
SAMa: Material-Aware 3D Selection and Segmentation

Supplementary Material

In this supplemental document we provide additional de-

tails on training and implementation, as well as results that

could not be included in the main text due to space restric-

tions. We strongly encourage the reader to view the videos

in our supplemental HTML material for 3D selection visu-

alizations, examples of our fine-tuning material dataset, and

a video of our application GUI.

A. Implementation details

A.1. Fine­tuning

As mentioned in paper Sec. 3, we fine-tune parts of the

SAM2 [10] model on material-specific video data. For all

our experiments, we use the model in its “large” config-

uration, employing the Hiera [11] image encoder with ca.

212M params, which yielded the best results in our experi-

ments.

As the original SA-V [10] dataset, we encode our video

dataset as MP4 videos with 1024×1024 resolution and the

annotations in CoCoRLE encoding for efficient storage.

Our video dataset sub-samples the video by skipping ev-

ery other video frame to increase the intra-frame distance,

and then randomly chooses sequences of six consecutive

sub-sampled frames. For each material and each frame, we

sample a click. We do not select a material if it is barely vis-

ible in the frames, i.e., if it occupies less than 0.02% of the

frame (150 pixels). We erode the material’s ground-truth

mask before using it as a sampling mask, ensuring that the

sampled click is at least four pixels away from the material’s

border. We sample a positive click with 80% probability,

and a negative click on a random other material with 20%

and reverse the temporal order of the frame sequence with

a chance of 50%. During the forward pass of the model,

we use every other frame as a clicked frame and thus force

the model to use its memory attention module to infer the

selection for the intermediate, unclicked frames. Addition-

ally, we make a random 50% choice between sampling the

most salient material in the frame (with the highest number

of annotated pixels) and any other material.

During training, we compute the per-frame loss on the

model prediction and ground-truth annotation via the sum

of two losses, a binary cross-entropy followed by a sigmoid

(using the log-sum-exp [2] trick for numerical stability) and

a sigmoid-normalized Dice loss [9] to account for the im-

balance between (large) background and (smaller) material

masks. We use the AdamW optimizer with weight decay

0.01 and learning rate 1× 10−5.

We additionally experiment with mixed video- and

image-finetuning and find that the results perform roughly

on-par with our video model when training on our video-

dataset and 20% of the Materialistic [12] data set mixed

in. For simplicity, all results in the main text therefore use

solely our video-finetuned model.

A.2. kNN lookup

As explained in the main text, we perform k-nearest neigh-

bour (kNN) lookup into our similarity point cloud to infer

the material selection for new, unseen views. Here, we take

advantage of modern, GPU-accelerated large-scale queries

via the FAISS library [4, 6].

Specifically, we use the INDEXFLATL2 index for exact

search w.r.t. the points’ L2 distance, encoded as an INDEX-

IVFFLAT for compactness, with 100 clusters, and push it to

the GPU (a cluster is a representative subset of the data that

can be traversed efficiently and narrows down the search

region during later query operations). This index, as men-

tioned in the main text, must be re-constructed after each

new click, since the initial camera from which the click was

performed will add to, and therefore change, the similarity

point cloud. This re-construction takes around 0.5 seconds

(all timings, including those in the main text, are reported

on a single NVIDIA 40GB A100).

Once the index is built, we visit five clusters during the

search for the top-k nearest neighbors. We found this num-

ber of visited clusters to be a hyperparameter which, even

with the lowest setting of a single cluster, does not signifi-

cantly deteriorate performance since the point cloud is rela-

tively dense. We show an example of a typical point cloud

in Figure 9. Thanks to the point cloud density our selection

handles sharp edges well.

A.3. Camera subsampling

To infer the 2D similarities which will later be projected

to 3D, we need to sub-sample a set of cameras that cover

the object well. Recall that we fine-tuned SAM2 with our

material-centric video dataset using four different camera

trajectories, all with smooth view progression, while now

we additionally need to ensure maximum object coverage.

For NeRFs and 3D Gaussians, we thus sub-sample 20% of

the training views, for meshes we use spherical Fibonacci

sampling with 30 sampled cameras. Once we have sub-

sampled the cameras, we need to sort them into a coherent,

smooth trajectory to enable our video model to keep tempo-

ral consistency between the frames. We use a greedy iter-

ative search to achieve a smooth trajectory from the initial

camera, as detailed in Algorithm 1.



Figure 1. Selection results on real-world scenes from the MIPNeRF360 dataset [1].

A.4. Dataset details

To construct our fine-tuning dataset, we procedurally gener-

ate short multi-object videos using randomly picked objects

from a subset of 9,082 textured Substance 3D objects. For

each video, we randomly sample at least two objects and

place them into a shared scene. Objects are randomly dis-

placed by up to half of their bounding box extent to reduce

large spatial overlap. Objects consisting of a single material

are excluded, as they do not provide meaningful supervision

for material selection.

