9. Models such as Transformers or State Space Models
without memory mixing (no state tracking) cannot solve, e.g. regular grammars like the parity task.
This result is in agreement with findings that Transformers and State Space models are fundamentally
less powerful than RNNs (Merrill et al., 2024; Merrill & Sabharwal, 2023; Delétang et al., 2023).

Test of xLSTM’s Memory Capacities on Associative Recall Tasks. In this experiment, we test
xLSTM’s new matrix memory in terms of the memory capacity on the Multi-Query Associative
Recall task (Arora et al., 2023): For each sequence, key–value pairs are randomly chosen from
a large vocabulary, which must be memorized for later retrieval. To enhance the difficulty of the
original task, we increase the number of key-value pairs up to 256 and enlarge the context length
up to 2048, obtaining extended tests for the memory capacities of different models. We compare
2-block architectures of Llama, Mamba, RWKV-5, RWKV-6, xLSTM[1:1] and xLSTM[1:0]. The
models are evaluated by the accuracy at recalling the pairs. Since Transformers (e.g. Llama) have
a memory that is exponential in the coding dimension (Ramsauer et al., 2021), they constitute the
gold standard at this task. Results are shown in Figure 2. xLSTM[1:1] performs best among all
non-Transformer models, also for small models. Interestingly, the sLSTM block does not diminish
the memory capacity but rather leverages it, which becomes evident at the most difficult task with
256 key-value pairs. Additional results of Appendix D.1.2, indicate that xLSTM’s enhanced memory
capacities also allow for extrapolating to contexts that are longer than those seen during training.
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32 64 128 256 512
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32 64 128 256 512
Model Dim
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Llama Mamba RWKV-5 RWKV-6 xLSTM[1:0] xLSTM[1:1]

Figure 2: Test of memory capacities of different models at the Multi-Query Associative Recall task
with context length 2048. Each panel is dedicated to a different number of key-value pairs. The
x-axis displays the model size and the y-axis the validation accuracy.
Test of xLSTM’s Long Context Capabilities on Long Range Arena. To assess xLSTM’s per-
formance on long sequences and large contexts, we compare different methods on the Long Range
Arena (Tay et al., 2021). xLSTM demonstrates consistent strong performance on all of the tasks,
suggesting that the xLSTM architecture is remarkably efficient in handling different aspects of long
context problems. For more details, see Appendix D.1.3.

4.2 Method Comparison and Ablation Study

To address the main question of our paper, i.e. what can our new LSTM variants achieve when scaled
up in language modelling, we train xLSTMs, Transformers, State Space Models, and other methods
on 15B tokens from SlimPajama in the same auto-regressive setting. We compare the trained models
on the validation set and perform ablation studies for the xLSTMs.

6



Comparing xLSTM to Other Methods. We train models on 15B tokens from SlimPajama (Soboleva
et al., 2023), and evaluate their perplexity on the validation set. We compare the following methods:
xLSTM, GPT-3 (Transformer) (Brown et al., 2020), Llama (Transformer) (Touvron et al., 2023),
H3 (SSM) (Fu et al., 2023), Mamba (SSM) (Gu & Dao, 2023), RWKV-4 (RNN) (Peng et al.,
2023), RWKV-5 (RNN) (Peng et al., 2024), RWKV-6 (RNN) (Peng et al., 2024), GLA (linear
Transformer) (Yang et al., 2023), HGRN2 (RNN) (Qin et al., 2024). RetNet (linear Transformer) (Sun
et al., 2023), Hyena (linear Transformer) (Poli et al., 2023), xLSTM[1:0], and xLSTM[7:1]. The
models were trained with mixed precision, for RWKV-5, RWKV-6, GLA, HGRN2, the mixed-
precision training did not utilize the PyTorch automated mixed precision (see Appendix Section D.2).
We categorize the methods into (a) Transformers, (b) State Space Models (SSMs), and (c) Recurrent
Neural Networks (RNNs) together with linear Transformers, i.e., linear methods that substitute the
Transformer’s attention mechanism. The models match a GPT-3 model with 350M parameters in
size, i.e. embedding dim 1024 and 24 residual blocks. Only GPT-3 uses shared weights for token and
output embeddings, therefore has fewer parameters.

Table 1: Method comparison on next token prediction when trained on 15B tokens from SlimPajama.
Best validation perplexities within model classes, i.e., linear Transformers, RNNs, Transformers,
SSMs, and xLSTMs are underlined and overall best is in bold. For each model class, the best per-
forming methods are used in Section 4.3 for LLM training. xLSTMs with new memory (xLSTM[1:0]
and xLSTM[7:1]) perform best.

Model #Params
M

SlimPajama
(15B) ppl ↓

Hyena 435 17.59
RWKV-4 430 15.62
RWKV-5 456 14.25
RWKV-6 442 15.03
RetNet 431 16.23
GLA 412 16.15
HGRN2 411 14.32

Model #Params
M

SlimPajama
(15B) ppl ↓

GPT-3 356 14.26
Llama 407 14.25

H3 420 18.23
Mamba 423 13.70

xLSTM[1:0] 409 13.43
xLSTM[7:1] 408 13.48

The results in Table 1 show that xLSTM outperforms all existing methods in validation perplexity. For
details see Appendix D.2. Figure 15 in the appendix shows the scaling behaviour for this experiment,
indicating that xLSTM will also perform favorably for larger models.

Ablation Studies. Table 1 and Figure 15 demonstrate that xLSTM achieves excellent results at
language modeling when being trained on 15B tokens from SlimPajama. To ablate the changes from
LSTM to xLSTM, we morph a vanilla LSTM architecture step-by-step into an xLSTM architecture.
Firstly, we integrate LSTM layers into pre-LayerNorm residual backbones. Secondly, we extend this
to a post up-projection block. Finally, we add exponential gating and matrix memory. The results are
shown in Appendix Table 6 (top). The ablation studies attribute the strong performance improvement
to both the exponential gating and the matrix memory. Additionally, due to the importance of gating in
RNNs and State Space Models, we ablate different gating mechanisms. In Appendix Table 6 (bottom),
we conclude that having each gate learnable and influenced by the input has an incrementally positive
effect. Additional studies on the individual backbone components are discussed in Appendix D.2.

4.3 xLSTM as Large Language Model

Next, we increase the amount of training data to 300B tokens from SlimPajama, the same number of
tokens as used in e.g., Mamba (Gu & Dao, 2023) and Griffin (De et al., 2024). We compare xLSTM
to RWKV-4, Llama, and Mamba – one method from each respective method class in Section 4.2.
We select RWKV-4 as RNN representative since for RWKV-5, RWKV-6 and HGRN2 a reasonable
training precision setting (Appendix Section D.2) has been found only after the training start of the
300B token experiments (Peng et al., 2024). We train different model sizes (125M, 350M, 760M,
1.3B), test all models for length extrapolation capabilities and evaluate their performance on the
validation set, on downstream tasks, on 471 text domains of the PALOMA benchmark, and, finally,
investigate their scaling law behavior.
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Sequence Length Extrapolation. Firstly, we test the sequence length extrapolation for 1.3B-sized,
large models of xLSTM, RWKV-4, Llama, and Mamba. All models are trained on context length
2048, and then tested for context lengths up to 16384. See Figure 3 for the results. In contrast to
other methods, xLSTM models maintain low perplexities for longer contexts.

Model
SlimPajama
(300B) ppl ↓

at 16k

Llama 337.83
Mamba 14.00
RWKV-4 13.75
xLSTM[7:1] 8.92
xLSTM[1:0] 9.01

Figure 3: Sequence extrapolation in language modeling. This is a comparison of 1.3B-sized, large
models of xLSTM, RWKV-4, Llama, and Mamba at next token prediction on the SlimPajama
validation set after training on 300B tokens from SlimPajama. Models are trained with context length
2048 (gray) and then tested for context lengths up to 16384. Left: Token perplexities evaluated at
different context lengths. In contrast to other methods, xLSTM models remain at low perplexities
for longer contexts. Right: Prediction quality when extrapolating to long context sizes in terms of
validation perplexity (PPL). xLSTM yields the best PPL values (best in bold, second best underlined).

Table 2: Validation set perplexity and downstream tasks. Comparison of xLSTM, RWKV-4, Llama,
and Mamba on the validation set at next token prediction and on downstream tasks after training on
300B tokens from SlimPajama. Model sizes are 125M, 350M, 760M, and 1.3B. The first column
shows the methods and the second the actual number of parameters. The third column lists the
validation set perplexities, while the remaining columns show the performance on downstream tasks.
Best model per model size is depicted bold and the second best is underlined. In the vast majority of
tasks and across all model sizes xLSTM is the best method — only on the ARC task Mamba is in
some cases the best method. xLSTM[1:0] and xLSTM[7:1] are the two best models with respect to
validation set perplexity.

Model #Params
M

SlimPajama
(300B) ppl ↓

LAMBADA
ppl ↓

LAMBADA
acc ↑

HellaSwag
acc ↑

PIQA
acc ↑

ARC-E
acc ↑

ARC-C
acc ↑

WinoGrande
acc ↑

Average
acc ↑

12
5M

RWKV-4 169.4 16.66 54.72 23.77 34.03 66.00 47.94 24.06 50.91 41.12
Llama 162.2 15.89 39.21 31.54 34.09 65.45 45.33 23.63 50.67 41.78
Mamba 167.8 15.08 27.76 34.14 36.47 66.76 48.86 24.40 51.14 43.63
xLSTM[1:0] 163.8 14.63 25.98 36.52 36.74 65.61 47.81 24.83 51.85 43.89
xLSTM[7:1] 163.7 14.60 26.59 36.08 36.75 66.87 48.32 25.26 51.70 44.16

35
0M

RWKV-4 430.5 12.62 21.57 36.62 42.47 69.42 54.46 25.43 51.22 46.60
Llama 406.6 12.19 15.73 44.19 44.45 69.15 52.23 26.28 53.59 48.32
Mamba 423.1 11.64 12.83 46.24 47.55 69.70 55.47 27.56 54.30 50.14
xLSTM[1:0] 409.3 11.31 11.49 49.33 48.06 69.59 55.72 26.62 54.38 50.62
xLSTM[7:1] 408.4 11.37 12.11 47.74 47.89 71.16 56.61 27.82 53.28 50.75

76
0M

RWKV-4 891.0 10.55 10.98 47.43 52.29 72.69 58.84 28.84 55.41 52.58
Llama 834.1 10.60 9.90 51.41 52.16 70.95 56.48 28.75 56.67 52.74
Mamba 870.5 10.24 9.24 50.84 53.97 71.16 60.44 29.78 56.99 53.86
xLSTM[1:0] 840.4 9.86 8.09 54.78 55.72 72.69 62.75 32.59 58.17 56.12
xLSTM[7:1] 839.7 9.91 8.07 55.27 56.12 72.74 61.36 29.61 56.43 55.26

1.
3B

RWKV-4 1515.2 9.83 9.84 49.78 56.20 74.70 61.83 30.63 55.56 54.78
Llama 1420.4 9.44 7.23 57.44 57.81 73.12 62.79 31.74 59.04 56.99
Mamba 1475.3 9.14 7.41 55.64 60.45 74.43 66.12 33.70 60.14 58.41
xLSTM[1:0] 1422.6 8.89 6.86 57.83 60.91 74.59 64.31 32.59 60.62 58.48
xLSTM[7:1] 1420.1 9.00 7.04 56.69 60.26 74.92 65.11 32.34 59.27 58.10
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Validation Perplexity and Downstream Tasks. Secondly, for all model sizes, we evaluate the
performance of xLSTM, RWKV-4, Llama, and Mamba models on the SlimPajama validation set for
next token prediction and on downstream tasks that measure common sense reasoning. The third
column of Table 2 lists the validation set perplexities of different methods. Both xLSTM[1:0] and
xLSTM[7:1] are the best models for all model sizes with respect to the validation set perplexity. The
other columns of Table 2 provide the performance on downstream tasks. In the vast majority of tasks
and across all model sizes xLSTM is the best method — only on the ARC task Mamba is in some
cases the best method. For details see Appendix D.3.

Performance on PALOMA Language Tasks. Thirdly, for all model sizes, we test the next token
prediction performance of xLSTM, RWKV-4, Llama, and Mamba models on PALOMA language
tasks (Magnusson et al., 2023). We measure the performance by the perplexity for next token
prediction on 571 text domains, which range from nytimes.com to r/depression on Reddit. Appendix
Table 8 shows token prediction perplexity grouped into language modeling (first seven columns) and
fine-grained domain benchmarks (last 5 columns). xLSTM[1:0] has in 568 out of 571 (99.5%) text
domains a lower perplexity than Mamba, in 486 out of 571 (85.1%) a lower perplexity than Llama, in
570 out of 571 (99.8%) a lower perplexity than RWKV-4, see Appendix D.3.

Scaling Laws. Fourthly, we assess the power-law scaling behavior, which allows to extrapolate the
performance to larger model sizes (Kaplan et al., 2020; Brown et al., 2020). Figure 4 presents the
scaling behavior over the number of model parameters. All models share a similar scaling behavior
but with different offsets. RWKV-4 performs worst, followed by Llama and Mamba. xLSTM is better
than Mamba with a similar margin to Mamba as Mamba has to Llama. In Figure 16 in Appendix D.3
we plot the scaling behavior over the number of training FLOPs for the Llama baseline and both
xLSTM variants. For the xLSTM variants we calculate the FLOPs for the recurrent (see Section 2
and parallel (see Appendix B.3) formulation. The scaling behavior indicates that for larger models
xLSTM will continue to perform favourable compared to Transformers and State-Space models.
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Figure 4: Scaling laws. Next token prediction perplexity of xLSTM, RWKV-4, Llama, and Mamba.
The models – with sizes 125M, 350M, 760M, and 1.3B parameters – are trained on 300B tokens
from SlimPajama. The scaling laws indicate that for larger models xLSTM will perform well too.

Generation Times and Maximal Throughput. Finally, we measure the text generation time in
Figure 5 (left) and the maximal throughput in Figure 5 (right) for our xLSTM variants at 1.3B scale.
We compare against similar sized Mamba, Llama and RWKV implementions from HuggingFace,
including a static key-value cache for the Llama model. At the time of the experiments, both full cache
compilation of the Transformer model and compilation of the Mamba model with torch.compile
did not work. For the text generation experiments all of the models are tested at batch size 1 and
pre-fill 16. This pre-fill should be maximally favorable for the Transformer. Figure 5 shows the
linear scaling of the xLSTM and the other recurrent models Mamba and RWKV-4 compared to the
quadratic scaling of Llama. For the decoding throughput we measure different batch sizes and prefill
for the Llama model. Figure 5 (right) shows that xLSTM can use much higher batch sizes than Llama
due to its constant memory and thus achieves the highest throughput.
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Figure 5: Generation Times and Maximal Throughput. Left: Generation times of different 1.3B
models for a pre-fill context of 16 tokens (to mitigate cache initialization). The recurrent models
(xLSTM[1:0], xLSTM[7:1], Mamba and RWKV-4) show linear behavior, whereas the Transformer
(Llama) inference/decoding time is quadratic in sequence length. Right: Token throughput for
different batch sizes on a A100-80GB GPU for 1.3B sized models. Note that the Transformer / Llama
model goes out of memory (OOM) already for small batch sizes, whereas xLSTM and Mamba can
sustain very large batch sizes. xLSTM[1:0] consistently outperforms Mamba in throughput. Beyond
batch size 2048, all models go OOM.

5 Limitations

(i) In contrast to mLSTM, memory mixing of the sLSTM prohibits parallelizable operations, and
thus prevents a fast parallel implementation. However, we developed a fast CUDA kernel for sLSTM,
which is currently less than two times slower than the parallel mLSTM implementation. (ii) The
mLSTM CUDA kernels are not optimized, and therefore the current implementation is about four
times slower than FlashAttention or the scan used in Mamba. Faster CUDA kernels could be obtained
in the vein of FlashAttention. (iii) The matrix memory of mLSTM has high computation complexity
since d× d matrices must be processed. Still, the memory update and retrieval is parameter-free, i.e.,
parallelizable when using standard matrix operations. Thus, the wall clock time overhead due to the
complex memory is minor. (iv) The forget gate initialization must be chosen carefully. (v) Since the
matrix memory is sequence length independent, increasing the sequence length might overload the
memory for longer context sizes. Still, this does not appear to be a limitation for contexts up to 16k,
see Section 4.3. (vi) Due to the expensive computational load for LLM experiments, we did neither
fully optimize the architecture nor the hyperparameters, especially for larger xLSTM architectures.
We anticipate that an extensive optimization process is needed for xLSTM to reach its full potential.

6 Conclusion

We have partly answered our simple question: How far do we get in language modeling when scaling
LSTM to billions of parameters? So far, we can answer: “At least as far as current technologies like
Transformers or State Space Models”. We have enhanced LSTM to xLSTM by exponential gating
with memory mixing and a new memory structure. xLSTM models perform favorably on language
modeling when compared to state-of-the-art methods like Transformers and State Space Models. The
scaling laws indicate that larger xLSTM models will be serious competitors to current LLMs that are
built with the Transformer technology. xLSTM has the potential to considerably impact other fields
like Reinforcement Learning, Time Series Prediction, or the modeling of physical systems.
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A Broader Impacts

Our work introduces novel LSTM architectures that perform favorably compared to Transformers
or State Space Models on language modeling. As our novel LSTM models are inherently recurrent
and demonstrably extrapolate well to large contexts, they have the potential for near constant scaling
at inference. This compares to linear scaling in the context length for Transformer architectures,
representing a vast potential in energy and emission savings when deploying such models to real
world applications. Thus, in an ever more connected, data-rich world with ubiquitous compute, our
work has the potential to increase general accessibility of state-of-the-art machine learning models
whilst making them more environmentally sustainable.

