Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL TO THE PAPER:
"PYRAMIDAL CONVOLUTION: RETHINKING CONVOLUTIONAL NEURAL NET-

WORKS FOR VISUAL RECOGNITION"

Anonymous authors
Paper under double-blind review

This supplementary material just presents additional architectures details and/or analysis on the main
results already introduced in the paper (we could not fit more details into the main paper as we
propose architectures and run experiments on four core recognition tasks). It contains five main
sections: Section [I]presents the details of our architecture for object detection; Section 2] presents the
details for the video classification pipeline; Section [3|contains the results of PyConvResNet using
additional data augmentation. Section 4| additional comparisons with the existing works. Section [3]
presets a direct comparison with the inception module and also the integration of our PyConv in
the inception architecture. Section[6|presents a head-to-head comparison with other strong image
segmentation methods. Finally, Section|/|shows some visual examples on image segmentation.

1 PYCONV ON OBJECT DETECTION

As we already presented in the the main paper the final result on object detection, that we outperform
the baseline by a significant margin (see main contribution (4) in the main paper), this section provides
the details of our architecture on object detection and the exact numbers of the results.

As our proposed PyConv uses different levels of kernel sizes in parallel, it can provide significant
benefits for object detection task, where the objects can appear in the image at different scales. For
object detection, we integrate our PyConv in a powerful approach, Single Shot Detector (SSD) [1]].
SSD is a very efficient single stage framework for object detection, which performs the detection at
multiple feature maps resolutions. Our proposed framework for object detection, PyConvSSD, is
illustrated in Fig. [I| The framework contains two main parts:

(1) PyConvResNet Backbone. In our framework we use the proposed PyConvResNet as backbone,
which was previously pre-trained on ImageNet dataset [2]]. To maintain a high efficiency of the
framework, and also to heave a similar number of output feature maps as in the backbone used in [/1]],
we remove from our PyConvResNet backbone all layers after the third stage. We also set all strides in
the stage 3 of the backbone network to 1. With this, PyConvResNet provides (as output of the stage
3) 1024 output feature maps (S3rs) with the spatial resolution 38 x 38 (for an input image size of
300x300).

(2) PyConvSSD Head. Our PyConvSSD head illustrated in Fig. [l uses the proposed PyConv to
further extract different features using different kernel sizes in parallel. Over the resulted feature
maps for the third stage of the backbone we apply a PyConv with four levels (kernel sizes: 9x9,
Tx7,5x5, 3x3). Also PyConv performs the downsampling (stride s=2) of the feature maps using
these multiple kernel sizes in parallel. As the feature maps resolution decreases we also decrease the
levels of the pyramid for PyConv. The last two PyConv contains only one level (which is basically
the standard 3 x3) as the spatial resolution of the feature maps is very small. Note that the last two
PyConvs use a stride s=1 and the spatial resolution is decreased just by not using padding. Thus, the
head decreases the spatial resolution of the feature maps from 38x 38 to 1x 1. All the output feature
maps from the PyConvs in the head are used for detections.

For each of the six output feature maps selected for detection {S3prr, Hpar1, Hrae, Hrus,
Hpnra, Hrpgs) the framework performs the detection using a coresponding number of default boxes
(anchor boxes) {4, 6, 6, 6, 4, 4} for each spatial location. For instance, for (S3r)s) output feature
maps with the spatial resolution 38 x 38, using the four default boxes on each location results in 5776
detections. For localizing each bounding box, there are four values that network should predict (loc:
A(cx, cy,w, h), where cx and cy represent the center point of the bounding box, w and h the width

Under review as a conference paper at ICLR 2021

5776 detection:

lLoc: Conv 3x3, 4x4
[Conf: Conv 3x3, 4xC

Loc: Conv 3x3, 6x4
[Conf: Conv 3x3, 6xC

2166 detection:

600 detection:

16
8

4
1

9x9, 128, G-
7x7,128, G

5x5, 128, G-

PyConv4, 512 (s=2)|

3x3, 128, G

8

5x5, 128, G=4
3x3, 128, G

1

7x7, 256, G

PyConv3, 512 (s=2)

1024

=4
=1

5x5, 128, G
3x3,128, G

PyConv1, 256 (s=1),

1

1

3x3, 256, G
3x3, 256, G

PyCon\\/(ResNel
through Stage 3

Figure 1: PyConvSSD framework for object detection.