We assign materials by sampling from a library of 29,472

Substance material maps, including multiple realizations of

the same base material (e.g., different variants of the same

type of wood). Materials are assigned to object parts such

that they appear at least twice within a scene to ensure suffi-

cient positive supervision and disambiguate from object se-

lection. Material assignments remain consistent throughout

a video but are resampled independently across videos. We

generate dense per-pixel material annotations using integer

indices, reserving the label 0 for the background.

Rendering is performed in Blender 4.3, using the Princi-

pled BSDF shader for all materials. To illuminate the scene,

we randomly select an HDR environment map from a set of

420 HDRIs sourced from PolyHaven. In order to reduce the

domain gap between our synthetic and real-world videos,

we alpha-composite the rendered objects onto their envmap

background.

We generate videos using four camera motion patterns:

turntable, flyover, zoom-in, and zoom-out. Spherical, fixed-

radius turntable trajectories are sampled with 33% proba-

bility since they represent the dominant camera trajectories

(after sorting) that are used during SAMa’s inference phase.

Flyover trajectories are also sampled with 33% probability,

as they resemble realistic camera motion and are most sim-

ilar to those found in the SA-V [10] dataset. Zoom-in tra-

jectories are sampled with 22% probability since during the

zoom-in phase, more detail becomes visible, and zoom-out

trajectories account for the remaining 12%. We leave exper-

imenting with this percentages and more camera trajectories

to future work.

B. Additional quantitative results

We here report a more detailed, per-scene evaluation of

the metrics reported in the main text. The per-scene mea-

surements for robustness and multiview-consistency are in

Tab. 2 and Tab. 3, respectively.

Additionally, we report the per-scene selection accuracy

as mean intersection over union (mIoU) and F1 scores. F1

is more robust than precision or recall alone, since either

individual metric can easily be gamed by failure cases. Pre-

cision quantifies the relevance of the selected data (when

the model says material A, is it really material A?), and

can therefore easily be cheated by simply selecting a small

amount of high-confidence elements (e.g., in our case, just

the clicked pixel). Recall quantifies the amount of returned

relevant data (when there is material A, how much of it does

the model find?), and can easily be deceived by always se-

lecting all the elements (e.g., in our case, a mask full of

1’s). We show both mIoU and F1, computed on the NeRF-,

MIPNeRF360- and our dataset, in Tab. 4, Tab. 5 and Tab. 1,

respectively. We perform the evaluation on 3D Gaussians

for rendering speed. For the real-world scenes from the

Algorithm 1 Camera trajectory sorting, starting from an

initial camera. CALCNORMS calculates the spatio-angular

distances between a given camera and all other cameras.

Input: initial camera i, other cameras o

Output: sorted cameras

1: procedure SAMPLECAMERATRAJECTORY

2: curr← i ▷ set current camera

3: sorted← [ curr ] ▷ initialize sorted cameras list

4: while len(o) > 0 do

5: norms← CALCNORMS(curr, o)
6: cidx← argmin (norms) ▷ closest to current

7: sorted.append(o [cidx])
8: curr← o [cidx]
9: o [cidx].pop()

10: end while

11: return sorted

12: end procedure



Figure 2. Exemplary visualizations of our annotated test frames from the MIPNeRF360 dataset [1].

Clicked View Ours SAM2 Materialistic Materialistic-MV

Figure 3. We test our method and competitors on 3DGS scenes we capture and find that it generalizes and performs considerably better

than existing approaches. The first column shows the clicked view, the subsequent columns show the selection result from a novel, unseen

view.

MIPNeRF dataset, we found the Gaussian’s depth to not

be sufficiently accurate and therefore use NeRFacto [13].

The quantitative evaluation confirms our qualitative find-

ings: our method consistently performs well for the task of

material selection, beating the other baselines in the major-

ity of cases. In select cases, for instance the MIC scene

from the NeRF dataset (see Tab. 4), SAM2 wins in terms of

selection accuracy, since the materials of the object are vi-

sually indistinguishable from one another and applied to the

object’s subparts, which have a tendency to be selected by

SAM2. Both Materialistic-based baselines under-perform

in all experiments. This can be attributed in part to the fact

that they are not multiview consistent, but, equally impor-

tant, to the fact that the underlying model generally attends

to coarser structures (due to the different ViT patchsizes, see

Fig. 4) and is not sufficiently sensitive to object (sub-)parts.

C. Additional qualitative results

We show additional examples of recoloring NeRFs based

on our material-selection in Fig. 7.

We show examples of our hand-annotated frames from

the MIPNeRF dataset which we used for evaluation in

Fig. 2. Additionally, we show examples of material selec-

tion on real-world scenes from these MIPNeRF360 scenes

[1] in Fig. 1.

As claimed in the main text, our frame duplication strat-

egy not only improves SAMa’s predictions, but also helps

to improve prediction confidence on the original SAM2 ar-

chitecture, which we visualize in Fig. 6.