However, any novel machine learning technique that has the potential to impact real world applications
can be used for harm, not just for good. Our models with their beneficial inference economics and
their ability to extrapolate to large contexts at no overhead could be used, for example, to generate
and spread disinformation on a grander scale. Moreover, savings in energy and emissions afforded by
deploying our novel xLSTM models might be outweighed by an increase in demand for such models,
leading to an overall increase in energy consumption and environmentally harmful emissions. Whilst
our work focuses on new, more efficient Language Model architectures, it does not directly address
the issues of fairness and bias of such models.

B Extended Long Short-Term Memory

Memory Cells
🠆 Constant Error Carousel

🠆 Sigmoid Gating

🠆 Recurrent Inference

🠆 Recurrent Training

sLSTM

+ New Memory Mixing

Memory Cells xLSTM Blocks xLSTM

mLSTM
+ Exponential Gating

+ Parallel Training

+ Covariance Update Rule

+ Matrix Memory

LSTM

+ Exponential Gating

Figure 6: The extended LSTM (xLSTM) family. From left to right: 1. The original LSTM memory
cell with constant error carousel and gating. 2. New sLSTM and mLSTM memory cells that introduce
exponential gating. sLSTM offers a new memory mixing technique. mLSTM is fully parallelizable
with a novel matrix memory cell state and new covariance update rule. 3. mLSTM and sLSTM in
residual blocks yield xLSTM blocks. 4. Stacked xLSTM blocks give an xLSTM architecture.
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B.1 Vanilla Long Short-Term Memory Formulation: Vector Notation

The vanilla LSTM memory cell update rules (Greff et al., 2015) at time step t extend the scalar cell
state formulation to a vector of cell states:

ct = ft ⊙ ct−1 + it ⊙ zt cell state (25)

ht = ot ⊙ h̃t , h̃t = ψ
(
ct

)
hidden state (26)

zt = φ (z̃t) , z̃t = Wz xt + Rz ht−1 + bz cell input (27)

it = σ
(̃
it

)
, ĩt = Wi xt + Ri ht−1 + bi input gate (28)

ft = σ
(
f̃t

)
, f̃t = Wf xt + Rf ht−1 + bf forget gate (29)

ot = σ (õt) , õt = Wo xt + Ro ht−1 + bo output gate (30)

The matrices Wz , Wi, Wf , and Wo correspond to the input weights between inputs xt and cell
input, input gate, forget gate, and output gate, respectively. The matrices Rz , Ri, Rf , and Ro

correspond to the recurrent weights between hidden state ht−1 and cell input, input gate, forget gate,
and output gate, respectively. bz , bi, bf , and bo are the corresponding bias vectors. φ and ψ are the
cell input and hidden state activation functions (typically tanh). ψ is used to normalize or squash the
cell state, which would be unbounded otherwise.

B.2 sLSTM

Similar to the LSTM in Section B.1, also the sLSTM can be vectorized to multiple cells:

ct = ft ⊙ ct−1 + it ⊙ zt cell state (31)

nt = ft ⊙ nt−1 + it normalizer state (32)

ht = ot ⊙ h̃t , h̃t = ct ⊙ n−1
t hidden state (33)

zt = φ (z̃t) , z̃t = Wz xt + Rz ht−1 + bz cell input (34)

it = exp
(̃
it

)
, ĩt = Wi xt + Ri ht−1 + bi input gate (35)

ft = exp
(
f̃t

)
OR σ

(
f̃t

)
, f̃t = Wf xt + Rf ht−1 + bf forget gate (36)

ot = σ (õt) , õt = Wo xt + Ro ht−1 + bo output gate (37)

Here, the cell input activation function φ is tanh, the hidden state activation function is the identity.
φ helps stabilizing the recurrence.

Considering external gradient contribution δext
ht

from subsequent layers and recurrent gradient contri-
bution δRht

from gradients from future states flowing over the cell interaction matrix R, we obtain the
recursive backward pass of sLSTM, where δa indicates gradients with respect to parameter / internal
variable a:
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δht
= δextht

+ δRht
(38)

δct−1
= ft ⊙ δct

+ ot−1 ⊙ nt−1
−1 ⊙ δht−1

(39)

δnt−1
= ft ⊙ δnt

− ot−1 ⊙ ct−1 ⊙ n−2
t−1 ⊙ δht−1

(40)

δf̃t = f ′t ⊙ ct−1 ⊙ δct
+ f ′t ⊙ nt−1 ⊙ δnt

(41)

δ̃it = i′t ⊙ zt ⊙ δct
+ i′t ⊙ δnt

(42)

δz̃t = it ⊙ φ′(z̃t) ⊙ δct (43)

δõt = o′
t ⊙ ct ⊙ n−1

t ⊙ δht (44)

δxt
=

∑
g∈{f ,i,z,o}

W⊤
g δg̃t

(45)

δRht−1
=

∑
g∈{f ,i,z,o}

R⊤
g δg̃t

(46)

δ⊤Rg
=

∑
t

ht−1δ
⊤
g̃t
, g ∈ {i, f , z,o} (47)

δ⊤Wg
=

∑
t

xtδ
⊤
g̃t
, g ∈ {i, f , z,o} (48)

with the derivatives of the respective gate activation function i′t = exp′(̃it) = exp(̃it) = it, o′
t =

σ′(õt), and f ′t = σ′(f̃t) or f ′t = ft depending on the forget gate activation. φ′(z) is the derivative of
the cell input activation function φ(z).

The matrices Rz , Ri, Rf , Ro are block-diagonal which is analogous to multiple heads in the
mLSTM. This way, the parameters reduce to d2/(Nh), where Nh is the number of heads, limiting the
cell interactions to individual heads. This parameter efficient formulation of cell interactions together
with the exponential gating is called the new memory mixing. Finally, to stabilize the backward
pass, we clip the magnitude of δRht

to 10, as a means to prohibit exploding gradients for long context
lengths.

sLSTM Stabilized Version. The stabilized version of sLSTM introduces a new stabilizer state m ,
applied as:

mt = max
(
log( ft ) + mt−1 , log( it )

)
stabilizer state (49)

i′t = exp
(
log

(
it

)
− mt

)
= exp

(̃
it − mt

)
stabil. input gate (50)

f ′t = exp
(
log

(
ft

)
+ mt−1 − mt

)
stabil. forget gate (51)

We show that replacing ft by f ′t and it by i′t in the forward pass does neither change the output of the
whole network nor the derivatives of the loss with respect to the parameters.

The stabilization state m has no gradient, and hence does not influence the other gradients. We
re-define c(s)t and n(s)t as stabilized cell and normalizer states:

ct = c
(s)
t exp

(
mt

)
(52)

nt = n
(s)
t exp

(
mt

)
(53)
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Inserting Equation 49 into Equation 8 yields:

h̃
(s)
t = c

(s)
t /n

(s)
t = (54)

=
exp

(
log (ft) + mt−1 − mt

)
c
(s)
t−1 + exp

(
log (it)− mt

)
zt

exp
(
log (ft) + mt−1 − mt

)
n
(s)
t−1 + exp

(
log (it)− mt

) (55)

=
exp

(
log (ft) + mt−1

)
c
(s)
t−1 + exp (log (it)) zt

exp
(
log (ft) + mt−1

)
n
(s)
t−1 + exp (log (it))

(56)

=
exp (log (ft)) ct−1 + exp (log (it)) zt
exp (log (ft))nt−1 + exp (log (it))

(57)

=
ftct−1 + itzt
ftnt−1 + it

= ct/nt = h̃t (58)

Therefore, since the loss solely depends on ht, there’s no dependency on mt, and consequently,
no gradient exists for this stabilization state. Note that mt can be chosen arbitrarily. We choose
mt = max (log (ft) +mt−1, log (it)), which stabilizes the exponential function. One can even find
mt, such that the normalizer state nt can be eliminated, but this version was experimentally found to
be numerically unstable in the backward pass.

B.3 mLSTM

Throughout this section, 1 ∈ RT denotes a column vector of ones and 1⊤ ∈ R1×T a row vector of
ones, where T is the dimension of this vector space.

Recurrent mLSTM Backward Pass. The recurrent formulation of the mLSTM cell in Equation 16
yields the following backward pass recurrence, where δa indicates gradients with respect to parameter
or internal variable a and δext

ht
denotes gradients from subsequent layers:

δ⊤
h̃t

= ot ⊙ δext
ht

(59)

δCt−1 = ftδCt +
qt−1δ

⊤
h̃t−1

max
{∣∣n⊤

t−1qt−1

∣∣, 1} (60)

δnt−1 = ftδnt −
q⊤
t−1C

⊤
t−1δh̃t−1

max
{∣∣n⊤

t−1qt−1

∣∣, 1}2Ω
(
n⊤

t−1qt−1

)
qt−1 (61)

δ⊤vt
= itk

⊤
t δ

⊤
Ct

(62)

δ⊤kt
= it

(
v⊤
t δCt + δ⊤nt

)
(63)

δqt
=

C⊤
t δh̃t

max
{∣∣n⊤

t qt
∣∣, 1} −

q⊤
t C

⊤
t δh̃t

max
{∣∣n⊤

t qt
∣∣, 1}2Ω

(
n⊤

t qt
)
nt (64)

δxt
=

∑
g∈{q,k,v}

W⊤
g δgt

(65)

δ⊤Wg
=

∑
t

xtδ
⊤
gt
, g ∈ {q, k, v} (66)

δbg =
∑
t

δgt , g ∈ {q, k, v} (67)

δf̃t =
(
1⊤ (Ct−1 ⊙ δCt

)1+ 1⊤ (nt−1 ⊙ δnt
)
)
γ
(
f̃t

)
(68)

δ̃it =
(
1⊤ ((

vtk
⊤
t

)
⊙ δCt

)
1+ 1⊤ (kt ⊙ δnt)

)
exp

(̃
it
)

(69)

δõt
= h̃t ⊙ σ′ (õt)⊙ δht

(70)
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and Ω (z) = Θ (z − 1)−Θ(−z − 1), Θ(z) being the Heaviside step function. γ (z) is either σ′ (z)
or exp (z), depending on the forget gate activation.

Parallel mLSTM Forward Pass. The mLSTM recurrence in Equations (16-24) can be reformulated
in a parallel form, which is used to speed up training. After training we can still use the recurrent
formulation for fast text generation.

Instead of processing each input xt ∈ Rd at time step t sequentially, the parallel version processes
all timesteps of a full sequence X ∈ RT×d at once, where T is the sequence length and d is the
head dimension. We present the forward pass of the mLSTM for a single head and drop the head
dimension for simplicity.

Let f̃ ∈ RT be the forget gate pre-activations and ĩ ∈ RT be the input gate pre-activations for a full
sequence. We construct the forget gate activation matrix F ∈ RT×T by

Fij =


0 for i < j

1 for i = j∏i
k=j+1 σ

(
f̃k

)
for i > j

, (71)

and the input gate pre-activation matrix Ĩ ∈ RT×T by

Ĩij =

{
0 for i < j

ij for i ⩾ j
. (72)

By applying the elementwise exponential input gate activation function naively, we obtain the
unstabilized gate activation matrix D ∈ RT×T as

D = F⊙ exp(Ĩ) . (73)

In order to avoid overflow due to the exponential function we apply the same stabilization as in the
recurrent sLSTM, see Equation 49. In the parallel formulation of the mLSTM we get a numerically
stable gate activation matrix D′ ∈ RT×T by taking the logarithm of D element-wise and subtracting
the row-wise maximum value of D from each element:

D̃ = logD = log
(
F⊙ exp(Ĩ)

)
= logF+ Ĩ (74)

D′ = exp(D̃−max D̃) (75)

Given the queries, keys and values Q,K,V ∈ RT×d, for a full sequence we can compute all hidden
pre-activation states H̃ ∈ RT×d in parallel for the un-stabilized version by

H̃ = C V , with C =
C̃

max{|∑T
j=1 C̃ij |, 1}

, and C̃ =
QK⊤
√
d

⊙D . (76)

Note that we extract the 1√
d

factor for K explicitly here and further on. For the stabilized version
this yields

H̃ = C V , with C =
C̃ ′

max{|∑T
j=1 C̃

′
ij |, exp(−max D̃)}

, and C̃ ′ =
QK⊤
√
d

⊙D′ , (77)

where for both versions the hidden pre-activation states H̃ are identical.

With the output gate pre-activations Õ ∈ RT×d we can compute the hidden states H ∈ RT×d for all
timesteps by applying the output gate in parallel for each timestep element-wise:

H = σ(Õ)⊙ H̃ . (78)

This gives the parallel forward pass of the mLSTM for a full input sequence X ∈ RT×d.
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Parallel mLSTM Backward Pass. We present the backward pass of the mLSTM for the stabilized
version only. For completeness we summarize the forward pass in the stabilized version before we
present the backward pass.

Given the forget gate matrix F ∈ RT×T , the logarithm of the forget gate matrix F = logF ∈ RT×T ,
and the input gate matrix I ∈ RT×T as introduced above, together with the queries, keys and values
Q,K,V ∈ RT×d, we can write the forward pass of the mLSTM in the stabilized version as:

D̃ = F+ Ĩ (79)

m = max
j

D̃ij , row-wise maximum (80)

D′ = exp(D̃−m1⊤) (81)

C̃ ′ =
QK⊤
√
d

⊙D′ (82)

b =

T∑
j=1

C̃ ′
ij = C̃ ′ 1 , row-wise sum (83)

n = max{|b|, exp(−m)} (84)

C = C̃ ′ ⊙
(
n−1 1⊤) (85)

H̃ = C V (86)

With this forward pass we can compute the gradients δa for all intermediate and input variables to the
mLSTM forward pass in the backward pass. We denote the gradient with respect to variable a as δa.

Given the output gradient δH̃ ∈ RT×d we can compute the backward pass for the intermediate
gradients as:

δ⊤C = V δ⊤
H̃

(87)

δn = −
(
C̃ ′ ⊙

(
n−2 1⊤)⊙ δC

)
1 (88)

= −
((

C̃ ′ ⊙ δC

)
1
)
⊙ n−2 (89)

δb = sign (n)⊙ δn ⊙
{
1 if |b| > exp(−m)

0 otherwise
(90)

δC̃′,C =
(
n−1 1⊤)⊙ δC , column-wise broadcast (91)

δ⊤
C̃′,b

= 1 δ⊤b , column-wise broadcast (92)

δC̃′ = δC̃′,C + δC̃′,B (93)

δD′ =
QK⊤
√
d

⊙ δC̃′ (94)

δD̃ = exp(D̃−m)⊙ δD′ = D′ ⊙ δD′ (95)

We do not compute the gradients for m as they cancel out (see the proof in the recurrent sLSTM).

With these intermediate gradients the gradients for the logarithmic forget gate matrix δF ∈ RT×T ,
the input gate matrix δI ∈ RT×T , and the queries, keys and values δQ, δK , δV ∈ RT×d are given by

δF = δD̃ (96)

δI = δD̃ (97)

δQ =
(
D′ ⊙ δC̃′

) K√
d

(98)

δK =
(
D′ ⊙ δC̃′

)⊤ Q√
d

(99)

δV = C⊤δH̃ (100)
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Having computed the gradients for the logarithmic forget gate matrix δF, we can compute the
gradients for the forget gate pre-activations δf̃ =

[
δf̃1 , δf̃2 , ..., δf̃T

]⊤ ∈ RT .

Recall the logarithmic forget gate matrix F = logF is computed by

Fij = logFij =


−∞ for i < j

0 for i = j∑i
k=j+1 log σ

(
f̃k

)
︸ ︷︷ ︸

=:fk

=
∑i

k=j+1 fk for i > j . (101)

With the substitution f = log σ(f̃) we compute the gradients for the logarithmic forget gate activations
δf =

[
δf1 , δf2 , ..., δfT

]⊤ ∈ RT as

δfk =

k−1∑
j=1

T∑
i=k

(
δF

)
ij
, (102)

δf̃k = σ(− f̃k) · δfk , (103)

where the last equation makes use of the following:

d

dx
(log σ(x)) = − (1 + exp(−x))−1 · exp(−x) · (−1)

=
exp(−x)

1 + exp(−x) =
1

1 + exp(x)

= σ(−x)

(104)

Finally, we compute the input gate pre-activations’ gradients δ̃i =
[
δ̃i1 , δ̃i2 , ..., δ̃iS

]⊤ ∈ RT as the
column-wise sum over the rows of the input gate matrix δI:

δ̃ik =

T∑
i=k

(δI)ik (105)

This completes the backward pass of the parallel mLSTM for a full input sequence X ∈ RT×d.
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B.4 Detailed Block Structure

PF=¾

NH=4 NH=4 NH=4

f z o

Conv4

Swish

i

NH=4

NH=4 NH=4 NH=4 NH=4

sLSTM

GN

LN

LN

PF= PF=34 34

GeLU

Figure 7: Schematic representation of an sLSTM Block – post up-projection: Embedded in a pre-
LayerNorm residual structure, the input is optionally passed through a causal convolution of window
size 4 that includes a Swish activation for input and forget gates. Then, for all input, forget and output
gates i, f , o, and the cell update z the input is fed through a block-diagonal linear layer with four
diagonal blocks or “heads”. These diagonal blocks coincide with the recurrent gate pre-activations
from the last hidden state, which corresponds to an sLSTM with four heads depicted with the circular
arrows. The resulting hidden state goes through a GroupNorm layer (Wu & He, 2018) – a head-wise
LayerNorm for each of the four heads. Finally, the output is up- and down-projected using a gated
MLP, with GeLU activation function and projection factor 4/3 to match parameters.
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PF=½
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NH=4

BS=4 BS=4 BS=4

Conv4

LSkip

Swish

Swish

q k v

if

mLSTM

GN

LN

Figure 8: Schematic representation of an mLSTM block – pre up-projection: Embedded in a pre-
LayerNorm residual structure, the input is up-projected first with projection factor 2, once for an
externalized output gate and once as input for the mLSTM cells. The mLSTM cell input is dimension-
wise causally convoluted (kernel size 4), before entering a learnable skip connection. We obtain
input q and k via block-diagonal projection matrices of block size 4. The values v are fed directly,
skipping the convolution part. After the mLSTM sequence mixing, outputs are normalized via
GroupNorm (Wu & He, 2018) – a head-wise layer norm for each of the four heads. Finally, the
learnable skip input is added and the result is gated component-wise with the external output gate.
The output is down-projected.