Table 1: PyConvSSD with 300x 300 input image size (results on COCO val2017).

Detections: 8732 per Class

Non-Maximum Suppression

Architecture Avg. Precision, IoU: | Avg. Precision, Area:|Avg. Recall, #Dets: | Avg. Recall, Area: params GFLOPs
0.5:095 05 0.75] S M L 1 10 100 S M L

baseline SSD-50 | 26.20 43.97 26.96| 8.12 28.22 42.64 |24.50 35.41 37.07 [12.61 40.76 57.25| 22.89 20.92

PyConvSSD-50 | 29.16 47.26 30.24| 9.31 31.21 47.79 |26.14 37.81 39.61 |13.79 43.87 60.98| 21.55 19.71

baseline SSD-101| 29.58 47.69 30.80| 9.38 31.96 47.64 [26.47 38.00 39.64 [14.09 43.54 61.03| 41.89 48.45

PyConvSSD-101 | 31.27 50.00 32.67|10.65 33.76 51.75 |27.33 39.33 41.07 |15.48 45.53 63.44| 39.01 45.02

and height of the bounding box). This bounding box offset output values are measured relative to a
default box position, relative to each feature maps location. Also, for each bounding box, the network
should output the confidences for each class category (in total C class categories). For providing the
detections the framework uses a classifier which is represented by a 3 x 3 convolution, that outputs for
each bounding box the confidences for all class categories (C). For localization the framework uses
also a 3x3 convolution to output the four localization values for each regressed default bounding box.
In total, the framework outputs 8732 detections (for 300300 input image size), which pass through
a non-maximum suppression to provide the final detections.

Different from the original SSD framework [/1]], for a fair and direct comparison, in the baseline SSD,
we replaced the VGG backbone [3|] with ResNet [4]], as ResNet is far superior to VGG in terms of
recognition performance and computational costs as shown in [4]. Therefore, as main differences
from our PyConvSSD, the baseline SSD in this work uses ResNet [4] as backbone and the SSD
head uses standard 3x3 conv (instead of PyConv) as in the original framework [[1]. For showing the
exact numbers to compare our PyConvSSD with the baseline on object detection, we use COCO
dataset [5], which contains 81 categories. We use for training COCO train2017 (118K images) and
for testing COCO val2017 (5K images). We train for 130 epochs using 8 GPUs with 32 batch size
each, resulting in 60K training iterations. We use for training SGD optimiser with momentum 0.9,
weight decay 0.0005, with the learning rate 0.02 (reduced by 1/10 before 86-th and 108-th epoch).
We also use a linear warmup in the first epoch [|6]]. For data augmentation, we perform random crop as
in [[1]], color jitter and horizontal flip. We use an input image size of 300x300 and report the metrics
as in [[1].

Table [T] shows the comparison results of PyConvSSD with the baseline, over 50- and 101-layers
backbones. While being more efficient in terms of number of parameters and FLOPs, the proposed
PyConvSSD reports significant improvements over the baseline over all metrics. Notably, PyConvSSD
with 50 layers backbone is even competitive with the baseline using 101 layers as backbone. This
results show a grasp of the benefits for PyConv on object detection task.

