SAMa: Material-Aware 3D Selection and Segmentation

Supplementary Material

In this supplemental document we provide additional de-
tails on training and implementation, as well as results that
could not be included in the main text due to space restric-
tions. We strongly encourage the reader to view the videos
in our supplemental HTML material for 3D selection visu-
alizations, examples of our fine-tuning material dataset, and
a video of our application GUIL.

A. Implementation details
A.l. Fine-tuning

As mentioned in paper Sec. 3, we fine-tune parts of the
SAM2 [10] model on material-specific video data. For all
our experiments, we use the model in its “large” config-
uration, employing the Hiera [11] image encoder with ca.
212M params, which yielded the best results in our experi-
ments.

As the original SA-V [10] dataset, we encode our video
dataset as MP4 videos with 1024 x 1024 resolution and the
annotations in CoCoRLE encoding for efficient storage.

Our video dataset sub-samples the video by skipping ev-
ery other video frame to increase the intra-frame distance,
and then randomly chooses sequences of six consecutive
sub-sampled frames. For each material and each frame, we
sample a click. We do not select a material if it is barely vis-
ible in the frames, i.e., if it occupies less than 0.02% of the
frame (150 pixels). We erode the material’s ground-truth
mask before using it as a sampling mask, ensuring that the
sampled click is at least four pixels away from the material’s
border. We sample a positive click with 80% probability,
and a negative click on a random other material with 20%
and reverse the temporal order of the frame sequence with
a chance of 50%. During the forward pass of the model,
we use every other frame as a clicked frame and thus force
the model to use its memory attention module to infer the
selection for the intermediate, unclicked frames. Addition-
ally, we make a random 50% choice between sampling the
most salient material in the frame (with the highest number
of annotated pixels) and any other material.

During training, we compute the per-frame loss on the
model prediction and ground-truth annotation via the sum
of two losses, a binary cross-entropy followed by a sigmoid
(using the log-sum-exp [2] trick for numerical stability) and
a sigmoid-normalized Dice loss [9] to account for the im-
balance between (large) background and (smaller) material
masks. We use the AdamW optimizer with weight decay
0.01 and learning rate 1 x 1075,

We additionally experiment with mixed video- and
image-finetuning and find that the results perform roughly

on-par with our video model when training on our video-
dataset and 20% of the Materialistic [12] data set mixed
in. For simplicity, all results in the main text therefore use
solely our video-finetuned model.

A.2. kNN lookup

As explained in the main text, we perform k-nearest neigh-
bour (kNN) lookup into our similarity point cloud to infer
the material selection for new, unseen views. Here, we take
advantage of modern, GPU-accelerated large-scale queries
via the FAISS library [4, 6].

Specifically, we use the INDEXFLATL?2 index for exact
search w.r.t. the points’ Ly distance, encoded as an INDEX-
IVFFLAT for compactness, with 100 clusters, and push it to
the GPU (a cluster is a representative subset of the data that
can be traversed efficiently and narrows down the search
region during later query operations). This index, as men-
tioned in the main text, must be re-constructed after each
new click, since the initial camera from which the click was
performed will add to, and therefore change, the similarity
point cloud. This re-construction takes around 0.5 seconds
(all timings, including those in the main text, are reported
on a single NVIDIA 40GB A100).

Once the index is built, we visit five clusters during the
search for the top-k nearest neighbors. We found this num-
ber of visited clusters to be a hyperparameter which, even
with the lowest setting of a single cluster, does not signifi-
cantly deteriorate performance since the point cloud is rela-
tively dense. We show an example of a typical point cloud
in Figure 9. Thanks to the point cloud density our selection
handles sharp edges well.

A.3. Camera subsampling

To infer the 2D similarities which will later be projected
to 3D, we need to sub-sample a set of cameras that cover
the object well. Recall that we fine-tuned SAM2 with our
material-centric video dataset using four different camera
trajectories, all with smooth view progression, while now
we additionally need to ensure maximum object coverage.
For NeRFs and 3D Gaussians, we thus sub-sample 20% of
the training views, for meshes we use spherical Fibonacci
sampling with 30 sampled cameras. Once we have sub-
sampled the cameras, we need to sort them into a coherent,
smooth trajectory to enable our video model to keep tempo-
ral consistency between the frames. We use a greedy iter-
ative search to achieve a smooth trajectory from the initial
camera, as detailed in Algorithm 1.



Figure 1. Selection results on real-world scenes from the MIPNeRF360 dataset [1].

A.4. Dataset details

To construct our fine-tuning dataset, we procedurally gener-
ate short multi-object videos using randomly picked objects
from a subset of 9,082 textured Substance 3D objects. For
each video, we randomly sample at least two objects and
place them into a shared scene. Objects are randomly dis-
placed by up to half of their bounding box extent to reduce
large spatial overlap. Objects consisting of a single material
are excluded, as they do not provide meaningful supervision
for material selection.