27



C Extended Related Work

Linear Attention. Several methods have been suggested to overcome the quadratic complexity
in terms of context length of the Transformer and make attention linear in the context length. The
Synthesizer learns synthetic attention weights without token–token interactions (Tay et al., 2020).
Linformer realizes self-attention by a low-rank matrix and even linearly approximates it (Wang
et al., 2020). Linear Transformer linearizes the attention mechanism (Katharopoulos et al., 2020).
Performer linearly approximates the attention softmax by positive orthogonal random features
approach (Choromanski et al., 2021). Attention has been replaced by fast long convolutions in the
Structured Global Convolution (SGConv) (Li et al., 2022) and the Hyena Hierarchy (Poli et al., 2023).

State Space Models. Recently, State Space Models (SSMs) became very popular since they are
linear in the context length and show promising performance compared to Transformers. One of the
first proposed models was Structured State Space sequence model (S4) (Gu et al., 2021), followed by
Diagonal State Space (DSS) model (Gupta et al., 2022), Gated State Space (GSS) models (Mehta
et al., 2022), S5 model (Smith et al., 2022), Bidirectional Gated SSM (BiGS) (Wang et al., 2022), H3
model (Fu et al., 2023), and Mamba (Gu & Dao, 2023).

Recurrent Neural Networks. Recurrent Neural Networks (RNNs) have been suggested to replace
Transformer and attention due to their linearity in the context length. RNNs with Deep Linear
Recurrent Units (LRUs) showed promising results for language modeling (Orvieto et al., 2023; De
et al., 2024), as did Hierarchically Gated Linear RNN (HGRN) (Qin et al., 2023) and HGRN2 (Qin
et al., 2024). A well-known RNN approach to large language modeling is RWKV (Peng et al., 2023,
2024), showcasing competitive performance to Transformers.

Gating. One of the key ideas of LSTM is gating, which was rediscovered and reinterpreted in many
recent approaches. Gating was used in HGRN (Qin et al., 2023), HGRN2 (Qin et al., 2024), Gated
Linear Attention (GLA) (Yang et al., 2023), Gated State Space (GSS) models (Mehta et al., 2022),
Bidirectional Gated SSM (BiGS) (Wang et al., 2022), Moving Average Equipped Gated Attention
(MEGA) (Ma et al., 2022), RWKV (Peng et al., 2023), and Mamba (Gu & Dao, 2023).

Covariance Update Rule. To enhance storage capacities, we equipped the mLSTM cell with
a matrix memory with a covariance update rule. Other methods which build on such an update
mechanism are Fast Weight Programmers (Schmidhuber, 1992; Schlag et al., 2021), RWKV-5 and
RWKV-6 (Peng et al., 2024), Retention (Sun et al., 2023), Linear Transformer (Katharopoulos et al.,
2020), and HGRN2 (Qin et al., 2024).

Most Related. Conceptually the closest models to xLSTM are Retention (Sun et al., 2023),
RWKV (Peng et al., 2023, 2024), and HGRN2 (Qin et al., 2024). These models share the con-
cepts matrix memory and/or gating. However, in contrast to the new sLSTM, these approaches do
not allow memory mixing. Memory mixing enables to solve state tracking problems, and therefore
LSTMs are more expressive than State Space Models (SSMs) and Transformers (Merrill et al., 2024;
Delétang et al., 2023). State tracking is required to evaluate code or to track entities in a long narrative.

Residually Stacking Architectures. Like almost all contemporary large deep learning models,
xLSTM architectures are constructed by residually stacking building blocks (Srivastava et al., 2015;
He et al., 2016). This construction enabled deep convolutional networks (He et al., 2016) and
Transformers (Vaswani et al., 2017). Transformers are the ultimate force behind Large Language
Models (LLMs) like GPT-3 (Brown et al., 2020), ChatGPT (Schulman et al., 2022), GPT-4 (Achiam
et al., 2023), Megatron-LM (Shoeybi et al., 2019), Gopher (Rae et al., 2021), ERNIE 3.0 Titan (Wang
et al., 2021), GLaM (Du et al., 2021), Chinese M6 (Lin et al., 2021), mutilingual AlexaTM
20B (Soltan et al., 2022), OPT (Zhang et al., 2022), Chinchilla (Hoffmann et al., 2022), BLOOM (Scao
et al., 2022), GLM-130B (Zeng et al., 2022), LaMDA (Thoppilan et al., 2022), PaLM (Chowdhery
et al., 2022), Llama (Touvron et al., 2023), Gemini (Google, 2023; Reid et al., 2024).
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D Experiments

Training Setup. For all experiments, we use Python1 3.11 with PyTorch 2.2.02, and CUDA 12.13.
We developed and trained all our models and baselines over the course of three months on a cluster
with 128 nodes of eight NVIDIA A100 GPUs each. More than 95% of this compute were used for
the Language Modeling experiments in sections 4.2 and 4.3.

Nearest Neighbor Search Task. For this auxiliary task, we use randomly sampled feature vectors
of dimension 2 and unit norm. The attached value is a uniformly distributed random number from
[0, 1], leading to inputs vectors of dimension 3. The first feature vector serves as search key, with the
first value being ignored. Then the model has to predict the value of the nearest neighbor so far in the
sequence. We train on 8192 sequences of context length up to 64 (uniformly sampled) and validate
on 8192 different samples. All models have two blocks and embedding dimension 128. We use a
dropout of 0.1, 10% linear warm-up steps and cosine decay to 1e-7 for 100k total training steps. We
sweep over learning rates 1e-4, 1e-3, 1e-2, 1e-1 and 5 seeds each. The reported values in Figure 1 are
mean values for the best learning rate and 99% confidence intervals. Note that LSTM requires very
high learning rates, whereas Transformers (Llama) perform best at the smallest learning rate. The
xLSTM[0:1] reaches similar performance across all learning rates.

Wikitext-103 Rare Token Prediction. For this exemplary experiment on rare token prediction, we
trained 125M-sized models on Wikitext-103 (Merity et al., 2017). All models have an embedding
dimension of 768 in a post up-projection structure of 12 residual blocks. The Transformer model
(Llama) uses Multi-Head Attention, for what is called LSTM the Multi-Head Attention is replaced by
an LSTM and the xLSTM[1:0] contains mLSTM layers with matrix memory. Models were trained
with maximum learning rate 1e-3, 4k steps linear warm-up and cosine decay for in total 50k steps,
using a batch size of 256 and context length of 512. We use the validation perplexity as a stopping
criterion and evaluate on the test set.

D.1 Synthetic Tasks and Long Range Arena

D.1.1 Test of xLSTM’s Exponential Gating with Memory Mixing.

We evaluate xLSTM on a suite of formal language tasks to test its exponential gating and memory
mixing mechanism. Formal languages provide a framework to probe the generalization capabilities of
models. They allow to specifically test different expressivity levels, e.g. along the Chomsky hierarchy.
Typical language model architectures do not necessarily fit perfectly in these hierarchies (Delé-
tang et al., 2023) — nevertheless these languages allow to illustrate differences in generalization
expressivity between different architectures. Our evaluation tasks are based on Delétang et al. (2023).

Experiment Setup. The different formal language tasks in the experiment (see individual tasks
description below) encompass different levels of the Chomsky hierarchy as well as additional counting
and memory-focused tasks. We use different lengths per sample, which allows us to validate in a
length extrapolation setting. We train on a varying task length up to 40. The evaluation is done for
task lengths between 40 and 256 as we are only interested in the “task generalization capabilities“ of
the models.

In all experiments, we use two blocks (or layers for the pure LSTM) for all models. We compare
Llama, Mamba, Retention, Hyena, RWKV-4, RWKV-5, RWKV-6, LSTM, xLSTM[0:1], xLSTM[1:0]
and xLSTM[1:1]. The sLSTM block is used without a convolution and with normal weight initializa-
tion. LSTM (Block) refers to an architecture where a vanilla LSTM is used instead of self-attention
inside a Transformer block.

All models are trained with 3 different learning rates (1e-2, 1e-3, 1e-4), each with two seeds.
Batch size is 256 — cosine annealing (min lr: 1e-5) with 10% warm-up steps is applied. We use
AdamW (Loshchilov & Hutter, 2019) (β1 = 0.9, β2 = 0.99) and a weight decay of 0.1 for training.
In each experiment we train for 100k steps — the samples are generated randomly, however, all
experiments are trained and evaluated on the same samples.

1https://python.org
2https://pytorch.org
3https://docs.nvidia.com/cuda/archive/12.1.0/
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Figure 9: Supplementary results given by scaled accuracy of different models at solving formal
language tasks. Tasks are grouped by the Chomsky hierarchy.
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Figure 10: Supplementary results given by scaled accuracy of different models at solving formal
language tasks. Tasks are grouped by the Chomsky hierarchy.

Additional Formal Language Results. Figure 9 and Figure 10 showcase supplementary results of
the formal language tasks. The former extends the results with additional models. The latter details
tasks where no model attained a minimum scaled accuracy of 0.3. Although no model achieves
proper extrapolation of the task to a larger context length, xLSTM performs best among the evaluated
models.

Individual Task Description. The majority of tasks are based on Delétang et al. (2023). We
provide the vocabulary size |V | and the random accuracy srand (for accuracy scaling), used in the
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evaluation. As we evaluate different task lengths each task has a padding token which is used to pad
the sequence to the given context length. In Listing 1 there is an example for each task.

• Bucket Sort Given a string of tokens of a sorted alphabet, compute the sorted string.
|V | = 11 srand = 1

|V |−1

• Cycle Nav Given a string of “movement tokens” (+1, −1, STAY) compute the end position
of the agent with start position 0. The position must be computed modulo the maximum
position.
|V | = 9 srand = 1

|V |−4

• Even Pairs Given a binary string of a and b tokens, compute whether the number of ab and
ba is even. This task can be solved by checking if the first and last token of the string are
equal.
|V | = 3 srand = 0.5

• Majority Given a string of tokens, compute the token that occurred most often in the
sequence.
|V | = 64 srand = 1

|V |−1

• Majority Count Given a string of tokens of an ordered alphabet. Compute the count of
the token that occurred most often in the sequence. If the count exceeds the vocab size, the
highest vocab token should be outputted.
|V | = 64 srand = 1

|V |−1

• Missing Duplicate Given a string of tokens. The string is repeated but one of the tokens is
masked in the repetition. Output the token that is masked.
|V | = 11 srand = 1

|V |−2

• Mod Arithmetic (w/o Brackets) Calculate the result — modulo the max number — of the
arithmetic operations in the context. The maximum number is the vocabulary size minus the
number of special tokens (+,-,*,=, [PAD]).
|V | = 10 srand = 1

|V |−5

• Mod Arithmetic (w Brackets) Calculate the result — modulo the maximum number — of
the arithmetic operations in the context. The maximum number is vocabulary size minus the
number of special tokens (+,-,*,=,(,), [PAD]).
|V | = 12 srand = 1

|V |−7

• Odds First An string of tokens t1, t2, t3, ...tn is given. Output all tokens with and odd index
(t1, t3, ...) then the token with an even index (t2, t4,..) . Apart from that keep the ordering of
the initial string.
|V | = 12 srand = 1

|V |−2

• Parity Given a binary string of a and b tokens, compute if the number of b‘s is even. If
the number is even output a otherwise b. This is equivalent to sequentially calculating the
half-adder sum.
|V | = 3 srand = 0.5

• Repetition Given a string of tokens — repeat it.
|V | = 12 srand = 1

|V |−2

• Reverse String Given a string of tokens — repeat it in reverse order.
|V | = 12 srand = 1

|V |−2

• Stack Manipulation An initial stack content is given, followed by a sequence of push and
pop operations. Compute the stack content after the operations
|V | = 11 srand = 1

⌊ |V |−3
2 ⌋

• Set Given a string of tokens, compute the ordered set of the tokens. Keep the ordering so
that tokens that occurred first are also outputted first.
|V | = 128 srand = 1

|V |−2
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• Solve Equation Given is an equation with the operators {+,-,*,=,(,)}, number, and an
unknown variable x. Compute the value of the variable modulo the max number. The
maximum number is vocabulary size minus the number of special tokens (+,-,*,=,(,), [PAD],
[ACT]).
|V | = 14 srand = 1

|V |−9

Bucket Sort
Sequence: 1 4 8 6 1 1 1 4 6 8

Cycle Nav
Sequence: STAY +1 -1 +1 STAY +1 +1 +1 -1 P3

Even Pairs
Sequence: a b b a a b a b a a

Majority
Sequence: 1 7 6 4 3 8 1 7 2 1

Majority Count
Sequence: 1 7 6 4 4 8 1 7 2 2

Missing Duplicate
Sequence: 4 8 6 2 5 4 8 6 2 [MIS] 5

Mod Arithmetic (w/o Braces)
Sequence: 0 - 4 + 0 - 2 = 4 [PAD]

Mod Arithmetic (w Braces)
Sequence: ( ( ( 2 ) * - 2 ) - ( - 4 - 2 ) ) = 2

Odds First
Sequence: 2 7 3 2 6 9 [ACT] 2 3 6 7 2 9

Parity:
Sequence: a b b a a b a b

Repetition
Sequence: 2 4 8 6 2 [ACT] 2 4 8 6 2

Reverse String
Sequence: 2 4 8 6 2 [ACT] 2 6 8 4 2

Stack Manipulation
Sequence: ST1 ST1 ST3 POP POP PS3 PS3 [ACT] ST1 ST3 ST3

Set
Sequence: 8 6 6 3 5 4 5 3 [ACT] 8 6 3 5 4

Solve Equation:
Sequence: ( ( ( 2 + 0 ) + - x ) - ( 1 ) ) = 2 [ACT] 2

Listing 1: Examples of the formal language tasks. Red tokens are evaluated for loss and accuracy
metrics, but are padded for the input. The tokens are illustrated in a way that allows easy semantic
interpretation for the given task — hence, some tokens are represented by multiple characters.

D.1.2 Test of xLSTM’s Memory Capacities on Associative Recall Tasks.

We test the memory capacity of xLSTM with the Multi-Query Associative Recall task proposed by
Arora et al. (2023). Figure 11 illustrates the basic task setup.

Why Multi-Query Associative Recall for Memory Tests of LLM Architectures. Associative
Recall (AR), the ability to retrieve a specific value (information) associated with a given key (infor-
mation), constitutes a key capability for LLM to perform well (Poli et al., 2024; Arora et al., 2023;
Olsson et al., 2022). Especially its quality of in-context learning seems to be strongly connected to
this capability (Olsson et al., 2022). Arora et al. (2023) attribute performance gaps between early
non-Transformer and Transformer language models specifically to performance gaps in associative
recall. They argue that prior AR evaluations fall short of capturing these differences and propose
MQAR, which can show the AR performance differences that translate to performance differences
in language modeling performance. Hence, MQAR is especially suitable to analyze the memory
capacity of LLM. Transformer (e.g. Llama) models can be seen as the gold standard for this task as
their memory is exponential in the coding dimension (Ramsauer et al., 2021).

32



Experiment Setup. There are two relevant variables that determine different experimental setups.
(1) Context Length (CL): Length of the sequence of one sample — this influences the distances
between the key-value definition and the recall. (2) Number Key-Value Pairs (KV): Influences how
many key-value pairs the model needs to keep track of. The vocabulary size is always 8192.

In all experiments, we use two blocks (or layers for the pure LSTM) for all models. LSTM (Block)
model refers to an architecture where a vanilla LSTM is used instead of self-attention inside a
Transformer block.

For each task setup, we train each model with 4 different learning rates (batch size > 24: {1e-2,
2.15e-3, 4.6e-4, 1e-4}, batch size 24: {1e-3, 2.2e-4, 5e-5, 1e-5}). The batch size (BS) changes
depending on the context length (CL) (CL=64/128: BS=512; CL=256: BS=256; CL=756: BS=128;
CL=1024: BS=96; CL=2048: BS=24). We vary the embedding dimension (Model Dim) between
different experiments – different numbers of heads are used accordingly. For each experiment, we
generate 100,000 training samples (validation: 3,000 samples) and train for 64 epochs. We apply
cosine annealing (min lr: 1e-4 and 1e-5) with 10% warm-up steps. We use AdamW (Loshchilov &
Hutter, 2019) and a weight decay of 0.1 for training.

We conduct three different experiments:

• MQAR-Experiment 1 evaluates, in the same fashion as Arora et al. (2023), a vari-
ety of models (Llama, Mamba, Mamba (noWT) - i.e. without weight tying, Reten-
tion, Hyena, H3, RWKV-4, RWKV-5, RWKV-6, LSTM, LSTM (Block), xLSTM[0:1],
xLSTM[1:0] and xLSTM[1:1]) on increasing task difficulty by increasing the context length
and number of key-value pairs simultaneously. We benchmark three parameter settings:
CL,KV={(64,4),(128,8),(256,16)}.

• MQAR-Experiment 2 increases the task difficulty notably and goes beyond previous
evaluations on this task. We individually scale the context length (CL={756, 1024, 2048})
and the key-value pairs (KV={48, 96, 256}) and evaluate all combinations. This experiment
especially probes the memory capacity because the number of key-value pairs is high.
To reduce the computational burden we only evaluate models that perform flawlessly in
Experiment 1 — additionally we evaluate Transformer only in the hardest setting (CL=2048)
as sanity check, because no performance decrease is expected.