2 PYCONYV ON VIDEO CLASSIFICATION

In the main paper we introduced the main result for video classification, that we report significant re-
sults over the baseline (see main contribution (4)). This section presents the details of the architecture
and the exact numbers. PyConv can show significant benefits on video related tasks as it can enlarge
the receptive field and process the input using multiple kernels scales in parallel not only spatially but

Under review as a conference paper at ICLR 2021

Table 2: ResNet3D architecture for video recognition.

stage output ResNet3D-50 PyConvResNet3D-50
SXTx7T, 64 SXTXT, 64
16x112XT121 gride (1,2,2) stride (1,2,2)

IxX3%3 max pool
stride (1,2,2)

xIxI, 64 7
PyConv4, 64:
Ix1x1, 64 7x9x9, 16, G=16
1 16 x56%x56 3x3x%3,64 | x3 5x7x7,16, G=8 x3
1x1x1,256 3x5x%5, 16, G=4
3x3x3, 16, G=1
LIx1x1, 256
ITxTxT, 128
PyConv3, 128:

1x1x1, 128 —_—
> S5x7x7, 64, G=8
2 16 x28x28 {3><3x3,128}x4 3%5%5, 32, G=4 x4

Ix1x1, 512 3x3x3.32, G=1
x1x1,512
IxIxT,256
1x1x1,256 PyConv2, 256:
3 8x14x14 {3><3><3, 256]x6 3x5x%5, 128, G=4] | x6
Ix1x1,1024 [3><3x3, 128, G:l]
Ix1x1,1024
1x1x1,512
I1x1x1,512] .
4 axTx7 | [3x3x3.512 | x3| [RComvl. 512 1 4
1x1x1.2048 [3><3><3,5]2, G—]]
K 1x1x1,2048
Tobal avg pool Tobal avg pool
Ix1x1 £ 000 o 000 e
params 47.00 x 10° 44.91 x 10°
FLOPs 93.26 x 109 91.81 x 107

also in the temporal dimension. Extending the networks from image recognition to video involves
extending the 2D spatial convolution to 3D spatio-temporal convolution. Table 2] presents the baseline
network ResNet3D and our proposed network PyConvResNet3D, which are the initial 2D networks
extended to work with video input. The input for the network is represented by 16-frame input clips,
with spatial size is 224 x224. As the temporal size is smaller than spatial dimensions, for our PyConv
we do not need to use equally large size on the upper layers of the pyramid. In the first stage of the
network, our PyConv with four layers contains kernel sizes of: 7x9x9, 5x7x7, 3x5x5 and 3x3x3
(the temporal dimension comes first).

For video classification, we perform the experiments on Kinetics-400 [7], which is a large-scale
video recognition dataset that contains ~246k training videos and 20k validation videos, with 400
action classes. Similar to image recognition, use the SGD optimizer with a standard momentum of
0.9 and weight decay of 0.0001, we train the model for 90 epochs, starting with a learning rate of
0.1 and reducing it by 1/10 at the 30-th, 60-th and 80-th epochs, similar to [4], [6]]. The models are
trained from scratch, using the weights initialization of [[8] for all convolutional layers; for training
we use a minibatch of 64 clips over 8 GPUs. Data augmentation is similar to [3]], [9]. For training, we
randomly select 16-frame input clips from the video. We also skip four frames to cover a longer video
period within a clip. The spatial size is 224 X224, randomly cropped from a scaled video, where the
shorter side is randomly selected from the interval [256, 320], similar to [3]], [9]. As the networks on
video data are prone to overfitting due to the increase in number of parameters, we use dropout [[10]
after the global average pooling layer, with a 0.5 dropout ratio. For the final validation, following
common practice, we uniformly select a maximum of 10 clips per video. Each clip is scaled to 256
pixels for the shorter spatial side. We take 3 spatial crops to cover the spatial dimensions. In total, this
results in a maximum of 30 clips per video, for each of which we obtain a prediction. To get the final
prediction for a video, we average the softmax scores. We report both, top-1 and top-5 error rates.