We assign materials by sampling from a library of 29,472
Substance material maps, including multiple realizations of
the same base material (e.g., different variants of the same
type of wood). Materials are assigned to object parts such
that they appear at least twice within a scene to ensure suffi-
cient positive supervision and disambiguate from object se-
lection. Material assignments remain consistent throughout
a video but are resampled independently across videos. We
generate dense per-pixel material annotations using integer
indices, reserving the label O for the background.

Rendering is performed in Blender 4.3, using the Princi-
pled BSDF shader for all materials. To illuminate the scene,
we randomly select an HDR environment map from a set of
420 HDRIs sourced from PolyHaven. In order to reduce the
domain gap between our synthetic and real-world videos,
we alpha-composite the rendered objects onto their envmap
background.

We generate videos using four camera motion patterns:
turntable, flyover, zoom-in, and zoom-out. Spherical, fixed-
radius turntable trajectories are sampled with 33% proba-
bility since they represent the dominant camera trajectories
(after sorting) that are used during SAMa’s inference phase.
Flyover trajectories are also sampled with 33% probability,
as they resemble realistic camera motion and are most sim-
ilar to those found in the SA-V [10] dataset. Zoom-in tra-
jectories are sampled with 22% probability since during the
zoom-in phase, more detail becomes visible, and zoom-out
trajectories account for the remaining 12%. We leave exper-
imenting with this percentages and more camera trajectories
to future work.

B. Additional quantitative results

We here report a more detailed, per-scene evaluation of
the metrics reported in the main text. The per-scene mea-
surements for robustness and multiview-consistency are in
Tab. 2 and Tab. 3, respectively.

Additionally, we report the per-scene selection accuracy
as mean intersection over union (mloU) and F1 scores. F1
is more robust than precision or recall alone, since either
individual metric can easily be gamed by failure cases. Pre-
cision quantifies the relevance of the selected data (when
the model says material A, is it really material A?), and
can therefore easily be cheated by simply selecting a small
amount of high-confidence elements (e.g., in our case, just
the clicked pixel). Recall quantifies the amount of returned
relevant data (when there is material A, how much of it does
the model find?), and can easily be deceived by always se-
lecting all the elements (e.g., in our case, a mask full of
1’s). We show both mloU and F1, computed on the NeRF-,
MIPNeRF360- and our dataset, in Tab. 4, Tab. 5 and Tab. 1,
respectively. We perform the evaluation on 3D Gaussians
for rendering speed. For the real-world scenes from the

Algorithm 1 Camera trajectory sorting, starting from an
initial camera. CALCNORMS calculates the spatio-angular
distances between a given camera and all other cameras.

Input: initial camera 7, other cameras o

Output: sorted cameras
1: procedure SAMPLECAMERATRAJECTORY
2 curr <— 1 > set current camera
3 sorted « [curr] > initialize sorted cameras list
4 while len(o) > 0 do
5: norms < CALCNORMS(curr, 0)
6 cidx < argmin (norms) > closest to current
7 sorted.append(o [cidx])
8 curr + o [cidx]
9: o [cidx].pop()
10: end while
11: return sorted
12: end procedure
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Figure 3. We test our method and competitors on 3DGS scenes we capture and find that it generalizes and performs considerably better

Figure 2. Exemplary visualizations of our annotated test frames from the MIPNeRF360 dataset [1].
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than existing approaches. The first column shows the clicked view, the subsequent columns show the selection result from a novel, unseen

view.

MIPNeRF dataset, we found the Gaussian’s depth to not
be sufficiently accurate and therefore use NeRFacto [13].

The quantitative evaluation confirms our qualitative find-
ings: our method consistently performs well for the task of
material selection, beating the other baselines in the major-
ity of cases. In select cases, for instance the MIC scene
from the NeRF dataset (see Tab. 4), SAM2 wins in terms of
selection accuracy, since the materials of the object are vi-
sually indistinguishable from one another and applied to the
object’s subparts, which have a tendency to be selected by
SAM2. Both Materialistic-based baselines under-perform
in all experiments. This can be attributed in part to the fact
that they are not multiview consistent, but, equally impor-
tant, to the fact that the underlying model generally attends
to coarser structures (due to the different ViT patchsizes, see
Fig. 4) and is not sufficiently sensitive to object (sub-)parts.

C. Additional qualitative results

We show additional examples of recoloring NeRFs based
on our material-selection in Fig. 7.

We show examples of our hand-annotated frames from
the MIPNeRF dataset which we used for evaluation in
Fig. 2. Additionally, we show examples of material selec-
tion on real-world scenes from these MIPNeRF360 scenes
[1]in Fig. 1.