• MQAR-Experiment 3 analyzes whether the AR capability learned on a certain context
length extrapolates to bigger context lengths. For each KV setting of Experiment 2, we use
the models (we select the 3 biggest model dimensions) trained on CL=2048 and evaluate
bigger context lengths (CL={4096, 6144, 8192}).

Extended Results. The result of Experiment 1 can be found in Figure 12. In accordance to the
results of Arora et al. (2023). H3, Hyena, RWKV-4 fail to solve the task with a smaller model
dimension. In contrast, xLSTM[1:1], xLSTM[1:0], Mamba, RWKV-5 and RWKV-6 are able to solve
these settings for all model dimensions. The comparison of xLSTM[0:1] with both original LSTM
variants indicates that the exponential gating mechanism improves the AR capabilities of the model.
However, both fall short because of the reduced memory capacity compared to xLSTM[1:1] and
xLSTM[1:0].

The results of Experiment 2 are presented in Figure 13. Scaling the context length has a low impact
on the performance of the models. However, while xLSTM[1:1] and xLSTM[1:0] show no clear
decay, both RWKV variants slightly, but consistently lose performance with increasing context
lengths. The varying number of key-value pairs, which mainly probes the memory capacity of the
non-Transformer models, has a more notable impact across all models. RWKV-5 seems to outperform
RWKV-6. The latter fails to learn the task at all in some KV=256 settings. Overall xLSTM[1:1] is the
best-performing non-Transformer model — suggesting that it provides enhanced memory capacity,
also in long contexts.

Figure 14 shows the extrapolation results from Experiment 3. For xLSTM[1:1], xLSTM[1:0], and
Mamba the model performance does not change in the extrapolation setting. The RWKV models
(especially RWKV5) degrade slightly with increasing context length. xLSTM[1:1] performs best, as
it maintains its superior performance of Experiment 2.

4The keys are distributed on the “evaluation part” of the sequence given a power-law distribution. This is
motivated by similar structures in natural language text.
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Input

Target

KV = 4 / CL = 18 
Figure 11: Illustration of the MQAR task. Color pairs represent key-value pairs (keys have darker
shade). The first part of the sequence defines the key-value pairs for the respective sample. After that,
the keys appear randomly according to a power law distribution 4. Grey tokens in the input sequence
represent a zero token. The “target” sequence contains the value after the respective key appearance
— the rest of the tokens are ignored for the accuracy and loss calculation. The model must predict the
value tokens given the respective key.

D.1.3 Test of xLSTM’s Long Range Capabilities on the Long Range Arena.

We assess the performance of xLSTM across tasks in the Long Range Arena benchmark (Tay et al.,
2021), examining its ability to effectively handle longer context lengths and diverse data types.

Our experiments on Long Range Arena benchmark are composed of five tasks:

• Retrieval: The task is to predict if two documents have a citation link. The dataset of text
documents is derived from the ACL Anthology Network (Radev et al., 2009).

• ListOps: This is a set of modular arithmetic tasks including brackets and lists of numbers,
using the operations MIN, MAX, MEDIAN and SUMMOD (modular sum). A particular example
is: [MAX 4 3 [MIN 2 3 ] 1 0 [MEDIAN 1 5 8 9, 2]] −→ 5

• Image: This task is based on a version of the CIFAR dataset (Krizhevsky, 2009), where
images are transformed to a sequence of pixels and this sequence has to be classified into the
usual CIFAR classes. We test both a gray-scale (G-Image) and RGB (RGB-Image) version
of this dataset, as Orvieto et al. (2023) uses colored images contrary to the standard setup.

• Pathfinder: The input for this task is a 32x32 gray-scale image, given as pixel sequence,
with two dots and several curved lines on it. The task is to predict if the two dots are
connected by any of the lines (Linsley et al., 2018).

We omit the Text classification task (Maas et al., 2011), as the language modeling experiments already
test this kind of data, and the Pathfinder-X version of Pathfinder.

Experiment Setup. The architectures that are tested in this experiment comprise LLama, Mamba,
LSTM, RWKV-4, and xLSTM. LSTM (Block) refers to an architecture where a vanilla LSTM is used
inside a post up-projection block (like Transformer with attention replaced by LSTM). For xLSTM
we choose the best performing of xLSTM[0:1] or xLSTM[1:0] on the validation set, specifically the
former for the Image tasks and the latter for all other ones.

We use the hyperparameter settings of the S5 model (Smith et al., 2022) and Linear Recurrent Unit
model (Orvieto et al., 2023), with additional hyperparamter search on learning rates and schedulers
for all models. We use two different schedulers: Linear Warm-up Cosine Annealing and Linear
Warm-up Cosine Annealing with Restarts. Both learning rate schedulers were evaluated with learning
rates of 1e-3, 6e-4 and 1e-4. For the second scheduler, the number of restarts (R) is set to 3. The
model hyperparameters for each dataset are displayed in Table 3.

Results. Table 4 shows the result of experiments on the Long Range Arena benchmark. xLSTM
demonstrates consistent strong performance on all of the tasks, suggesting that the proposed architec-
ture is remarkably efficient in handling different aspects of long context problems.
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Figure 12: Result of MQAR-Experiment 1. The columns show different task settings (context length
and key-value pairs). The rows group related models for better clarity. The x-axis gives the model
size and the y-axis the validation accuracy.
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Figure 13: Result of MQAR-Experiment 2. The columns and rows correspond to different numbers
of key-value pairs and the context length respectivly. The x-axis gives the model size and the y-axis
the validation accuracy.

Table 3: Long Range Arena model hyperparameters. These are the model hyperparameters used in
each of the Long Range Arena tasks. For each model we used the best learning rate and the better of
the two learning rate schedulers.

Task #Blocks Embedding
Dim

Batch
Size

Training
Steps

Retrieval 6 128 64 100k
ListOps 8 128 32 80k
Pathfinder 6 192 64 500k
G-Image 6 512 64 180k
RGB-Image 6 512 64 180k
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Figure 14: Result of MQAR-Experiment 3 (Extrapolation). All evaluated models were trained on
context length 2048 and the number of key-value pairs given by the columns of the plot. The rows
show the different context lengths used in the evaluation. The x-axis gives the model size and the
y-axis the validation accuracy.

Table 4: Long Range Arena test accuracy. Bold highlights the best performing model, underlined
the second best. X denotes models that fail to outperform random baselines. xLSTM is the best of
xLSTM[1:0], xLSTM[0:1] based on validation dataset accuracy.

Retrieval
acc ↑

ListOps
acc ↑

Pathfinder
acc ↑

G-Image
acc ↑

RGB-Image
acc ↑

Ranking
acc ↑

Random Baseline 0.500 0.100 0.500 0.100 0.100

Llama 0.845 0.379 0.887 0.541 0.629 5.2
Mamba 0.902 0.325 0.992 0.689 0.765 2.2
RWKV-4 0.898 0.389 0.914 0.691 0.757 3.0
LSTM X 0.275 X 0.675 0.718 5.4
LSTM (Block) 0.880 0.495 X 0.690 0.756 3.4

xLSTM 0.906 0.411 0.919 0.695 0.761 1.6
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D.2 Method Comparison and Ablation Study on SlimPajama (15B)

General Training Procedure. We tokenize our datasets using the HuggingFace GPT-2 tokenizer
(Radford et al., 2019; Brown et al., 2020)5 and use this tokenizer for all models in this paper. In
general, we try to follow Brown et al. (2020) for the general training setup, i.e. we choose context
length 2048 and batch sizes 256 or 512 for our models. We use the AdamW (Loshchilov & Hutter,
2019) optimizer with beta parameters (β1, β2)=(0.9, 0.95) and an epsilon parameter of 1e-5, and
gradient clipping at gradient norm 1. As learning rate scheduler we use a linear warm-up with 750
steps and cosine decay to 10% of the peak learning rate. We apply a weight decay of 0.1 to all
our models and always exclude the token embedding matrix from weight decay. If not specified
otherwise, we do not tie the weights of the token embedding and the language model head. Except for
gates we do not use biases in our models, e.g. in other linear layers. We do not apply weight decay to
biases and LayerNorm weights. For parallelization, we use PyTorch FSDP in SHARD_GRAD_OP mode
with mixed precision in bfloat16, where applicable. For small models we use NO_SHARD. We keep
the weights in float32 and reduce the gradients across GPUs in float32. We use torch.compile
to speed up models where applicable, except for Transformer models as their training curves did
not match the non-compiled versions. For xLSTM[7:1], we use positions [3, 5, 7, 40, 42, 44] for
sLSTM-based blocks, except for the 125M size, where we use [3, 20] (this is actually a [11:1] ratio).
We do not use any positional encoding for our xLSTM models.

Details on Comparison to Other Methods. For the model comparison on 15B training tokens
of SlimPajama we train all models with context length 2048 and batch size 256. We use a peak
learning rate of 1e-3 for all models for comparability. The learning rate decays over 30k training
steps. The models are compared after one epoch at training step 28170. As model implementations
we use the original repositories’ code for Mamba (Gu & Dao, 2023) 6, RWKV-5, RWKV-6 (Peng
et al., 2024)7. For RWKV-4 we use a cleaned and validated re-implementation based on the original
repo and kernels (Peng et al., 2023). In our RWKV-4 implementation we enable weight decay on all
parameters except biases, the token embedding weight and all LayerNorm weights. For HGRN (Qin
et al., 2023), GLA (Yang et al., 2023), HGRN2 (Qin et al., 2024) we use the a re-implementation
by the authors of GLA (Yang et al., 2023; Yang & Zhang, 2024)8. For GPT-3 and Llama-like
Transformers, we use our own implementations based on PyTorch. Note that for all xLSTMs,
Transformers, Mamba and RWKV-4, we use Mixed Precision training with bfloat16 and weights in
float32 precision. Following the general training procedure we use torch.compile for all models,
except for models using the flash-linear-attention (Yang & Zhang, 2024) library because of
compilation problems and Transformers as for those training curves deviated.

As RWKV-6 performs worse than RWKV-5, we also train a model with peak learning rate 4e-4, as
reported in the original repository for 350M parameter models 9. This model reaches a perplexity of
16.38, worse than the 15.03 for the standard peak learning rate 1e-3 as reported in Table 1.

Details on Training Precision for Baselines. For models from flash-linear-attention and
RWKV-5/6 models we found that PyTorch automatic mixed precision training did not work, but
casting the model weights to float32 initially with FSDP parameter precision bfloat16 led to a
working configuration. In this setting models perform better than in full bfloat16 training, where
the weights are casted to bfloat16 initially as well. Full float32 did not work because of the
custom kernels.

General Details on Ablation Studies. We follow our general training procedure and train all
models with context length 2048, batch size 256 and peak learning rate 1e-3. We report perplexity
values on the validation set.

Additional Ablation Study on Matrix Memory. As default block configuration we use the
mLSTM in the pre up-projection block (see Figure 8) and the sLSTM in the post up-projection block

5https://huggingface.co/docs/transformers/en/model_doc/gpt2
6https://github.com/state-spaces/mamba
7https://github.com/BlinkDL/RWKV-LM/
8https://github.com/sustcsonglin/flash-linear-attention
9https://github.com/BlinkDL/RWKV-LM/blob/64b7fe4c66fcf7da37019630268075b0558f6dc5/

RWKV-v5/train.py#L44
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Table 5: Peak learning rates and model dimensions for scaling law plots.

Model EmbeddingDim #Blocks #Heads/HeadDim #Params
M

Peak LR
(15B)

Peak LR
(300B)

12
5M

RWKV-5 768 12 - 176.5 3e-3 -
RWKV-6 768 12 - 173.6 3e-3 -
HGRN2 768 12 - 162.2 3e-3 -
RWKV-4 768 12 - 169.4 3e-3 6e-4
Llama 768 12 12 / 64 162.2 3e-3 3e-3
Mamba 768 24 - 167.8 3e-3 3e-3
xLSTM 768 24 4 / 384 163.8 3e-3 1.5e-3

35
0M

RKWV-5 1024 24 - 455.7 1e-3 -
RWKV-6 1024 24 - 441.6 1e-3 -
HGRN2 1024 24 - 411.4 1e-3 -
RWKV-4 1024 24 - 430.5 1e-3 4e-4
Llama 1024 24 16 / 64 406.6 1.5e-3 1.5e-3
Mamba 1024 48 - 423.1 1.5e-3 1.5e-3
xLSTM 1024 48 4 / 512 409.3 1e-3 7.5e-4

76
0M

RWKV-5 1536 24 - 947.8 9e-4 -
RWKV-6 1536 24 - 907.7 9e-4 -
HGRN2 1536 24 - 834.2 9e-4 -
RWKV-4 1536 24 - 891.0 2e-3 2.5e-4
Llama 1536 24 16 / 96 834.1 1.25e-3 1.25e-3
Mamba 1536 48 - 870.5 1.25e-3 1.25e-3
xLSTM 1536 48 4 / 768 840.4 9e-4 6.25e-4

1.
3B

RWKV-5 2048 24 - 1616.0 9e-4 -
RWKV-6 2048 24 - 1537.5 9e-4 -
HGRN2 2048 24 - 1439.4 9e-4 -
RWKV-4 2048 24 - 1515.2 1e-3 2e-4
Llama 2048 24 16 / 128 1420.4 1e-3 1e-3
Mamba 2048 48 - 1475.3 1e-3 1e-3
xLSTM 2048 48 4 / 1024 1422.6 9e-4 5e-4

2.
7B

RWKV-5 2048 24 - 3194.7 8e-4 -
RWKV-6 2048 24 - 3021.9 8e-4 -
HGRN2 2048 24 - 2795.4 8e-4 -
RWKV-4 2560 32 - 2984.8 8e-4 -
Llama 2560 32 32 / 80 2779.5 8e-4 -
Mamba 2560 64 - 2897.2 8e-4 -
xLSTM 2560 64 4 / 1280 2788.3 8e-4 -
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Figure 15: Method comparison
on next token prediction when
trained on 15B tokens from
SlimPajama. Performance mea-
sure in validation perplexity for
the best methods of each model
class (see Table 1) are reported.
The performance degradation of
xLSTM[7:1] at 2.7B is due to
initially slower training conver-
gence that leads to an especially
undertrained model. xLSTM is
the best method at all sizes.
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Table 6: Ablation studies. Top: Ablation studies on the new xLSTM components, contributing
the strong performance improvement of xLSTM over vanilla LSTM to both the exponential gating
and the matrix memory. Bottom: Ablation studies on different gating techniques. We consider an
xLSTM[1:0] with sigmoid forget gate and exponential input gate. Bias initialization ∞ means that the
forget gate is set to one, [3, 6] indicates that values are taken equidistant in the respective interval, and
N (0, 0.1) that values are randomly chosen from a Gaussian with mean 0 and std 0.1. PPL denotes
validation perplexity. The first two lines correspond to models similar to linearized attention, line
four to Retention, line five to RWKV-5, and line six to RWKV-6. Dependencies of the gates on the
input lead to better performance.

Model Modification Exponential
Gating

Matrix
Memory

#Params
M

SlimPajama
(15B) ppl ↓

LSTM
Vanilla Multi-Layer LSTM ✗ ✗ 607.8 2417.86
Adding Resnet Backbone ✗ ✗ 506.1 35.46
Adding Up-Projection Backbone ✗ ✗ 505.9 26.01

xLSTM[0:1] Adding Exponential Gating ✓ ✗ 427.3 17.70
xLSTM[7:1] Adding Matrix Memory ✓ ✓ 408.4 13.48

Ablation studies on different gating techniques.

Learnable Gates
Forget Gate Input Gate

SlimPajama
(15B) ppl ↓Input

Dependent
Learnable

Bias
Bias
Init

Input
Dependent

Learnable
Bias

Bias
Init

No Gates ✗ ✗ +∞ ✗ ✗ 0 NaN
No Gates ✗ ✗ [3, 6] ✗ ✗ 0 13.95
Forget Gate ✓ ✓ [3, 6] ✗ ✗ 0 13.58
Input Gate ✗ ✗ [3, 6] ✓ ✓ N (0, 0.1) 13.69
Forget Gate Bias ✗ ✓ [3, 6] ✗ ✗ 0 13.76
Forget + Input Gate Bias ✗ ✓ [3, 6] ✗ ✓ N (0, 0.1) 13.73
Forget Gate + Input Gate Bias ✓ ✓ [3, 6] ✗ ✓ N (0, 0.1) 13.55

Forget Gate + Input Gate ✓ ✓ [3, 6] ✓ ✓ N (0, 0.1) 13.43

(see Figure 7). In this experiment we study the combination of mLSTM with different block variants
using the xLSTM[1:0] architecture. We compare the mLSTM in a post up-projection block (see
Figure 7) with ReLU2 activation function and non-gated feed-forward network to mLSTM in a pre
up-projection block with and without a dimension-wise causal convolution. Table 7 shows that the
matrix memory benefits from the pre up-projection block structure, and that the convolution within
this block is important.

Table 7: Matrix Memory variants. We study different configurations for the matrix memory. Matrix
memory in the pre up-projection block performs best and gives xLSTM[1:0]. Notably, it seems that
the dimension-wise causal convolution within the pre up-projection block is important.

Model Details #Blocks Embedding
Dim

#Params
M

SlimPajama
(15B) ppl ↓

xLSTM[1:0]
Post Up-Projection Block (ReLU2) 24 1024 430.4 13.90
Pre Up-Projection Block, No Convolution 48 1024 408.8 15.41
Pre Up-Projection Block, With Convolution 48 1024 409.3 13.43

Details on new xLSTM Components Ablation Study. In Table 6 (top), we show our modifications
to the vanilla LSTM that transform the vanilla LSTM into the xLSTM. We start with a large
default PyTorch LSTM with 24 layers and 1536 hidden size. Due to a lack of skip-connections
and LayerNorms, vanilla LSTMs of this size are not trainable. We then add skip-connections and
pre-LayerNorms before each LSTM layer corresponding to a residual architecture. This enables
training for LSTMs at this scale. Replacing every second LSTM layer by a non-gated feed-forward
network with GeLU activation function (similar to Vaswani et al.), which corresponds to the post
up-projection backbone (see Figure 7), further boosts performance. Adding Exponential Gating to this
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architecture yields the sLSTM as depicted in Figure 7, with another large performance improvement.
Finally, adding the best Matrix Memory variant found in Table 7 by replacing some sLSTM blocks
with the mLSTM (see Figure 8) gives xLSTM[7:1] with the best performance.