Table [3| presents the result comparing our network, PyConvResNet3D, with the baseline over 50-
layers depth. PyConvResNet3D improves significantly the results over baseline, for top-1 error, from
37.01% to 34.56%. In the same time our network requires less number of parameters and FLOPs
than the baseline. Fig.[2|shows the training and validation curves where we can see that our network

Under review as a conference paper at ICLR 2021

Table 3: Video recognition error rates.

Architecture top-1(%) top-5(%) params M GFLOPs
ResNet3D-50 [4] 37.01 1541 47.00 93.26
PyConvResNet3D-50| 34.56 13.34 4491 91.81

-------- ResNet3D-50 train
—— ResNet3D-50 val

''''''' PyConvResNet3D-50 train
—— PyConvResNet3D-50 val

o ~ © ©
=} o o o

top-1 error (%)

[
o

IS
=)

30

1 10 20 30 40 50
epochs

Figure 2: Training and validation curves on Kinetics-400 dataset (these results are computed during
training over independent clips).

improves significantly the training convergence. This results show the potential of PyConv on video
related tasks.

3 PYCONV ON IMAGENET WITH MORE COMPLEX TRAINING SETTINGS

The ImageNet results presented in the paper mainly aim to show the advantages of our PyConv over
the standard convolution by running all the networks with the same standard training settings for a
fair comparison. Note that there are other works which report better results on ImageNet, such as
[11]-[13]. However, the improvements are mainly due to the training settings. For instance, [|12]
uses very complex training settings, such as, complex data augmentation (autoAugment [14]) with
different regularization techniques (dropout [15])), stochastic depth [[16]], the training is performed on
a powerful Google TPU computational architecture over 350 epochs with a large batch of 2048. The
works [[11]], [13]], besides using a strong computational architecture with many GPUs, take advantage
of a large dataset of 3.5B images collected from Instagram (this dataset is not publicly available).
Therefore, these resources are not handy to everyone. However, the results show that PyConv is
superior to standard convolution and combining it with [[11]]-[|13]] can bring further improvements.
While on ImageNet we do not have access to such scale of computational and data resources to
directly compete with state-of-the-art, we do push further and show that our proposed framework
obtains state-of-the-art results on challenging task of image segmentation.

To support our claim, that our networks can be easily improved using more complex training settings,
we integrate an additional data augmentation, CutMix [17]. As CutMix requires more epochs to
converge, we increase the training epochs to 300 and use a cosine scheduler [18] for learning rate
decaying. To speed-up the training, we increase the batch size to 1024 and use mixed precision [[19].
Table 4] presents the comparison results of PyConvResNet for the baseline training settings and
with the CutMix data augmentation. For both depths, 50- and 101-layers, just adding these simple
additional training settings improve significantly the results. For the same trained models, in addition
to the standard test crop size of 224 x224 we also run the testing on 320 <320 crop size. This results
show that there is still room for improvement if more complex training settings are included (as the
training settings from [12]) and/or additional data used for training (as in [[11]], [13]]), however, this
requires significantly more computational and data resources, which are not easily available.

Under review as a conference paper at ICLR 2021

Table 4: Validation error rates comparison results of PyConvResNet on ImageNet with different
training settings, for network depth 50 and 101.

Network test crop: 224 x224 test crop: 320x320 params
top-1 top-5 GFLOPs | top-1 top-5 GFLOPs
PyConvResNet-50 22.12 6.20 3.88 21.10 5.55 791 24.85
PyConvResNet-50 + augment | 20.56 5.31 3.88 1941 4.75 7.91 24.85
PyConvResNet-101 2099 5.53 7.31 20.03 4.82 14.92 42.31
PyConvResNet-101 + augment | 19.42 4.87 7.31 18.51 4.28 14.92 42.31

4 EXTENDED RELATED WORK

(Due to limited number of pages, we could not fit more related works in the main paper. As it will be
provided one additional page in the next step, we plan integrating the below comparisons in the main

paper)