To add to our robustness evaluation, we show a quali-

tative example of how robust the methods are to different

clicks on the same material in Fig. 5.

We also show the 2D material selection accuracy for
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Figure 4. 2D selection results of the different methods for various

models. We do not perform any point cloud lookup or novel view

inference, the shown heatmap is obtained by directly feeding the

clicked frame to the model.
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Figure 5. Robustness of the different approaches (rows) for clicks

on different locations of the same material (columns).

Click No duplication Duplication No duplication Duplication

SAM2 SAMa

Figure 6. The effects of our frame duplication strategy translate

from our SAMa model to the original SAM2 model.

all models in Fig. 4. From this figure, it becomes evi-

dent that the SAM-based methods benefit significantly from

the smaller patchsize of the image encoder: Hiera, the en-

coder used by the SAM2 architecture (Ours, SAM2) uses a

Clicked Edited Edited

Figure 7. Additional examples of editing the NeRF’s color based

on the user’s selected material.
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“a green office chair” “a puppy on a rocket” “a wooden dining table”

Figure 8. Our method can be used to select, and subsequently

replace, the diffuse-only materials commonly found on text-to-

3D [14] pipeline output meshes with PBR materials.

Novel view Point cloudClicked view Inset

Similarity

Query points 

of inset

Figure 9. Visualization of the selection point cloud (pre-computed

by SAMa, right subfigure, green & brown) and the query points

obtained from a novel view (used for the look-up into the selection

point cloud). The red inset’s query points are visualized in blue in

the right sub-figure. Best viewed zoomed-in.

four-times smaller patchsize of 4×4, whereas Materialistic-

based methods employ DINO features, which use a patch-

size of 8 × 8, resulting in blurrier edges. We would like

to emphasize that the input resolution is the same for all

models, 512p. Moreover, we observe that our model deals

well with perspective distortion (middle row in Fig. 4) and

low-contrast input (bottom row in Fig. 4). Finally, we show



thumbnail renderings of our synthetic dataset in Fig. 15.
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Figure 10. We compare our method and competitors on real mesh

data that was obtained by using photogrammetry on real-world ob-

jects with Polycam. For animated version of these results, see the

electronic supplemental.

D. Additional comparisons

We qualitatively compare our method against other 3D-

aware selection and segmentation methods. Note that a full

quantitative comparison against these baselines is not feasi-

ble due to their long per-asset optimization times.

Selection. In Fig. 11, we show a comparison against

Garfield [7], which requires asset-specific pre-training and

does not target materials. The same holds for Feature-3DGS

[15] (right side in Fig. 14). In contrast, our approach works

with arbitrary assets and without asset-specific pre-training,

as it merely needs to render the existing 3D asset to images

and back-project the obtained similarity values. Our times

from click-to-selection are therefore around three orders of

magnitude lower. Finally, the comparison to SA3D [3] in

Figure 12 shows that our approach correctly selects materi-

als for NeRFs as well, at much lower runtimes than SA3D.

Garfield, ca. 35min Ours, ca. 2s Ours, ca. 2s

Figure 11. Comparison to Garfield [7], which cannot be run with-

out asset-specific pre-training and does not target material selec-

tion.

Segmentation. Additionally, in Fig. 14, we show a com-

parison against SemanticGaussians [5] (left side), who in-

SAMa, ca. 2 seconds SA3D, ca. 10 minutesClicked view

Figure 12. Comparison against SA3D. SAMa quickly selects the

material, while SA3D, after lengthy pre-optimization, selects ob-

ject (sub-) parts.

ject semantic knowledge into a 3DGS capture via a sep-

arately trained network, but whose predictions are coarse,

not material-aware and, by design, limited to 3DGS assets.

Similarly, Fig. 13 shows an evaluation of MaterialSeg3D

[8], a 3D segmentation method for materials that works on

meshes. While this methods works well and is multiview-

consistent, it classifies materials into 14 predefined seman-

tic classes (metal, wood, plastic, ...) and thus is not able to

distinguish between different materials within a category,

such as the different types of wood on the beach hut. Our

method, in contrast, selects and segments these materials

correctly.

In summary, SAMa performs well on material-aware se-

lection and segmentation in 3D, works on NeRFs, 3DGS

and meshes, provides interactive click-to-selection and can

infer selection results for novel views in real-time.

Ours MatSeg3D

Ours MatSeg3D

InputInput

Figure 13. Comparison between the material-aware segmentation

of SAMa and the semantic segmentation of MaterialSeg3D [8]

SemanticGaussians

ca. 2.0 min

Ours

ca. 2 seconds

Feature-3DGS

ca. 15.5 min

SelectionSegmentation

Ours

ca. 15 seconds

Figure 14. Performance and timing of 2D-to-3D lifting methods.

SemanticGaussians [5] does not target materials, while Feature-

3DGS [15] requires a lengthy pre-optimization.
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