Details on Gating Technique Ablation Study. In Table 6 (bottom), we investigate the effect
of trainable and input-dependent gates for mLSTM. The results show that, in contrast to other
methods (Katharopoulos et al., 2020; Sun et al., 2023; Qin et al., 2023; Katsch, 2023; Yang et al.,
2023; Qin et al., 2024; Peng et al., 2024), having the gates both learnable and input dependent gives
the best results.

Details on Scaling Experiments. We follow our general training procedure (see paragraph above)
and train all models, including the 1.3B and 2.7B model sizes, with context length 2048 and batch
size 256. We use the peak learning rates from Table 5. For Llama and Mamba we use the learning
rates reported by Gu & Dao (2023).

D.3 xLSTM Large Language Models – SlimPajama300B

General Training Procedure. We use the same general training procedure as in Section D.2 with
peak learning rates from Table 5. For Llama and Mamba we use the learning rates reported by Gu &
Dao (2023). All models are trained with context length 2048. The 125M, 350M and 760M models
are trained with batch size 256 for 600k training steps, whereas the 1.3B models are trained with
batch size 512 for 300k training steps. We keep the same learning rate scheduler across all models.

Additional Scaling Law Plots with Number of FLOPs. In Figure 16 we plot the scaling behavior
of our xLSTM variants over the number of training flops and compare to the Llama baseline. We
compute the FLOPs for the recurrent (see Section 2) and the parallel (see Section B.3) formulation of
the mLSTM. We can see that for the larger models (760M and 1.3B) the recurrent xLSTM FLOP
counts are larger than the Llama FLOP counts. The reason for this is that we kept the number of
heads constant when increasing the model size (see Table 5) while increasing the head dimension. In
contrast Llama increases the number of heads while keeping the head dimension constant.
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Figure 16: Scaling laws over number of training FLOPs. We compare the Llama baseline with our
xLSTM variants and compute the number of training FLOPs for the recurrent and parallel mode for
300B tokens with context length 2048.
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Details on FLOP computation. For computing the number of FLOPs we follow the procedure
from Hoffmann et al. (2022). We include all training FLOPs, including those contributed by the
embedding matrices. We assume that the backward pass has twice the number of FLOPs of the
forward pass. For the forward pass, the number of FLOPs of the mLSTM and sLSTM for a single
sequence can be approximated by:

• mLSTM (recurrent): num_heads × seq_len × (6 × head_dim × head_dim + 8 × head_dim)
• mLSTM (parallel): num_heads × seq_len × seq_len × (4 × head_dim + 8)
• sLSTM: num_heads × seq_len × head_dim × (8 × head_dim + 12)

Details on Downstream Evaluation. We use the LM Evaluation Harness from
EleutherAI (Sutawika et al., 2023) for evaluating the following tasks that measure common
sense reasoning: LAMBADA (OpenAI version in LM Evaluation Harness) (Paperno et al., 2016),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-challenge, ARC-easy (Clark et al.,
2018), WinoGrande (Sakaguchi et al., 2021). This selection of downstream tasks is also used in
previous work by Gu & Dao (2023).

Following Gu & Dao (2023), we report accuracy for LAMADA, WinoGrande, PIQA, and ARC-easy,
and accuracy normalized by sequence length for HellaSwag and ARC-challenge.

We evaluate all models in full float32, full bfloat16 and bfloat16 Mixed Precision with weights
in float32. For each model we select the best value respectively.

Details on PALOMA. We use 16 out of the 18 data sources of the PALOMA dataset (Magnusson
et al., 2023). We use C4 (Raffel et al., 2019), MC4-EN (Xue et al., 2021), Wikitext-103 (Merity
et al., 2017), PennTreebank (Vadas & Curran, 2011), RedPajama (TogetherComputer, 2023), Fal-
con Refinedweb (Refined Web) (Penedo et al., 2023), Dolma v1.5 (Soldaini et al., 2023), M2D2
S2ORC, M2D2 Wikipedia (Reid et al., 2022), C4-100-Domains (C4 Domains) (Chronopoulou et al.,
2022), Dolma-100-Subreddits (Dolma Subreddits) (Soldaini et al., 2023), Dolma-100-Programming
Languages (Dolma Coding) (Soldaini et al., 2023; Kocetkov et al., 2022), TwitterAAE (Blodgett
et al., 2016; Liang et al., 2023), Manosphere Corpus (Ribeiro et al., 2021), GAB Corpus (Zannettou
et al., 2018), 4CHAN Corpus (Papasavva et al., 2020). We leave out ThePile (Gao et al., 2021) and
ICE (Greenbaum & Nelson, 1996) as they are not part of Paloma’s Huggingface dataset repository10.
A detailed description of these datasets can be found in Magnusson et al. (2023, Table 2). All models
are evaluated in bfloat16 Mixed Precision. Results are shown in Table 8.

Results on the data sources TwitterAAE, Manosphere, GAB and 4CHAN are reported in Table 9 and
for each individual dataset the results are given in Section E.

In order to evaluate the perplexity values on each data source, we split the text documents into
sequences of length 2048, which corresponds to the pre-training context length of all models. For
documents longer than 2048 tokens we split each document into non-overlapping input sequences. In
this case for the last input sequence, we follow the LM Evaluation Harness and fill up the full 2048
token context window with previous tokens, but compute the perplexity only on the remaining tokens.

We compute the token perplexities per data source in Table 8 as the exponential of the negative
log-likelihoods per domain weighted by the number of tokens per domain in that data source as it is
defined in Magnusson et al. (2023, Equation 1)

10https://huggingface.co/datasets/allenai/paloma
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Table 8: Performance on PALOMA Language Modeling Tasks. Comparison of xLSTM, RWKV-4,
Llama, and Mamba by the perplexity of next token prediction on the PALOMA language benchmark
after training on 300B tokens from SlimPajama. Model sizes are 125M, 250M, 760M, and 1.3B.
The second column shows the actual number of parameters. The 571 text domains are grouped into
language modeling (next seven columns) and fine-grained domain benchmarks (further 5 columns).
The last column shows the average perplexity across all of these tasks. Best model per model size is
given in bold and the second best is underlined. xLSTM yields the best performance.

Model #Params
M C4 MC4

EN
Wikitext

103
Penn

Treebank
Red

Pajama
Refined

Web Dolma M2D2
S2ORC

M2D2
Wikipedia

C4
Domains

Dolma
Subreddits

Dolma
Coding Average

12
5M

RWKV-4 169.4 26.25 22.33 29.18 38.45 8.99 32.47 17.04 23.86 21.42 22.68 37.08 5.12 23.74
Llama 162.2 24.64 17.23 23.16 31.56 8.26 29.15 15.10 19.71 20.41 21.45 36.73 3.61 20.92
Mamba 167.8 23.12 17.04 22.49 30.63 7.96 27.73 14.60 19.38 19.36 20.14 34.32 3.77 20.05
xLSTM[1:0] 163.8 22.54 16.32 21.98 30.47 7.80 27.21 14.35 19.02 19.04 19.65 34.15 3.64 19.68
xLSTM[7:1] 163.7 22.39 16.13 21.47 30.01 7.75 26.91 14.13 18.6 18.84 19.52 33.9 3.59 19.44

35
0M

RWKV-4 430.5 19.55 15.82 19.64 27.58 6.97 24.28 12.94 17.59 15.96 16.98 29.40 3.90 17.55
Llama 406.6 18.38 13.28 16.41 21.82 6.56 22.09 11.76 15.05 15.25 15.99 28.30 3.12 15.67
Mamba 423.1 17.33 13.05 16.11 22.24 6.34 21.04 11.42 14.83 14.53 15.16 27.02 3.20 15.19
xLSTM[1:0] 409.3 17.01 12.55 15.17 22.51 6.20 20.66 11.16 14.44 14.27 14.85 26.70 3.08 14.88
xLSTM[7:1] 408.4 16.98 12.68 15.43 21.86 6.23 20.70 11.22 14.62 14.30 14.85 26.61 3.11 14.88

76
0M

RWKV-4 891.0 15.51 12.76 14.84 21.39 5.91 19.28 10.70 14.27 13.04 13.68 24.22 3.32 14.08
Llama 834.1 15.75 11.59 13.47 18.33 5.82 19.04 10.33 13.00 13.05 13.76 24.80 2.90 13.49
Mamba 870.5 15.08 11.54 13.47 19.34 5.69 18.43 10.15 13.05 12.62 13.25 23.94 2.99 13.30
xLSTM[1:0] 840.4 14.60 11.03 12.61 17.74 5.52 17.87 9.85 12.50 12.20 12.81 23.46 2.87 12.76
xLSTM[7:1] 839.7 14.72 11.11 12.68 17.61 5.55 18.01 9.87 12.59 12.25 12.89 23.43 2.88 12.80

1.
3B

RWKV-4 1515.2 14.51 12.04 13.73 19.37 5.62 18.25 10.11 13.46 12.10 12.87 22.85 3.25 13.18
Llama 1420.4 13.93 10.44 11.74 15.92 5.29 17.03 9.35 11.61 11.53 12.24 22.63 2.74 12.04
Mamba 1475.3 13.35 10.40 11.76 16.65 5.21 16.50 9.17 11.73 11.18 11.83 21.43 2.83 11.84
xLSTM[1:0] 1422.6 13.13 10.09 11.41 15.92 5.10 16.25 9.01 11.43 10.95 11.60 21.29 2.73 11.58
xLSTM[7:1] 1420.1 13.31 10.21 11.32 16.00 5.16 16.48 9.11 11.61 11.10 11.76 21.50 2.75 11.69

Table 9: Perplexity values per domain.

Model #Params
M

Twitter
AAE Manosphere 4CHAN GAB

12
5M

RWKV-4 169.4 265.80 39.31 18.48 53.89
Llama 162.2 277.93 32.98 14.03 56.45
Mamba 167.8 258.17 32.14 14.01 51.58
xLSTM[1:0] 163.8 244.53 31.45 13.27 51.00
xLSTM[7:1] 163.7 248.51 30.90 13.45 50.25

35
0M

RWKV-4 430.5 216.17 30.25 13.82 42.25
Llama 406.6 231.09 25.90 11.49 43.04
Mamba 423.1 202.88 25.24 11.60 40.78
xLSTM[1:0] 409.3 200.61 24.58 11.20 39.83
xLSTM[7:1] 408.4 206.25 24.73 11.31 39.86

76
0M

RWKV-4 891.0 195.27 24.66 12.00 35.73
Llama 834.1 205.50 22.69 10.40 37.68
Mamba 793.2 182.74 22.58 10.47 36.25
xLSTM[1:0] 840.4 179.74 21.66 10.11 35.33
xLSTM[7:1] 839.7 180.19 21.78 10.22 34.89

1.
3B

RWKV-4 1515.2 174.87 23.51 11.34 33.18
Llama 1420.4 192.52 20.67 9.67 34.84
Mamba 1475.3 171.38 20.37 9.80 32.01
xLSTM[1:0] 1422.6 166.16 19.94 9.64 31.90
xLSTM[7:1] 1420.1 171.36 20.28 9.64 32.17
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E Detailed Results on PALOMA Language Model Evaluation

We report the perplexity values on each of the 571 subdomains of PALOMA in Table 10. Note that
the aggregated perplexity values in Table 8 are not macro averages of the values shown in Table 10.

Table 10: PPL Evaluations: For the 1.3B sized models trained on 300B SlimPajama tokens, these are
the detailed evaluation results on the respective validation datasets.