The inception module used in various CNN architectures [20]-[22] in another approach to integrate
kernels at multiple scales. However, our PyConv is different from inception module in both key
components: a) spatial kernel sizes: our PyConv is capable of using multiple scales of the kernels
while maintaining a similar number of parameters and computational costs as the standard convolution.
Inception module is not capable of building real high spatial sizes for the kernels without affecting
the computational costs compared to standard 3x3 convolution as it simulates higher kernels sizes by
factorizing it in successive convolutions. We provide more details in the next section.

b) kernel depths: inception module uses only the full connectivity (depth) of the kernels, while
our PyConv uses a pyramid of various kernels connectivity (depths). The depths of our PyConv
kernels range from full to very low connectivity. This wide range of kernel depths is not only
important for controlling the computational costs, it is also important for network learning and
convergence. As important to have a varying spatial sizes of the kernels for learning different spatial
dependencies/details, similarly, it is important to have a varying kernel depths to learn different feature
maps dependencies/entanglements. The full connectivity of the kernels is important for learning very
complex feature maps entanglements, but the price to pay is the fact that the learning convergence
is very difficult (see ResNet in Fig.7 in the main paper) due to high complexity. On the other hand,
having lower depth of the kernels reduces the complexity entanglement, helping significantly the
starting of the convergence. Thus, the lower connectivity is very critical at the beginning of the
training, for starting the convergence, while higher connectivity becomes more critical towards the
end, where more complex relationships can be finally achieved through learning. This is one of the
reasons that our networks converge very fast (see Fig.7 in the main paper), in fact we are able to
outperform ResNet (in the first interval) by just using half of the epochs. These two interconnected
pyramids (for the kernels spatial size and connectivity) for our PyConv provide a very diverse pool of
variations of different kernel types that the network can explore during learning, leading to improved
convergence and learning capabilities for visual patterns.

The work [23]] introduces mixed depthwise convolution (MixConv). Besides a slight variation of
above point b), there is also another fundamental difference that separates our work from MixConv:
as we can see from Fig.3 of MixConv work [23]], it splits the input feature maps into separate parts
and applies independently a different kernel size for each part. Thus, each spatial kernel size has only
access to a limited portion of the input feature maps. For instance, the kernels with 3x3 size run only
on a limited number of input feature maps, without having access to the remaining ones. Similarly,
for the next kernel sizes. This is an important shortcoming of MixConv, as there is no explainable
reason for giving, let’s say, only the first 16 input feature maps to 3x3 kernels and only the next 16
maps to 5x5 kernels. While in our PyConv, each kernel level gets access to all input feature maps,
thus, each level is able to extract a more complete representation of the input.

5 PYCONV ON INCEPTION ARCHITECTURE

The Inception family [20]-[22]] is another powerful type of CNN, which uses the inception block
to construct the network. To further show the advantages of our PyConv we replaced the inception

Under review as a conference paper at ICLR 2021

Table 5: Validation error rates comparison results on ImageNet for Inception architecture.

. top-1 top-5 params FLOPs Latency Throughput
Architecture (%) (%) (x105) (x10%) (sec./batch) (img./sec.)
Inception-ResNet-v2 [22] [20.49 5.29 55.84 16.75 0.965 265
PyConvInception 20.31 5.21 4348 11.92 0.738 347

Table 6: Head-to-Head comparison on image segmentation (using ResNet with 50 layers as backbone)
on ADE20K.

Head output stride backbone: 8 output stride backbone: 16
mean IoU pixel Acc. params crLops [mean IoU pixel Acc. params GFLOPs
baseline [24]: 3x3 conv 37.87 78.17 3542 131.37| 36.84 77.84 3542 39.52
DeepLabv3 [25]: ASPP 40.91 79.92 4148 151.17| 40.34 79.44 4148 4447
PSPNet [24]: PPM 41.24 80.01 49.06 165.42| 39.75 79.17 49.06 48.08
PyConvSegNet: PyConvPH| 41.54 80.18 3440 116.84| 4043 7945 3440 36.08

blocks in Inception-ResNet-v2 [22] with our PyConv building blocks. The comparison results are
presented in Table [5] where we can see that our PyConv provides significant improvements. We
follow [22]] and use for these experiments an image crop size of 299x299. Note that [22] reports
19.9% top-1 error rate, the difference from our experiments is due to different training settings, but
more importantly, the single crop - single model experimental results (Table 2. in [22]]) are reported
on the non-blacklisted subset of the validation set of ImageNet (refer to [22] for more details).