As claimed in the main text, our frame duplication strat-
egy not only improves SAMa’s predictions, but also helps
to improve prediction confidence on the original SAM?2 ar-
chitecture, which we visualize in Fig. 6.

To add to our robustness evaluation, we show a quali-
tative example of how robust the methods are to different
clicks on the same material in Fig. 5.

We also show the 2D material selection accuracy for
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Figure 4. 2D selection results of the different methods for various
models. We do not perform any point cloud lookup or novel view
inference, the shown heatmap is obtained by directly feeding the
clicked frame to the model.
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Figure 5. Robustness of the different approaches (rows) for clicks
on different locations of the same material (columns).

SAM2 SAMa

Click No duplication Duplication

Duplication

Figure 6. The effects of our frame duplication strategy translate
from our SAMa model to the original SAM?2 model.

all models in Fig. 4. From this figure, it becomes evi-
dent that the SAM-based methods benefit significantly from
the smaller patchsize of the image encoder: Hiera, the en-
coder used by the SAM2 architecture (Ours, SAM?2) uses a
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Figure 7. Additional examples of editing the NeRF’s color based
on the user’s selected material.
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Figure 8. Our method can be used to select, and subsequently
replace, the diffuse-only materials commonly found on text-to-
3D [14] pipeline output meshes with PBR materials.
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Figure 9. Visualization of the selection point cloud (pre-computed
by SAMa, right subfigure, green & brown) and the query points
obtained from a novel view (used for the look-up into the selection
point cloud). The red inset’s query points are visualized in blue in
the right sub-figure. Best viewed zoomed-in.

four-times smaller patchsize of 4 x 4, whereas Materialistic-
based methods employ DINO features, which use a patch-
size of 8 x 8, resulting in blurrier edges. We would like
to emphasize that the input resolution is the same for all
models, 512p. Moreover, we observe that our model deals
well with perspective distortion (middle row in Fig. 4) and
low-contrast input (bottom row in Fig. 4). Finally, we show



thumbnail renderings of our synthetic dataset in Fig. 15.
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Figure 10. We compare our method and competitors on real mesh
data that was obtained by using photogrammetry on real-world ob-
jects with Polycam. For animated version of these results, see the
electronic supplemental.

D. Additional comparisons

We qualitatively compare our method against other 3D-
aware selection and segmentation methods. Note that a full
quantitative comparison against these baselines is not feasi-
ble due to their long per-asset optimization times.

Selection. In Fig. 11, we show a comparison against
Garfield [7], which requires asset-specific pre-training and
does not target materials. The same holds for Feature-3DGS
[15] (right side in Fig. 14). In contrast, our approach works
with arbitrary assets and without asset-specific pre-training,
as it merely needs to render the existing 3D asset to images
and back-project the obtained similarity values. Our times
from click-to-selection are therefore around three orders of
magnitude lower. Finally, the comparison to SA3D [3] in
Figure 12 shows that our approach correctly selects materi-
als for NeRFs as well, at much lower runtimes than SA3D.

Garfield, ca. 35min

Ours, ca. 2s Ours, ca. 2s

Figure 11. Comparison to Garfield [7], which cannot be run with-
out asset-specific pre-training and does not target material selec-
tion.

Segmentation. Additionally, in Fig. 14, we show a com-
parison against SemanticGaussians [5] (left side), who in-

SAMa, ca. 2 seconds

SA3D, ca. 10 minutes

Clicked view ‘
Figure 12. Comparison against SA3D. SAMa quickly selects the

material, while SA3D, after lengthy pre-optimization, selects ob-
ject (sub-) parts.

ject semantic knowledge into a 3DGS capture via a sep-
arately trained network, but whose predictions are coarse,
not material-aware and, by design, limited to 3DGS assets.
Similarly, Fig. 13 shows an evaluation of MaterialSeg3D
[8], a 3D segmentation method for materials that works on
meshes. While this methods works well and is multiview-
consistent, it classifies materials into 14 predefined seman-
tic classes (metal, wood, plastic, ...) and thus is not able to
distinguish between different materials within a category,
such as the different types of wood on the beach hut. Our
method, in contrast, selects and segments these materials
correctly.

In summary, SAMa performs well on material-aware se-
lection and segmentation in 3D, works on NeRFs, 3DGS
and meshes, provides interactive click-to-selection and can
infer selection results for novel views in real-time.

Ours MatSeg3D
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Figure 13. Comparison between the material-aware segmentation
of SAMa and the semantic segmentation of MaterialSeg3D [8]
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Figure 14. Performance and timing of 2D-to-3D lifting methods.
SemanticGaussians [5] does not target materials, while Feature-

3DGS [15] requires a lengthy pre-optimization.
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