Dataset Llama Mamba RWKV-4 xLSTM[7:1] xLSTM[1:0]
#Params (M) 1420 1475 1515 1420 1423
4chan_meta_sep_val-00000000 9.58 9.72 11.37 9.53 9.55
4chan_meta_sep_val-00000001 9.95 10.06 11.57 9.91 9.88
4chan_meta_sep_val-00000002 9.42 9.53 11.00 9.40 9.38
4chan_meta_sep_val-00000003 9.78 9.93 11.48 9.77 9.77
c4_100dom_val_100_www.ign.com 16.22 15.75 17.10 15.67 15.43
c4_100dom_val_10_www.eventbrite.com 12.72 12.33 13.33 12.30 12.12
c4_100dom_val_11_link.springer.com 8.66 8.54 9.31 8.42 8.33
c4_100dom_val_12_www.chicagotribune.com 12.09 11.60 12.49 11.55 11.37
c4_100dom_val_13_www.foxnews.com 9.59 9.21 9.83 9.16 9.08
c4_100dom_val_14_www.aljazeera.com 10.97 10.61 11.31 10.50 10.40
c4_100dom_val_15_www.dailymail.co.uk 12.42 11.97 12.87 11.85 11.69
c4_100dom_val_16_www.ncbi.nlm.nih.gov 7.39 7.31 7.98 7.11 7.07
c4_100dom_val_17_www.express.co.uk 11.57 11.04 11.84 10.99 10.79
c4_100dom_val_18_en.m.wikipedia.org 9.28 8.95 9.52 8.89 8.80
c4_100dom_val_19_www.cnet.com 12.61 12.23 13.12 12.09 11.97
c4_100dom_val_1_www.nytimes.com 13.13 12.66 14.04 12.68 12.44
c4_100dom_val_20_www.telegraph.co.uk 13.71 13.10 14.28 13.06 12.88
c4_100dom_val_21_www.theatlantic.com 14.70 14.17 15.54 14.17 13.97
c4_100dom_val_22_forums.macrumors.com 17.77 17.34 19.15 17.22 16.95
c4_100dom_val_23_www.oreilly.com 13.36 12.99 14.31 13.02 12.88
c4_100dom_val_24_www.washingtonpost.com 12.06 11.58 12.98 11.64 11.41
c4_100dom_val_25_www.zdnet.com 13.22 12.86 13.80 12.78 12.61
c4_100dom_val_26_www.foxbusiness.com 9.32 9.03 9.58 8.92 8.81
c4_100dom_val_27_www.reuters.com 10.67 10.13 11.16 10.13 9.97
c4_100dom_val_28_www.ibtimes.co.uk 11.36 11.01 11.71 10.89 10.76
c4_100dom_val_29_www.rt.com 13.59 12.96 14.24 12.98 12.74
c4_100dom_val_2_en.wikipedia.org 10.75 10.45 11.32 10.32 10.19
c4_100dom_val_30_www.prweb.com 11.18 10.88 11.92 10.83 10.65
c4_100dom_val_31_www.deviantart.com 21.78 21.05 22.78 21.00 20.69
c4_100dom_val_32_www.si.com 11.49 11.00 11.92 10.90 10.76
c4_100dom_val_33_www.bbc.com 9.35 8.91 9.41 8.80 8.70
c4_100dom_val_34_github.com 11.57 11.49 12.94 11.40 11.28
c4_100dom_val_35_nypost.com 14.31 13.41 15.29 13.62 13.31
c4_100dom_val_36_itunes.apple.com 16.49 15.88 17.15 15.98 15.69
c4_100dom_val_37_www.instructables.com 16.75 16.33 17.73 16.28 15.97
c4_100dom_val_38_www.youtube.com 8.42 8.24 8.83 8.22 8.07
c4_100dom_val_39_www.booking.com 8.84 8.49 8.83 8.41 8.32
c4_100dom_val_40_www.etsy.com 11.93 11.66 12.66 11.52 11.43
c4_100dom_val_41_www.marketwired.com 7.66 7.47 7.88 7.33 7.27
c4_100dom_val_42_sites.google.com 14.23 13.81 14.91 13.68 13.51
c4_100dom_val_43_www.baltimoresun.com 11.57 11.16 11.96 11.09 10.95
c4_100dom_val_44_www.agreatertown.com 13.56 12.94 13.57 12.77 12.64
c4_100dom_val_45_www.npr.org 10.59 10.30 11.14 10.19 10.12
c4_100dom_val_46_www.fool.com 11.03 10.63 11.35 10.56 10.42
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Dataset Llama Mamba RWKV-4 xLSTM[7:1] xLSTM[1:0]
c4_100dom_val_47_www.tripadvisor.com 15.80 15.26 16.26 15.10 14.93
c4_100dom_val_48_www.bbc.co.uk 12.55 12.10 13.02 12.00 11.85
c4_100dom_val_49_lists.w3.org 18.75 18.24 19.89 18.05 17.84
c4_100dom_val_4_www.latimes.com 11.88 11.46 12.40 11.39 11.24
c4_100dom_val_50_mashable.com 12.44 11.95 12.85 11.90 11.76
c4_100dom_val_51_disneyparksmomspanel.disney.go.com11.99 11.29 11.98 11.16 11.00
c4_100dom_val_52_www.cnbc.com 10.65 10.32 10.99 10.24 10.10
c4_100dom_val_53_answers.sap.com 23.59 23.09 25.71 22.99 22.55
c4_100dom_val_54_homestars.com 14.13 13.70 14.51 13.65 13.52
c4_100dom_val_55_www.hindustantimes.com 12.13 11.60 12.74 11.60 11.37
c4_100dom_val_56_www.reference.com 11.57 11.04 11.75 10.92 10.79
c4_100dom_val_57_www.city-data.com 18.38 17.94 19.61 17.73 17.62
c4_100dom_val_58_medium.com 15.50 15.09 16.58 15.18 15.01
c4_100dom_val_59_app-wiringdiagram... 9.74 9.10 9.68 8.88 8.75
c4_100dom_val_5_www.theguardian.com 14.78 14.09 15.47 14.08 13.86
c4_100dom_val_60_www.csmonitor.com 15.35 14.85 15.92 14.75 14.57
c4_100dom_val_61_www.adweek.com 14.55 13.95 15.58 14.09 13.81
c4_100dom_val_62_docs.microsoft.com 7.69 7.79 8.86 7.68 7.58
c4_100dom_val_63_www.yahoo.com 9.29 8.88 9.71 8.89 8.77
c4_100dom_val_64_www.thesun.co.uk 12.18 11.66 12.74 11.59 11.39
c4_100dom_val_65_www.nydailynews.com 12.15 11.60 12.61 11.56 11.36
c4_100dom_val_66_www.dailystar.co.uk 10.65 10.17 11.03 10.09 9.92
c4_100dom_val_67_fineartamerica.com 12.06 11.58 12.29 11.46 11.36
c4_100dom_val_68_www.kickstarter.com 13.85 13.58 15.38 13.55 13.38
c4_100dom_val_69_uk.reuters.com 9.54 9.13 9.90 9.07 8.92
c4_100dom_val_6_www.huffpost.com 13.45 13.03 13.96 12.99 12.83
c4_100dom_val_70_www.insiderpages.com 13.24 12.84 13.55 12.77 12.64
c4_100dom_val_71_www.inquisitr.com 12.12 11.58 12.86 11.71 11.38
c4_100dom_val_72_lists.debian.org 18.18 17.81 19.62 17.67 17.30
c4_100dom_val_73_www.straitstimes.com 11.51 11.06 11.91 10.94 10.79
c4_100dom_val_74_www.cbsnews.com 10.29 9.91 10.60 9.82 9.72
c4_100dom_val_75_simple.wikipedia.org 8.25 7.85 8.37 7.78 7.67
c4_100dom_val_76_deadline.com 14.75 13.83 15.48 13.92 13.51
c4_100dom_val_77_www.androidheadlines.com 11.11 10.74 11.43 10.72 10.59
c4_100dom_val_78_www.wired.com 14.42 13.88 15.14 13.87 13.68
c4_100dom_val_79_www.bustle.com 12.79 12.33 13.19 12.25 12.09
c4_100dom_val_7_patents.google.com 7.59 7.84 9.33 7.72 7.59
c4_100dom_val_80_premium.wpmudev.org 16.86 16.63 18.13 16.50 16.29
c4_100dom_val_81_www.librarything.com 14.36 13.98 15.42 13.91 13.75
c4_100dom_val_82_mail-archives.apache.org 5.67 5.61 6.17 5.56 5.49
c4_100dom_val_83_scholars.duke.edu 8.72 8.43 9.03 8.32 8.21
c4_100dom_val_84_www.glassdoor.com 16.64 15.97 16.99 16.00 15.83
c4_100dom_val_85_www.pcworld.com 12.34 11.95 12.95 11.90 11.72
c4_100dom_val_86_www.shutterstock.com 8.70 8.89 10.75 8.62 8.52
c4_100dom_val_87_myemail.constantcontact.com 14.59 14.24 15.32 14.18 13.98
c4_100dom_val_88_www.eventbrite.co.uk 14.47 13.99 14.89 13.98 13.79
c4_100dom_val_89_www.fastcompany.com 14.24 13.75 15.52 13.82 13.56
c4_100dom_val_8_www.businessinsider.com 10.97 10.69 11.35 10.52 10.46
c4_100dom_val_90_www.firstpost.com 11.71 11.24 12.08 11.12 10.96
c4_100dom_val_91_www.entrepreneur.com 13.10 12.68 13.65 12.72 12.54
c4_100dom_val_92_www.breitbart.com 13.47 12.67 14.29 12.84 12.56
c4_100dom_val_93_techcrunch.com 14.20 13.68 15.18 13.82 13.58
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Dataset Llama Mamba RWKV-4 xLSTM[7:1] xLSTM[1:0]
c4_100dom_val_94_www.nme.com 14.12 13.28 15.06 13.43 13.12
c4_100dom_val_95_www.ndtv.com 10.66 10.26 10.90 10.10 10.00
c4_100dom_val_96_finance.yahoo.com 9.96 9.55 10.22 9.43 9.34
c4_100dom_val_97_archives.lib.state.ma.us 6.53 6.12 7.09 6.27 5.85
c4_100dom_val_98_www.gsmarena.com 23.21 22.15 24.52 22.10 21.76
c4_100dom_val_99_www.lonelyplanet.com 11.33 10.92 12.28 10.84 10.69
c4_100dom_val_9_www.forbes.com 13.72 13.31 14.63 13.34 13.13
c4_en_val-00000000 14.34 13.70 14.87 13.67 13.46
c4_en_val-00000001 14.86 14.28 15.51 14.21 14.09
c4_en_val-00000002 15.29 14.71 15.95 14.71 14.51
c4_en_val-00000003 12.95 12.28 13.32 12.23 12.06
c4_en_val-00000004 12.56 12.13 13.27 12.05 11.87
c4_en_val-00000005 12.77 12.35 13.26 12.32 12.18
dolma-v1_5_val_books 13.00 12.44 13.64 12.44 12.27
dolma-v1_5_val_common-crawl 16.86 16.37 18.00 16.35 16.10
dolma-v1_5_val_pes2o 9.42 9.56 11.25 9.41 9.29
dolma-v1_5_val_reddit_uniform 23.04 21.97 23.84 22.05 21.80
dolma-v1_5_val_stack_uniform 2.30 2.33 2.53 2.30 2.29
dolma-v1_5_val_wiki 10.86 10.48 11.25 10.41 10.31
dolma_100_proglang_val_00_text 5.61 6.30 6.94 5.67 5.69
dolma_100_proglang_val_01_markdown 3.16 3.16 3.56 3.15 3.11
dolma_100_proglang_val_02_c 1.84 1.91 2.23 1.86 1.85
dolma_100_proglang_val_03_php 1.75 1.75 1.83 1.73 1.72
dolma_100_proglang_val_04_java 1.96 1.99 2.18 1.95 1.95
dolma_100_proglang_val_05_c++ 2.19 2.25 2.53 2.21 2.19
dolma_100_proglang_val_06_python 2.35 2.39 2.62 2.36 2.34
dolma_100_proglang_val_07_javascript 2.54 2.59 2.83 2.53 2.53
dolma_100_proglang_val_08_html 1.92 1.94 2.13 1.91 1.91
dolma_100_proglang_val_09_c# 2.23 2.28 2.45 2.19 2.24
dolma_100_proglang_val_10_yaml 2.93 3.01 3.71 2.94 2.92
dolma_100_proglang_val_11_go 1.75 1.78 1.97 1.77 1.75
dolma_100_proglang_val_12_typescript 2.17 2.20 2.41 2.18 2.16
dolma_100_proglang_val_13_xml 2.44 2.50 2.78 2.46 2.48
dolma_100_proglang_val_14_css 2.25 2.25 2.34 2.21 2.20
dolma_100_proglang_val_15_jupyter-nb 1.57 1.60 1.75 1.58 1.58
dolma_100_proglang_val_16_rust 1.96 2.01 2.23 1.97 1.96
dolma_100_proglang_val_17_unity3d-asset 4.01 4.17 4.56 4.10 4.05
dolma_100_proglang_val_18_gettext-catalog 2.84 2.87 3.53 2.86 2.83
dolma_100_proglang_val_19_ruby 2.41 2.44 2.70 2.39 2.38
dolma_100_proglang_val_20_vue 1.95 1.95 2.10 1.94 1.93
dolma_100_proglang_val_21_sql 2.18 2.23 2.46 2.17 2.16
dolma_100_proglang_val_22_swift 1.86 1.88 2.04 1.86 1.84
dolma_100_proglang_val_23_kotlin 2.05 2.07 2.29 2.07 2.04
dolma_100_proglang_val_24_scala 2.24 2.28 2.64 2.25 2.23
dolma_100_proglang_val_25_scss 2.26 2.27 2.38 2.24 2.24
dolma_100_proglang_val_26_tex 4.04 4.21 4.97 4.10 4.04
dolma_100_proglang_val_27_dart 1.79 1.82 2.01 1.80 1.78
dolma_100_proglang_val_28_kicad 2.57 2.79 3.86 2.68 2.67
dolma_100_proglang_val_29_shell 3.71 3.74 4.31 3.69 3.63
dolma_100_proglang_val_30_smali 1.38 1.39 1.45 1.38 1.37
dolma_100_proglang_val_31_lua 5.65 6.01 7.18 5.33 5.45
dolma_100_proglang_val_32_restructuredtext 4.01 4.05 4.66 3.97 3.92
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dolma_100_proglang_val_33_perl 2.57 2.62 3.01 2.59 2.55
dolma_100_proglang_val_34_diff 2.87 2.95 3.43 2.89 2.86
dolma_100_proglang_val_35_ini 3.91 4.16 4.90 4.05 3.98
dolma_100_proglang_val_36_jsx 1.83 1.84 1.95 1.83 1.82
dolma_100_proglang_val_37_haskell 2.94 3.07 3.73 3.02 2.95
dolma_100_proglang_val_38_gnuplot 2.65 2.88 3.36 2.81 2.77
dolma_100_proglang_val_39_postscript 19.09 19.52 19.56 18.66 18.64
dolma_100_proglang_val_40_groff 6.13 6.32 7.45 6.22 6.21
dolma_100_proglang_val_41_turtle 2.35 2.45 3.17 2.39 2.35
dolma_100_proglang_val_42_fortran 2.32 2.39 2.83 2.35 2.31
dolma_100_proglang_val_43_makefile 2.93 3.01 3.51 2.86 2.82
dolma_100_proglang_val_44_mathematica 10.34 11.34 13.24 10.49 10.71
dolma_100_proglang_val_45_pascal 4.18 4.81 5.49 4.17 4.27
dolma_100_proglang_val_46_common-lisp 2.56 2.71 3.32 2.62 2.58
dolma_100_proglang_val_47_gas 2.49 2.73 3.59 2.57 2.53
dolma_100_proglang_val_48_vhdl 3.91 4.06 4.69 3.92 3.90
dolma_100_proglang_val_49_julia 3.25 3.36 4.05 3.30 3.26
dolma_100_proglang_val_50_edn 1.99 2.10 2.67 2.04 2.03
dolma_100_proglang_val_51_visual-basic 2.42 2.49 2.72 2.37 2.38
dolma_100_proglang_val_52_powershell 4.08 4.16 4.50 3.86 3.89
dolma_100_proglang_val_53_g-code 2.26 2.66 3.29 2.44 2.37
dolma_100_proglang_val_54_ocaml 3.06 3.29 4.22 3.19 3.13
dolma_100_proglang_val_55_java-server-p 2.10 2.11 2.31 2.06 2.09
dolma_100_proglang_val_56_solidity 4.09 4.41 5.28 4.05 4.10
dolma_100_proglang_val_57_graphviz-dot 2.17 2.48 3.54 2.32 2.29
dolma_100_proglang_val_58_less 2.24 2.26 2.33 2.22 2.22
dolma_100_proglang_val_59_twig 1.81 1.81 1.91 1.80 1.79
dolma_100_proglang_val_60_asciidoc 5.33 5.50 6.84 5.43 5.34
dolma_100_proglang_val_61_groovy 2.12 2.15 2.41 2.13 2.11
dolma_100_proglang_val_62_llvm 2.26 2.40 3.25 2.31 2.23
dolma_100_proglang_val_63_hcl 2.52 2.56 2.96 2.52 2.48
dolma_100_proglang_val_64_html+erb 2.10 2.09 2.23 2.08 2.07
dolma_100_proglang_val_65_erlang 2.84 2.98 3.87 2.88 2.85
dolma_100_proglang_val_66_elixir 2.93 2.99 3.58 2.91 2.90
dolma_100_proglang_val_67_eagle 5.35 6.90 10.75 5.64 5.76
dolma_100_proglang_val_68_arduino 3.37 3.40 3.81 3.28 3.28
dolma_100_proglang_val_69_coffeescript 2.80 2.85 3.27 2.80 2.77
dolma_100_proglang_val_70_toml 7.76 7.62 8.44 7.53 7.58
dolma_100_proglang_val_71_cuda 2.15 2.21 2.56 2.19 2.16
dolma_100_proglang_val_72_nix 7.80 7.84 9.03 7.88 7.83
dolma_100_proglang_val_73_smalltalk 9.32 9.61 12.60 9.47 9.20
dolma_100_proglang_val_74_cmake 1.87 1.86 2.02 1.84 1.81
dolma_100_proglang_val_75_actionscript 2.45 2.54 2.88 2.46 2.46
dolma_100_proglang_val_76_glsl 2.40 2.42 2.72 2.36 2.32
dolma_100_proglang_val_77_systemverilog 2.53 2.66 3.17 2.58 2.55
dolma_100_proglang_val_78_haxe 2.74 2.81 3.20 2.77 2.76
dolma_100_proglang_val_79_f# 2.89 3.02 3.53 2.93 2.88
dolma_100_proglang_val_80_max 1.59 1.62 1.80 1.61 1.61
dolma_100_proglang_val_81_objective-c++ 2.18 2.19 2.40 2.17 2.16
dolma_100_proglang_val_82_standard-ml 3.57 4.05 4.79 3.81 3.77
dolma_100_proglang_val_83_dockerfile 4.08 4.17 4.37 4.01 4.05
dolma_100_proglang_val_84_emacs-lisp 3.83 3.83 4.44 3.80 3.72
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dolma_100_proglang_val_85_scheme 2.78 2.86 3.40 2.84 2.77
dolma_100_proglang_val_86_clojure 3.18 3.30 4.00 3.26 3.17
dolma_100_proglang_val_87_handlebars 1.79 1.79 1.88 1.78 1.78
dolma_100_proglang_val_88_smarty 2.30 2.35 2.58 2.29 2.30
dolma_100_proglang_val_89_logos 2.37 2.58 2.98 2.46 2.44
dolma_100_proglang_val_90_stata 4.67 5.08 6.85 4.85 4.81
dolma_100_proglang_val_91_yacc 2.42 2.48 2.87 2.44 2.43
dolma_100_proglang_val_92_nimrod 2.75 2.87 3.63 2.81 2.77
dolma_100_proglang_val_93_tcl 3.00 3.16 3.95 3.07 3.02
dolma_100_proglang_val_94_viml 5.56 5.76 7.21 5.59 5.55
dolma_100_proglang_val_95_asp 1.79 1.79 1.90 1.77 1.77
dolma_100_proglang_val_96_protocol-buffer 1.32 1.31 1.38 1.31 1.32
dolma_100_proglang_val_97_r 2.80 2.92 3.66 2.86 2.81
dolma_100_proglang_val_98_cython 2.34 2.39 2.69 2.36 2.35
dolma_100_proglang_val_99_mediawiki 2.01 2.10 2.48 2.12 2.04
dolma_100_subreddits_val_00_AskReddit 20.25 19.29 20.38 19.28 19.14
dolma_100_subreddits_val_01_politics 22.08 20.70 22.07 20.83 20.61
dolma_100_subreddits_val_02_AmItheAsshole 22.49 21.30 22.89 21.60 21.27
dolma_100_subreddits_val_03_worldnews 22.57 21.43 22.77 21.50 21.23
dolma_100_subreddits_val_04_relationships 18.64 17.80 18.89 17.86 17.67
dolma_100_subreddits_val_05_relationship_advice 19.40 18.53 19.68 18.63 18.46
dolma_100_subreddits_val_06_news 22.49 21.25 22.51 21.49 21.17
dolma_100_subreddits_val_07_leagueoflegends 34.45 32.41 35.13 32.46 32.04
dolma_100_subreddits_val_08_todayilearned 22.53 21.30 22.68 21.28 21.10
dolma_100_subreddits_val_09_TwoXChromosomes20.20 19.16 20.25 19.20 19.02
dolma_100_subreddits_val_10_personalfinance 18.62 17.65 18.82 17.73 17.64
dolma_100_subreddits_val_11_changemyview 20.02 19.10 20.50 19.17 18.99
dolma_100_subreddits_val_12_unpopularopinion 23.39 22.16 23.63 22.32 22.04
dolma_100_subreddits_val_13_movies 21.62 20.52 21.79 20.64 20.35
dolma_100_subreddits_val_14_Games 22.26 21.15 22.52 21.18 20.87
dolma_100_subreddits_val_15_nba 23.28 21.93 23.60 22.10 21.85
dolma_100_subreddits_val_16_pics 21.84 20.56 21.82 20.64 20.47