For comparing the running time we report also the latency (measured in terms of seconds per batch)
and throughput (images per second), the results are the average over an entire training epoch. We
can see that our network is significantly faster than Inception-ResNet-v2 [22]]. The reason for this
discrepancy in running time is due to the fact that Inception blocks [22] factorizes a convolution
in several successive convolutions to avoid increasing significantly the number of parameters and
FLOPs. For instance, Inception simulates a spatial 7 x7 kernel by factorizing it into two successive
convolutions of 1x7 and 7x1. This is just a rough approximation of 7x7 kernel as it can learn
only horizontal and vertical patterns but not at different other angles as 7x7. Furthermore, this is
not scalable, because if we want increase further the size of the kernel it will still bring additional
costs, so they did not go more than that. Importantly, factorizing a convolution in several successive
convolutions as in Inception blocks (even for two chained 3x3 conv for simulating 5x5), reduces
the degree of parallelism and can affect negatively the running time, while in our case, all levels
in our PyConv run independently in parallel (thus, there is no theoretical limitation regarding the
running time) and we can scale the kernel size at very high spatial resolutions without increasing the
computational costs.

6 HEAD-TO-HEAD COMPARISON ON IMAGE SEGMENTATION

We compare our proposed framework, PyConvSegNet, with two of the most powerful architectures
for semantic segmentation [24] and [25]]. Table E] presents head-to-head comparison of our method
with state-of-the-art heads on image segmentation: PSPNet with Pyramid Pooling Module (PPM)
head, and DeepLabv3 with Atrous Spatial Pyramid Pooling (ASPP). The baseline is constructed as
in [24]], which as head, it basically applies a 3 x3 conv over the output feature maps provided by the
backbone. For a fair and direct comparison, all methods use the same auxiliary loss (deep supervision)
exactly as in [24]. For a comprehensive view, the reports in terms of number of parameters and
FLOPs include the auxiliary loss components. As [24] uses an output stride for the backbone of 8 and
[25]] uses 16, we report the experiments for both cases. We run these experiments using the ResNet
with 50 layers as backbone. Table[6]shows that our proposed head is not only more accurate than the
other methods, but it is also more efficient, requiring significantly smaller number of parameters and
FLOPs than [24] and [25]. We can also see that without a strong head on top of the backbone, the
baseline reports significantly worse results.

Under review as a conference paper at ICLR 2021

7 QUALITATIVE EXAMPLES ON IMAGE SEGMENTATION

Fig. 3| shows some qualitative examples for visually comparing our proposed approach for image
segmentation, PyConSegNet, with state-of-the-art approaches PSPNet [24]] and DeepLabv3 [25]].
For the numeric results, refer to Table 4 in the main paper (for the output stride backbone 8). This
examples show the visual comparison results between our proposed head, PyConvPH (PyConv
parsing head), with ASPP (Atrous Spatial Pyramid Pooling) of [25]] and PPM head (Pyramid Pooling
Module) of [24].

Very suggestive is the last row example of Fig. [3| where we can clearly notice the difference in
segmentation details. It is remarkable that our proposed head can compete at a high level with other
state-of-the art approaches for image segmentation while having significantly less requirements in
terms of number of parameters and computational complexity. For instance, in comparison with our
PyConSegNet, PSPNet [24] requires over 40% more parameters and FLOPs, while DeepLabv3 [25]
requires over 20% more parameters and close to 30% more FLOPs.