dolma_100_subreddits_val_17_gaming 24.45 23.13 24.61 23.15 22.86
dolma_100_subreddits_val_18_soccer 23.38 22.12 23.61 22.19 22.03
dolma_100_subreddits_val_19_nfl 19.86 18.76 20.17 18.81 18.62
dolma_100_subreddits_val_20_explainlikeimfive 18.35 17.21 18.59 17.32 17.03
dolma_100_subreddits_val_21_conspiracy 23.86 22.53 24.09 22.67 22.54
dolma_100_subreddits_val_22_atheism 21.23 20.18 21.43 20.23 20.13
dolma_100_subreddits_val_23_AskMen 20.00 19.04 20.11 19.10 18.94
dolma_100_subreddits_val_24_videos 22.26 21.24 22.51 21.29 21.04
dolma_100_subreddits_val_25_sex 21.13 20.13 21.30 20.09 19.98
dolma_100_subreddits_val_26_raisedbynarcissists 22.07 21.08 22.48 21.20 21.02
dolma_100_subreddits_val_27_NoStupidQuestions 19.66 18.59 19.87 18.68 18.52
dolma_100_subreddits_val_28_DestinyTheGame 35.27 33.58 36.13 33.78 33.37
dolma_100_subreddits_val_29_anime 23.21 22.04 23.46 22.12 21.77
dolma_100_subreddits_val_30_DnD 28.22 26.71 28.78 26.72 26.39
dolma_100_subreddits_val_31_ukpolitics 22.35 21.19 22.80 21.31 21.10
dolma_100_subreddits_val_32_funny 20.78 19.45 20.70 19.40 19.23
dolma_100_subreddits_val_33_europe 21.76 20.59 22.10 20.72 20.52
dolma_100_subreddits_val_34_canada 22.44 21.21 22.44 21.30 21.09
dolma_100_subreddits_val_35_Christianity 17.88 17.02 18.10 17.04 16.94
dolma_100_subreddits_val_36_SquaredCircle 25.87 24.31 25.83 24.34 24.03
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dolma_100_subreddits_val_37_AskWomen 17.72 16.81 17.77 16.85 16.72
dolma_100_subreddits_val_38_legaladvice 18.66 17.75 18.92 17.74 17.64
dolma_100_subreddits_val_39_JUSTNOMIL 24.25 23.16 24.86 23.32 23.02
dolma_100_subreddits_val_40_technology 23.39 22.09 23.52 22.21 21.95
dolma_100_subreddits_val_41_IAmA 19.83 18.83 19.86 18.71 18.56
dolma_100_subreddits_val_42_wow 31.26 29.25 31.44 29.39 28.82
dolma_100_subreddits_val_43_Parenting 20.15 19.11 20.43 19.30 19.06
dolma_100_subreddits_val_44_exmormon 23.12 21.90 23.44 21.99 21.84
dolma_100_subreddits_val_45_AdviceAnimals 22.14 20.96 22.14 20.98 20.79
dolma_100_subreddits_val_46_childfree 21.87 20.85 22.13 20.89 20.72
dolma_100_subreddits_val_47_unitedkingdom 23.27 22.00 23.40 22.00 21.85
dolma_100_subreddits_val_48_ffxiv 32.53 30.79 33.33 31.01 30.62
dolma_100_subreddits_val_49_dndnext 29.67 28.03 30.53 28.26 27.63
dolma_100_subreddits_val_50_ADHD 20.75 19.83 21.14 19.95 19.78
dolma_100_subreddits_val_51_loseit 19.36 18.39 19.49 18.52 18.33
dolma_100_subreddits_val_52_asoiaf 25.28 23.99 25.63 23.94 23.69
dolma_100_subreddits_val_53_BabyBumps 20.96 19.82 21.11 19.92 19.76
dolma_100_subreddits_val_54_Advice 19.17 18.29 19.35 18.38 18.19
dolma_100_subreddits_val_55_australia 23.97 22.51 24.06 22.61 22.40
dolma_100_subreddits_val_56_CFB 20.45 19.41 20.92 19.49 19.23
dolma_100_subreddits_val_57_offmychest 19.63 18.79 19.77 18.93 18.77
dolma_100_subreddits_val_58_PublicFreakout 25.96 24.49 26.02 24.65 24.39
dolma_100_subreddits_val_59_TrueOffMyChest 21.53 20.63 21.70 20.73 20.54
dolma_100_subreddits_val_60_science 20.44 19.46 20.64 19.51 19.38
dolma_100_subreddits_val_61_magicTCG 28.82 26.79 28.94 26.69 26.38
dolma_100_subreddits_val_62_asktransgender 20.72 19.86 21.07 19.83 19.62
dolma_100_subreddits_val_63_DotA2 34.35 32.38 34.74 32.57 32.16
dolma_100_subreddits_val_64_neoliberal 21.74 20.59 22.26 20.64 20.45
dolma_100_subreddits_val_65_whowouldwin 29.18 27.81 30.08 27.63 27.30
dolma_100_subreddits_val_66_depression 18.28 17.52 18.31 17.50 17.41
dolma_100_subreddits_val_67_WTF 22.30 21.18 22.38 21.17 20.99
dolma_100_subreddits_val_68_pathofexile 40.48 38.59 41.43 38.75 38.43
dolma_100_subreddits_val_69_PoliticalDiscussion 20.01 18.92 20.16 18.97 18.82
dolma_100_subreddits_val_70_Libertarian 22.97 21.77 23.15 21.87 21.75
dolma_100_subreddits_val_71_PurplePillDebate 24.94 23.66 25.44 23.85 23.55
dolma_100_subreddits_val_72_Fitness 21.57 20.35 21.48 20.34 20.11
dolma_100_subreddits_val_73_books 21.12 20.02 21.31 20.09 19.82
dolma_100_subreddits_val_74_dogs 20.13 19.12 20.32 19.20 18.92
dolma_100_subreddits_val_75_pcmasterrace 23.73 22.49 24.02 22.56 22.21
dolma_100_subreddits_val_76_teenagers 18.37 16.35 16.44 15.56 17.02
dolma_100_subreddits_val_77_stopdrinking 21.08 20.02 21.19 20.17 19.98
dolma_100_subreddits_val_78_Overwatch 30.47 28.77 31.13 29.13 28.57
dolma_100_subreddits_val_79_television 23.97 22.63 24.05 22.75 22.49
dolma_100_subreddits_val_80_buildapc 21.55 20.22 21.78 20.29 19.98
dolma_100_subreddits_val_81_askscience 17.25 16.39 17.52 16.34 16.11
dolma_100_subreddits_val_82_programming 23.66 22.61 24.04 22.55 22.24
dolma_100_subreddits_val_83_Guildwars2 32.98 31.17 33.58 31.39 30.91
dolma_100_subreddits_val_84_cars 22.57 21.41 22.73 21.38 21.15
dolma_100_subreddits_val_85_formula1 23.85 22.65 24.09 22.71 22.49
dolma_100_subreddits_val_86_sysadmin 24.23 22.90 24.41 22.96 22.64
dolma_100_subreddits_val_87_hockey 21.46 20.26 21.74 20.37 20.20
dolma_100_subreddits_val_88_india 24.15 22.92 24.42 23.08 22.68
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dolma_100_subreddits_val_89_SubredditDrama 19.14 18.26 19.63 18.29 18.12
dolma_100_subreddits_val_90_DMAcademy 27.77 26.31 28.38 26.41 26.00
dolma_100_subreddits_val_91_dating_advice 20.18 19.27 20.42 19.40 19.21
dolma_100_subreddits_val_92_Catholicism 19.11 18.22 19.41 18.17 18.03
dolma_100_subreddits_val_93_Drugs 24.50 23.29 24.74 23.32 23.12
dolma_100_subreddits_val_94_trees 23.56 22.38 23.83 22.41 22.25
dolma_100_subreddits_val_95_boardgames 22.69 21.48 23.13 21.61 21.38
dolma_100_subreddits_val_96_Conservative 22.79 21.53 22.97 21.68 21.53
dolma_100_subreddits_val_97_Futurology 23.55 22.36 23.77 22.37 22.17
dolma_100_subreddits_val_98_beyondthebump 21.07 19.89 21.22 20.08 19.83
dolma_100_subreddits_val_99_weddingplanning 20.11 19.01 20.33 19.19 18.96
falcon-refinedweb_val-00000000 15.92 15.46 17.14 15.37 15.22
falcon-refinedweb_val-00000001 18.49 17.91 19.89 17.90 17.71
falcon-refinedweb_val-00000002 18.45 17.90 19.69 17.91 17.68
falcon-refinedweb_val-00000003 16.75 16.23 17.92 16.16 15.89
falcon-refinedweb_val-00000004 16.26 15.66 17.32 15.73 15.41
falcon-refinedweb_val-00000005 15.41 14.96 16.56 14.92 14.74
gab_val-00000000 33.19 30.55 31.57 30.73 30.32
gab_val-00000001 35.64 32.76 33.96 32.80 32.63
gab_val-00000002 34.38 31.68 32.75 31.80 31.65
gab_val-00000003 34.86 32.05 33.26 32.20 32.00
gab_val-00000004 36.20 33.35 34.58 33.42 33.23
gab_val-00000005 33.46 30.82 31.88 31.06 30.72
gab_val-00000006 35.76 32.77 34.26 33.04 32.74
gab_val-00000007 35.54 32.60 33.76 32.78 32.41
gab_val-00000008 35.11 32.03 33.23 32.25 31.86
gab_val-00000009 34.13 31.34 32.36 31.50 31.30
m2d2_s2orc_unsplit_val_Art 20.07 19.80 21.88 19.78 19.44
m2d2_s2orc_unsplit_val_Philosophy 14.80 14.82 16.77 14.69 14.47
m2d2_s2orc_unsplit_val_astro-ph 11.70 11.70 13.18 11.52 11.33
m2d2_s2orc_unsplit_val_astro-ph.CO 11.47 11.49 12.90 11.37 11.15
m2d2_s2orc_unsplit_val_astro-ph.EP 12.76 12.73 14.28 12.60 12.45
m2d2_s2orc_unsplit_val_astro-ph.GA 11.70 11.70 13.18 11.52 11.33
m2d2_s2orc_unsplit_val_astro-ph.HE 11.85 11.77 13.29 11.62 11.46
m2d2_s2orc_unsplit_val_astro-ph.IM 15.36 15.33 17.16 15.21 14.92
m2d2_s2orc_unsplit_val_astro-ph.SR 13.08 13.08 14.89 12.86 12.70
m2d2_s2orc_unsplit_val_astro-ph_l1 15.36 15.33 17.16 15.21 14.92
m2d2_s2orc_unsplit_val_atom-ph 12.74 12.84 14.44 12.75 12.53
m2d2_s2orc_unsplit_val_chem-ph 13.20 13.29 15.22 13.14 12.97
m2d2_s2orc_unsplit_val_cond-mat 11.67 11.78 13.37 11.67 11.50
m2d2_s2orc_unsplit_val_cond-mat.dis-nn 12.54 12.67 14.28 12.58 12.38
m2d2_s2orc_unsplit_val_cond-mat.mes-hall 11.24 11.50 13.19 11.30 11.10
m2d2_s2orc_unsplit_val_cond-mat.mtrl-sci 12.19 12.33 14.09 12.18 11.91
m2d2_s2orc_unsplit_val_cond-mat.other 11.87 11.96 13.55 11.83 11.65
m2d2_s2orc_unsplit_val_cond-mat.quant-gas 11.67 11.78 13.37 11.67 11.50
m2d2_s2orc_unsplit_val_cond-mat.soft 12.18 12.23 13.93 12.18 12.02
m2d2_s2orc_unsplit_val_cond-mat.stat-mech 12.03 12.14 13.60 12.08 11.89
m2d2_s2orc_unsplit_val_cond-mat.str-el 10.39 10.50 11.98 10.41 10.22
m2d2_s2orc_unsplit_val_cond-mat.supr-con 11.57 11.66 13.13 11.53 11.30
m2d2_s2orc_unsplit_val_cond-mat_l1 12.54 12.67 14.28 12.58 12.38
m2d2_s2orc_unsplit_val_cs.AI 11.71 12.09 14.20 12.01 11.79
m2d2_s2orc_unsplit_val_cs.AR 13.09 13.36 15.30 13.18 12.99
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m2d2_s2orc_unsplit_val_cs.CC 8.45 8.81 10.46 8.70 8.54
m2d2_s2orc_unsplit_val_cs.CE 13.21 13.31 15.01 13.18 13.02
m2d2_s2orc_unsplit_val_cs.CG 8.39 8.68 10.12 8.59 8.47
m2d2_s2orc_unsplit_val_cs.CL 14.66 14.75 16.96 14.70 14.47
m2d2_s2orc_unsplit_val_cs.CR 14.63 14.86 16.72 14.74 14.56
m2d2_s2orc_unsplit_val_cs.CV 12.68 12.78 14.38 12.66 12.49
m2d2_s2orc_unsplit_val_cs.CY 16.01 15.93 17.52 15.84 15.67
m2d2_s2orc_unsplit_val_cs.DB 11.86 12.35 14.66 12.27 12.03
m2d2_s2orc_unsplit_val_cs.DC 13.60 14.02 16.20 13.79 13.56
m2d2_s2orc_unsplit_val_cs.DL 14.67 14.83 17.05 14.75 14.50
m2d2_s2orc_unsplit_val_cs.DM 8.11 8.38 9.84 8.27 8.14
m2d2_s2orc_unsplit_val_cs.DS 9.63 9.99 11.76 9.88 9.69
m2d2_s2orc_unsplit_val_cs.ET 14.80 14.95 17.00 14.89 14.67
m2d2_s2orc_unsplit_val_cs.FL 9.51 9.84 11.64 9.74 9.57
m2d2_s2orc_unsplit_val_cs.GL 16.51 16.43 18.18 16.38 16.21
m2d2_s2orc_unsplit_val_cs.GR 13.45 13.60 15.53 13.54 13.29
m2d2_s2orc_unsplit_val_cs.GT 9.25 9.59 11.34 9.49 9.29
m2d2_s2orc_unsplit_val_cs.HC 16.76 16.93 19.08 16.84 16.66
m2d2_s2orc_unsplit_val_cs.IR 13.30 13.46 15.26 13.31 13.21
m2d2_s2orc_unsplit_val_cs.LG 10.39 10.52 12.14 10.44 10.27
m2d2_s2orc_unsplit_val_cs.LO 9.75 10.23 12.50 10.03 9.81
m2d2_s2orc_unsplit_val_cs.MA 11.24 11.65 14.10 11.41 11.19
m2d2_s2orc_unsplit_val_cs.MM 13.12 13.40 15.29 13.25 13.03
m2d2_s2orc_unsplit_val_cs.MS 13.98 14.14 16.27 14.11 13.89
m2d2_s2orc_unsplit_val_cs.NA 10.53 10.80 12.52 10.71 10.47
m2d2_s2orc_unsplit_val_cs.NE 13.76 14.00 16.10 13.89 13.64
m2d2_s2orc_unsplit_val_cs.NI 10.00 10.22 11.61 10.04 9.93
m2d2_s2orc_unsplit_val_cs.OH 15.24 15.43 17.62 15.34 15.10
m2d2_s2orc_unsplit_val_cs.OS 14.61 14.93 17.35 14.80 14.53
m2d2_s2orc_unsplit_val_cs.PF 12.60 12.82 14.71 12.70 12.48
m2d2_s2orc_unsplit_val_cs.PL 15.43 15.74 18.58 15.65 15.40
m2d2_s2orc_unsplit_val_cs.RO 13.04 13.19 14.95 13.12 12.87
m2d2_s2orc_unsplit_val_cs.SC 11.10 11.42 13.33 11.30 11.10
m2d2_s2orc_unsplit_val_cs.SD 13.27 13.42 15.26 13.36 13.13
m2d2_s2orc_unsplit_val_cs.SE 17.72 13.47 15.46 13.40 13.21
m2d2_s2orc_unsplit_val_cs.SI 12.03 12.25 14.03 12.19 11.99
m2d2_s2orc_unsplit_val_cs.SY 11.40 11.79 13.51 11.63 11.39
m2d2_s2orc_unsplit_val_cs_l1 8.39 8.68 10.12 8.59 8.47
m2d2_s2orc_unsplit_val_econ.EM 11.62 11.76 13.73 11.68 11.41
m2d2_s2orc_unsplit_val_econ.TH 9.75 10.16 11.99 9.99 9.88
m2d2_s2orc_unsplit_val_econ_l1 9.75 10.16 11.99 9.99 9.88
m2d2_s2orc_unsplit_val_eess.AS 12.05 12.14 13.88 12.09 11.88
m2d2_s2orc_unsplit_val_eess.IV 13.77 13.89 15.71 13.76 13.54
m2d2_s2orc_unsplit_val_eess.SP 11.29 11.45 12.94 11.28 11.13
m2d2_s2orc_unsplit_val_eess_l1 13.77 13.89 15.71 13.76 13.54
m2d2_s2orc_unsplit_val_gr-qc 12.84 12.99 14.68 12.84 12.71
m2d2_s2orc_unsplit_val_hep-ex 10.47 10.37 11.61 10.13 9.96
m2d2_s2orc_unsplit_val_hep-lat 13.13 13.10 14.57 13.02 12.80
m2d2_s2orc_unsplit_val_hep-ph 11.67 11.81 13.38 11.66 11.45
m2d2_s2orc_unsplit_val_hep-th 11.46 11.49 12.71 11.40 11.24
m2d2_s2orc_unsplit_val_math.AC 7.08 7.37 8.71 7.26 7.13
m2d2_s2orc_unsplit_val_math.AG 8.89 9.27 11.05 9.16 8.95
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m2d2_s2orc_unsplit_val_math.AP 9.35 9.53 10.90 9.41 9.35
m2d2_s2orc_unsplit_val_math.AT 8.57 8.77 10.16 8.72 8.53
m2d2_s2orc_unsplit_val_math.CA 9.18 9.49 11.01 9.36 9.30
m2d2_s2orc_unsplit_val_math.CO 6.99 7.33 8.69 7.21 7.08
m2d2_s2orc_unsplit_val_math.CT 9.78 10.20 12.04 10.12 9.91
m2d2_s2orc_unsplit_val_math.CV 7.81 8.07 9.36 7.99 7.87
m2d2_s2orc_unsplit_val_math.DG 7.96 8.18 9.50 8.08 7.98
m2d2_s2orc_unsplit_val_math.DS 7.88 8.12 9.61 8.08 7.96
m2d2_s2orc_unsplit_val_math.FA 7.71 7.96 9.35 7.88 7.81
m2d2_s2orc_unsplit_val_math.GM 7.85 8.15 9.57 8.07 7.93
m2d2_s2orc_unsplit_val_math.GN 6.27 6.56 7.82 6.45 6.38
m2d2_s2orc_unsplit_val_math.GR 7.39 7.66 9.00 7.51 7.41
m2d2_s2orc_unsplit_val_math.GT 7.47 7.71 9.27 7.62 7.47
m2d2_s2orc_unsplit_val_math.HO 14.52 14.70 16.52 14.51 14.31
m2d2_s2orc_unsplit_val_math.KT 7.54 7.80 9.14 7.70 7.58
m2d2_s2orc_unsplit_val_math.LO 9.84 10.41 12.53 10.13 10.03
m2d2_s2orc_unsplit_val_math.MG 8.25 8.53 9.99 8.42 8.26
m2d2_s2orc_unsplit_val_math.NA 9.85 10.05 11.66 9.95 9.83
m2d2_s2orc_unsplit_val_math.NT 8.26 8.51 9.92 8.43 8.31
m2d2_s2orc_unsplit_val_math.OA 7.21 7.55 9.07 7.47 7.32
m2d2_s2orc_unsplit_val_math.OC 9.70 10.01 11.62 9.85 9.69
m2d2_s2orc_unsplit_val_math.PR 8.91 9.20 10.58 9.04 8.99
m2d2_s2orc_unsplit_val_math.QA 8.09 8.40 9.93 8.28 8.16
m2d2_s2orc_unsplit_val_math.RA 7.18 7.44 8.75 7.39 7.27
m2d2_s2orc_unsplit_val_math.RT 8.39 8.71 10.33 8.65 8.49
m2d2_s2orc_unsplit_val_math.SG 8.63 8.88 10.36 8.76 8.59
m2d2_s2orc_unsplit_val_math.SP 9.39 9.65 11.27 9.52 9.37
m2d2_s2orc_unsplit_val_math_l1 7.81 8.07 9.36 7.99 7.87
m2d2_s2orc_unsplit_val_nlin.AO 11.82 12.01 13.77 11.90 11.75
m2d2_s2orc_unsplit_val_nlin.CD 12.73 12.91 14.88 12.87 12.60
m2d2_s2orc_unsplit_val_nlin.CG 12.43 12.75 14.88 12.61 12.44
m2d2_s2orc_unsplit_val_nlin.PS 11.29 11.44 12.86 11.39 11.22
m2d2_s2orc_unsplit_val_nlin.SI 9.44 9.81 11.28 9.64 9.51
m2d2_s2orc_unsplit_val_nlin_l1 12.43 12.75 14.88 12.61 12.44
m2d2_s2orc_unsplit_val_nucl-ex 13.02 12.94 14.61 12.85 12.63
m2d2_s2orc_unsplit_val_nucl-th 11.65 11.78 13.43 11.68 11.48
m2d2_s2orc_unsplit_val_physics.acc-ph 13.75 14.01 16.17 13.74 13.58
m2d2_s2orc_unsplit_val_physics.ao-ph 13.92 14.04 15.91 13.89 13.68
m2d2_s2orc_unsplit_val_physics.app-ph 13.70 13.81 15.54 13.62 13.43
m2d2_s2orc_unsplit_val_physics.atm-clus 13.00 13.13 15.11 13.00 12.74
m2d2_s2orc_unsplit_val_physics.atom-ph 12.74 12.84 14.44 12.75 12.53
m2d2_s2orc_unsplit_val_physics.bio-ph 13.30 13.42 15.26 13.32 13.08
m2d2_s2orc_unsplit_val_physics.chem-ph 13.20 13.29 15.22 13.14 12.97
m2d2_s2orc_unsplit_val_physics.class-ph 11.01 11.27 12.85 11.12 10.94
m2d2_s2orc_unsplit_val_physics.comp-ph 11.23 11.37 12.88 11.26 11.08
m2d2_s2orc_unsplit_val_physics.data-an 13.18 13.33 14.97 13.25 13.00
m2d2_s2orc_unsplit_val_physics.ed-ph 12.21 12.33 13.88 12.18 12.03
m2d2_s2orc_unsplit_val_physics.flu-dyn 11.81 11.99 13.73 11.81 11.64
m2d2_s2orc_unsplit_val_physics.gen-ph 14.15 14.39 16.76 14.18 14.03
m2d2_s2orc_unsplit_val_physics.geo-ph 14.75 14.86 16.81 14.71 14.57
m2d2_s2orc_unsplit_val_physics.hist-ph 15.57 15.43 16.97 15.40 15.18
m2d2_s2orc_unsplit_val_physics.ins-det 14.01 14.16 16.14 14.07 13.79