In the second row example of Fig. [3|we can also notice a failure case of our approach, which confuses
the door with a window. However, this case is quite difficult and confusing even for a human eye.
Fig. @] shows some visual results of our approach, PyConSegNet, using 50-, 101-, 152-layers for
the PyConvResNet backbone. For the exact number, refer to Table 5 in the main paper (multi-scale
inference). Note in the second row of Fig. 4 how the quality of the segmentation for the fan (ceiling
mount air fan) is improving while increasing the depth of our PyConvResNet backbone.

Under review as a conference paper at ICLR 2021

tt=—"] ;_M -
(a) Image (b) Groud Truth (c) DeepLabv3: ASPP (d) PSPNet: PPM (e) PyConvSegNet:
PyConvPH

Figure 3: Visual comparison results of our approach PyConvSegNet (with PyConvPH head) with
state-of-the-art approaches: PSPNet [24] (with PPM head) and DeepLabv3 [25]] (with ASPP head).
The images are from ADE20K dataset [26] validation.

Under review as a conference paper at ICLR 2021

!
| - !

(b) Groud Truth (c) PyCoanegNet-50 (d) PyConvResNet-101 (e) PyConvResNet-152

(a) Image

Figure 4: Visual results of our approach, PyConvSegNet, on 50-, 101-, 152-layers deep backbone
PyConvResNet. The images are from ADE20K dataset [@] validation set.

Under review as a conference paper at ICLR 2021

REFERENCES

(1]

(2]

(3]

(4]
(5]

(6]
(7]
(8]

(9]
(10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]
(19]

(20]
[21]
(22]
(23]

[24]
[25]

[26]

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox
detector,” in ECCYV, 2016.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M.
Bernstein, ef al., “Imagenet large scale visual recognition challenge,” IJCV, vol. 115, no. 3, pp. 211-252,
2015.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
arXiv:1409.1556, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolldr, and C. L. Zitnick, “Microsoft
coco: Common objects in context,” in ECCV, 2014.

P. Goyal, P. Dolldr, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, large minibatch sgd: Training imagenet in 1 hour,” arXiv:1706.02677, 2017.

W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back,
P. Natsev, et al., “The kinetics human action video dataset,” arXiv.:1705.06950, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification,” in ICCV, 2015.

X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in CVPR, 2018.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural
networks by preventing co-adaptation of feature detectors,” arXiv:1207.0580, 2012.

D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. van der Maaten,
“Exploring the limits of weakly supervised pretraining,” in ECCV, 2018.

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in
ICML, 2019.

H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution discrepancy,” in
NeurlIPS, 2019.

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning augmentation
strategies from data,” in CVPR, 2019.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” JMLR, vol. 15, no. 1, pp. 1929-1958, 2014.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic depth,” in
ECCV,2016.

S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization strategy to train strong
classifiers with localizable features,” in ICCV, 2019.

I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” in /CLR, 2017.

P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O.
Kuchaiev, G. Venkatesh, et al., “Mixed precision training,” arXiv preprint arXiv:1710.03740, 2017.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” in CVPR, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for
computer vision,” in CVPR, 2016.

C. Szegedy, S. loffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact of
residual connections on learning,” in AAAI, 2017.

M. Tan and Q. V. Le, “Mixconv: Mixed depthwise convolutional kernels,” arXiv preprint
arXiv:1907.09595, 2019.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in CVPR, 2017.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image
segmentation,” arXiv:1706.05587, 2017.

B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba, ‘“Semantic understanding of
scenes through the ade20k dataset,” IJCV, vol. 127, no. 3, pp. 302-321, 2019.

10

	PyConv on object detection
	PyConv on video classification
	PyConv on ImageNet with more complex training settings
	Extended Related Work
	PyConv on Inception architecture
	Head-to-Head comparison on image segmentation
	Qualitative examples on image segmentation