52



Dataset Llama Mamba RWKV-4 xLSTM[7:1] xLSTM[1:0]
m2d2_s2orc_unsplit_val_physics.med-ph 14.34 14.46 16.50 14.29 14.09
m2d2_s2orc_unsplit_val_physics.optics 12.74 12.94 14.64 12.80 12.54
m2d2_s2orc_unsplit_val_physics.plasm-ph 13.65 13.81 15.77 13.69 13.44
m2d2_s2orc_unsplit_val_physics.pop-ph 13.80 13.67 15.17 13.60 13.41
m2d2_s2orc_unsplit_val_physics.soc-ph 12.79 12.97 14.80 12.83 12.66
m2d2_s2orc_unsplit_val_physics.space-ph 13.00 13.09 14.77 12.94 12.76
m2d2_s2orc_unsplit_val_physics_l1 15.57 15.43 16.97 15.40 15.18
m2d2_s2orc_unsplit_val_plasm-ph 13.65 13.81 15.77 13.69 13.44
m2d2_s2orc_unsplit_val_q-bio 13.69 13.87 15.75 13.75 13.50
m2d2_s2orc_unsplit_val_q-bio.BM 13.28 13.52 15.72 13.41 13.19
m2d2_s2orc_unsplit_val_q-bio.CB 12.06 12.34 14.21 12.19 11.97
m2d2_s2orc_unsplit_val_q-bio.GN 13.21 11.40 12.74 11.32 11.16
m2d2_s2orc_unsplit_val_q-bio.MN 11.96 11.95 13.36 11.90 11.70
m2d2_s2orc_unsplit_val_q-bio.NC 13.69 13.87 15.75 13.75 13.50
m2d2_s2orc_unsplit_val_q-bio.OT 14.90 14.94 17.16 14.92 14.73
m2d2_s2orc_unsplit_val_q-bio.PE 12.57 12.71 14.62 12.69 12.41
m2d2_s2orc_unsplit_val_q-bio.QM 12.49 12.69 14.44 12.56 12.40
m2d2_s2orc_unsplit_val_q-bio.SC 13.68 13.85 15.60 13.75 13.53
m2d2_s2orc_unsplit_val_q-bio.TO 13.49 13.53 15.32 13.48 13.33
m2d2_s2orc_unsplit_val_q-bio_l1 13.69 13.87 15.75 13.75 13.50
m2d2_s2orc_unsplit_val_q-fin.CP 11.37 11.61 13.36 11.41 11.28
m2d2_s2orc_unsplit_val_q-fin.EC 11.72 11.89 13.77 11.77 11.63
m2d2_s2orc_unsplit_val_q-fin.GN 13.79 13.91 15.73 13.83 13.61
m2d2_s2orc_unsplit_val_q-fin.MF 9.91 10.21 11.92 10.04 9.90
m2d2_s2orc_unsplit_val_q-fin.PM 11.00 11.31 13.14 11.14 10.94
m2d2_s2orc_unsplit_val_q-fin.PR 15.87 9.25 10.37 9.20 9.03
m2d2_s2orc_unsplit_val_q-fin.RM 11.35 11.49 13.08 11.41 11.22
m2d2_s2orc_unsplit_val_q-fin.ST 12.43 12.46 14.18 12.43 12.26
m2d2_s2orc_unsplit_val_q-fin.TR 12.79 13.14 15.32 12.89 12.74
m2d2_s2orc_unsplit_val_q-fin_l1 13.79 13.91 15.73 13.83 13.61
m2d2_s2orc_unsplit_val_quant-ph 11.18 11.44 13.18 11.32 11.11
m2d2_s2orc_unsplit_val_stat.AP 13.37 13.56 15.52 13.42 13.15
m2d2_s2orc_unsplit_val_stat.CO 13.07 12.56 14.42 12.46 12.24
m2d2_s2orc_unsplit_val_stat.ME 11.09 11.26 12.91 11.11 10.87
m2d2_s2orc_unsplit_val_stat.ML 11.13 11.39 13.29 11.23 11.06
m2d2_s2orc_unsplit_val_stat.OT 11.31 11.55 13.28 11.45 11.24
m2d2_s2orc_unsplit_val_stat_l1 13.07 12.56 14.42 12.46 12.24
m2d2_s2orc_unsplit_val_supr-con 11.57 11.66 13.13 11.53 11.30
m2d2_wikipedia_unsplit_val_Culture_and_the_arts 12.30 11.90 12.82 11.78 11.66
m2d2_wikipedia_unsplit_val_Culture_and_the_arts__Culture_and_Humanities12.13 11.74 12.82 11.63 11.48
m2d2_wikipedia_unsplit_val_Culture_and_the_arts__Games_and_Toys14.06 13.86 15.17 13.79 13.57
m2d2_wikipedia_unsplit_val_Culture_and_the_arts__Mass_media12.16 11.80 12.74 11.79 11.55
m2d2_wikipedia_unsplit_val_Culture_and_the_arts__Performing_arts11.75 11.25 12.03 11.17 11.03
m2d2_wikipedia_unsplit_val_Culture_and_the_arts__Sports_and_Recreation10.01 9.63 10.36 9.58 9.54
m2d2_wikipedia_unsplit_val_Culture_and_the_arts__The_arts_and_Entertainment12.13 11.85 12.83 11.73 11.58
m2d2_wikipedia_unsplit_val_Culture_and_the_arts__Visual_arts12.36 12.09 13.05 11.99 11.87
m2d2_wikipedia_unsplit_val_General_referece 11.80 11.46 12.43 11.46 11.30
m2d2_wikipedia_unsplit_val_General_referece__Further_research_tools_and_topics10.52 10.20 10.96 10.12 9.99
m2d2_wikipedia_unsplit_val_General_referece__Reference_works11.80 11.46 12.43 11.46 11.30
m2d2_wikipedia_unsplit_val_Health_and_fitness 10.75 10.47 11.14 10.37 10.30
m2d2_wikipedia_unsplit_val_Health_and_fitness__Exercise9.64 9.29 9.95 9.27 9.16
m2d2_wikipedia_unsplit_val_Health_and_fitness__Health_science10.10 9.80 10.43 9.71 9.56
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m2d2_wikipedia_unsplit_val_Health_and_fitness__Human_medicine9.14 8.83 9.59 8.63 8.54
m2d2_wikipedia_unsplit_val_Health_and_fitness__Nutrition8.91 8.68 9.40 8.61 8.47
m2d2_wikipedia_unsplit_val_Health_and_fitness__Public_health10.75 10.47 11.14 10.37 10.30
m2d2_wikipedia_unsplit_val_Health_and_fitness__Self_care12.91 12.49 13.61 12.42 12.28
m2d2_wikipedia_unsplit_val_History_and_events 13.65 13.29 14.48 13.20 13.00
m2d2_wikipedia_unsplit_val_History_and_events__By_continent11.77 11.44 12.36 11.36 11.26
m2d2_wikipedia_unsplit_val_History_and_events__By_period12.78 12.41 13.46 12.37 12.12
m2d2_wikipedia_unsplit_val_History_and_events__By_region12.36 11.88 12.87 11.79 11.64
m2d2_wikipedia_unsplit_val_Human_activites 12.43 12.03 12.98 11.95 11.81
m2d2_wikipedia_unsplit_val_Human_activites__Human_activities12.43 12.03 12.98 11.95 11.81
m2d2_wikipedia_unsplit_val_Human_activites__Impact_of_human_activity12.47 12.05 13.12 12.00 11.82
m2d2_wikipedia_unsplit_val_Mathematics_and_logic12.90 12.51 13.79 12.48 12.29
m2d2_wikipedia_unsplit_val_Mathematics_and_logic__Fields_of_mathematics8.24 8.26 9.37 8.28 8.06
m2d2_wikipedia_unsplit_val_Mathematics_and_logic__Logic13.21 12.87 13.90 12.85 12.67
m2d2_wikipedia_unsplit_val_Mathematics_and_logic__Mathematics12.90 12.51 13.79 12.48 12.29
m2d2_wikipedia_unsplit_val_Natural_and_physical_sciences9.19 8.22 8.81 7.97 7.96
m2d2_wikipedia_unsplit_val_Natural_and_physical_sciences__Biology10.97 10.70 11.53 10.64 10.51
m2d2_wikipedia_unsplit_val_Natural_and_physical_sciences__Earth_sciences11.69 11.36 12.28 11.22 11.05
m2d2_wikipedia_unsplit_val_Natural_and_physical_sciences__Nature10.43 10.11 10.95 10.00 9.82
m2d2_wikipedia_unsplit_val_Natural_and_physical_sciences__Physical_sciences11.48 11.09 11.93 10.98 10.90
m2d2_wikipedia_unsplit_val_Philosophy_and_thinking11.83 11.72 13.04 11.60 11.45
m2d2_wikipedia_unsplit_val_Philosophy_and_thinking__Philosophy12.00 11.61 12.66 11.57 11.43
m2d2_wikipedia_unsplit_val_Philosophy_and_thinking__Thinking10.94 10.61 11.34 10.56 10.42
m2d2_wikipedia_unsplit_val_Religion_and_belief_systems12.81 12.45 13.44 12.38 12.19
m2d2_wikipedia_unsplit_val_Religion_and_belief_systems__Allah11.11 10.80 11.66 10.71 10.58
m2d2_wikipedia_unsplit_val_Religion_and_belief_systems__Belief_systems11.46 11.06 11.86 10.95 10.85
m2d2_wikipedia_unsplit_val_Religion_and_belief_systems__Major_beliefs_of_the_world12.38 12.03 12.94 11.91 11.79
m2d2_wikipedia_unsplit_val_Society_and_social_sciences10.53 10.24 11.03 10.16 10.05
m2d2_wikipedia_unsplit_val_Society_and_social_sciences__Social_sciences10.47 10.16 10.95 10.14 10.04
m2d2_wikipedia_unsplit_val_Society_and_social_sciences__Society12.48 12.13 13.02 12.07 11.93
m2d2_wikipedia_unsplit_val_Technology_and_applied_sciences8.51 8.18 8.66 7.93 7.88
m2d2_wikipedia_unsplit_val_Technology_and_applied_sciences__Agriculture12.45 12.07 13.00 12.03 11.88
m2d2_wikipedia_unsplit_val_Technology_and_applied_sciences__Computing13.62 13.23 14.56 13.18 12.97
m2d2_wikipedia_unsplit_val_Technology_and_applied_sciences__Engineering13.00 12.72 13.87 12.64 12.43
m2d2_wikipedia_unsplit_val_Technology_and_applied_sciences__Transport14.34 13.90 15.20 13.94 13.73
manosphere_meta_sep_val_avfm 19.42 19.27 21.88 19.64 19.18
manosphere_meta_sep_val_incels 11.26 12.18 21.40 11.51 11.29
manosphere_meta_sep_val_mgtow 24.83 24.27 27.50 24.12 23.80
manosphere_meta_sep_val_pua_forum 24.22 23.85 26.52 23.86 23.52
manosphere_meta_sep_val_red_pill_talk 34.59 33.90 37.26 33.90 33.27
manosphere_meta_sep_val_reddit 20.63 19.78 21.10 19.94 19.58
manosphere_meta_sep_val_rooshv 22.46 22.17 24.78 22.01 21.69
manosphere_meta_sep_val_the_attraction 20.85 20.57 23.17 20.57 20.20
mc4_val-00000000 8.35 8.41 10.02 8.23 8.15
mc4_val-00000001 12.17 11.97 13.58 11.74 11.64
mc4_val-00000002 9.96 10.06 11.96 9.86 9.67
mc4_val-00000003 11.38 11.29 12.77 11.12 11.00
mc4_val-00000004 11.96 11.64 13.03 11.50 11.35
ptb_val 15.92 16.65 19.37 16.00 15.92
redpajama_val_arxiv 5.15 5.28 5.78 5.12 5.09
redpajama_val_books 12.91 12.71 13.60 12.61 12.50
redpajama_val_c4 13.01 12.51 13.55 12.49 12.27
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redpajama_val_commoncrawl 10.90 10.56 11.70 10.52 10.35
redpajama_val_github 1.66 1.66 1.75 1.65 1.64
redpajama_val_stackexchange 3.73 3.72 4.03 3.68 3.63
redpajama_val_wikipedia 4.64 4.38 4.68 4.35 4.29
twitterAAE_HELM_fixed_val_AA 346.98 302.79 310.30 301.65 289.97
twitterAAE_HELM_fixed_val_white 118.62 107.34 109.13 107.65 105.13
wikitext_103_val 11.74 11.76 13.73 11.32 11.41
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See sections 2 and 4.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide one proof in the Appendix, which is clearly linked to the main
paper. All assumptions are stated. We enumerate and cross-reference all equations.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We state all experimental details in Appendix D. We state which datasets we
used and provide references. We provide the model code.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data is publicly available. The code is contained in the submission and
will be also released publicly.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix D and attached code.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars only for small scale experiments. For large scale
experiments, providing error bars is computationally too expensive.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: In Section D we state the compute resources used for this project.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We refer to Section A

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: As of now we do release the weights of our pretrained models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the model code with this submission.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We rely on openly available datasets and reference them properly.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:

57

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Extended Long Short-Term Memory
	Review of the Long Short-Term Memory
	sLSTM
	mLSTM
	xLSTM Architecture
	Memory and Speed Considerations

	Related Work
	Experiments
	Synthetic Tasks and Long Range Arena
	Method Comparison and Ablation Study
	xLSTM as Large Language Model

	Limitations
	Conclusion
	Broader Impacts
	Extended Long Short-Term Memory
	Vanilla Long Short-Term Memory Formulation: Vector Notation
	sLSTM
	mLSTM
	Detailed Block Structure

	Extended Related Work
	Experiments
	Synthetic Tasks and Long Range Arena
	Test of xLSTM's Exponential Gating with Memory Mixing.
	Test of xLSTM's Memory Capacities on Associative Recall Tasks.
	Test of xLSTM's Long Range Capabilities on the Long Range Arena.

	Method Comparison and Ablation Study on SlimPajama (15B)
	xLSTM Large Language Models – SlimPajama300B

	Detailed Results on PALOMA Language Model Evaluation

