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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

In preparing this research, we made limited use of large language models (LLMs) as assistive tools.
Specifically, LLMs were employed for:

1. Writing assistance: LLMs were used to improve grammar, enhance clarity, and ensure an
appropriate academic tone in certain parts of the manuscript.

2. Editing and formatting: To support professional presentation, LLMs were used to gener-
ate LaTeX table/figure templates and to refine the structure of paragraphs.

It should be emphasized that LLMs were not involved in the conception of core research ideas,
the design or execution of experiments, the analysis of results, or the formulation of scientific con-
clusions. All technical contributions, algorithms, experiments, and analyses are original and were
entirely carried out by the authors.

The authors take full responsibility for the content of this paper. LLMs were not considered contrib-
utors or co-authors, and their usage was strictly limited to the auxiliary functions described above.

B MORE MAIN RESULTS

Beyond the main experiments presented above, we further provide additional evaluations to demon-
strate the robustness and generality of MVP.

Evaluation on other VAR-based T2I models. We further evaluate the transferability of MVP
by applying it to VAR-based text-to-image models, namely Infinity and HART, both of which are
pretrained on high-quality aesthetic datasets. To evaluation robustness under distribution shifts, we
fine-tune these models on MS-COCO, a dataset featuring more realistic and diverse scenes that dif-
fer substantially from their original training distribution. As shown in Tab. [9] directly performing
full fine-tuning on such distribution-shifted data often induces catastrophic forgetting, resulting in
notable degradation in both FID and CLIP-Score. In contrast, MVP achieves consistent improve-
ments while requiring only a fraction of the parameters to be updated, effectively preserving the
pretrained generative priors and adapting to the new domain with minimal overhead. These results
highlight the practicality of MVP as a lightweight and robust transfer approach for VAR-based T2I
models.

Table 9: Transferability of MVP to other VAR-based text-to-image models (HART [Tang et al.| (2024) and
Infinity Han et al.[(2025)) under distribution shifts from aesthetic datasets to MS-COCO.

Method | Trainable Params (%) FID | CLIP-scoret
HART-0.7B - 36.2 0.22
HART-0.7B (Full FT) 100 56.4 0.17
HART-0.7B (MVP) 0.27 31.3 0.24
Infinity-2B - 36.9 0.23
Infinity-2B (Full FT) 100 63.2 0.20
Infinity-2B (MVP) 0.13 29.9 0.24

C MORE ANALYSIS & ABLATIONS

In this section, we provide additional ablation studies to further analyze the effectiveness of each
component in our method.

C.1 POTENTIAL CONCERN OF DISTRIBUTION DISTORTION.

One potential concern is that perturbation-based prompts in MVP may distort the pretrained VAR
backbone’s distribution, thereby impairing generation quality and casting doubt on the viability of
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perturbation-driven prompting. To better understand this effect, we performed ablation studies from
two complementary perspectives.

Impact of the Gating Mechanism. Gating is commonly expected to mitigate distribution distor-
tion by constraining the magnitude of perturbation-based prompts. However, our experiments on
improve class-conditional generation reveal the opposite: while gating reduces prompt strength, it
also limits the method’s ability to provide effective guidance and can even degrade the fidelity and
diversity of generated results (Tab. [I0). This behavior likely stems from MVP’s multi-scale propa-
gation of semantic and structural signals. When the perturbation strength is overly constrained, the
prompts degenerate into weak noise that fails to deliver clear guidance and instead interferes with
the pretrained features of the backbone. Consequently, although the gating mechanism is intended
to reduce distributional shift, it paradoxically disrupts the learned representations and diminishes the
overall effectiveness of our method.

Table 10: Comparison between the default MVP design and its gated variant on enhancing the generative
capability of VAR at different depths.

Model | Depth | FID| ISt  Precisiont Recall]
VAR 24 2.17 2719 0.81 0.59
MVP 24 2.13 2929 0.81 0.58
MVP (Gating) 24 217 273.9 0.80 0.59
VAR 30 2.14 2754 0.80 0.60
MVP 30 2.03 2894 0.81 0.59
MVP (Gating) 30 225 2741 0.80 0.59

C.2 ABLATION ON INJECTION INTO HIDDEN STATES

A potential concern is the prompts injection applied only at the input stage might gradually dimin-
ish during propagation through the transformer layers, thereby weakening its effect. To mitigate
this, we assess the impact of injecting prompts into hidden states during autoregressive modeling
across varying model depths and injection frequencies. As shown in Tab. this strategy leads to
performance degradation rather than improvement. Specifically, increasing the injection frequency
consistently causes both FID and IS to deteriorate across different backbone depths. This result
further demonstrates that our method achieves optimal effectiveness with its minimalist design.

Table 11: Impact of injecting projector-processed visual prompt tokens at varying frequencies into intermediate
layers of the transformer.

Depth | Injection Freq. FID| ISt Depth | Injection Freq. FID| ISt
16 X - 346 2474 24 X - 213 2929
16 1 3.51 242.9 24 1 2.17  286.1
16 2 3.69 2174 24 2 220 2745
16 3 3.77  209.4 24 3 2.28  263.7
20 X - 2.63 276.5 30 X - 2.03 2894
20 1 2.70  264.7 30 1 2.11  291.8
20 2 2.81  254.1 30 2 2.13 2953
20 3 2.87 2313 30 3 226 2814

C.3 ABLATION ON PROMPT MODULATION

A natural concern is that adopting a single, fixed prompt shared across all classes may hinder the
model’s ability to capture class-specific nuances, raising the question of whether adaptive prompts
would better accommodate diverse generation tasks. To examine this, we designed two modulated
variants: (i) a FILM-based modulation that predicts feature-wise scale and shift parameters from the
class condition, and (ii) a lightweight cross-attention module that injects class information into the
original prompt sequence.
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The experimental results are summarized in Tab. [I2] While these variants introduce additional
flexibility, they also substantially increase the number of trainable parameters and the difficulty of
optimization. Under the same training budget (e.g., 1 epoch), both variants underperform compared
to our default design, showing weaker FID and IS scores. Extending training to more epochs can
indeed improve the generation quality of these variants, but such longer schedules run counter to the
efficiency principle of prompt tuning, whose key advantage lies in rapid adaptation with minimal
computational cost.

Table 12: Impact of injecting projector-processed visual prompt tokens at varying frequencies into intermediate
layers of the transformer.

Depth \ FiLM FID| ISt  Epochs Depth \ CA. FID| IST  Epochs
16 X 346 2474 1 16 X 346 2474 1
16 374 2282 1 16 397 2316 1
16 3.61 239.7 3 16 3.67 2423 3
20 X 2.63 2765 1 20 X 263 2765 1
20 274  259.1 1 20 2.88 2483 1
20 2.68  267.7 3 20 277 2712

D MORE DETAIL

D.1 MORE IMPLEMENTATION DETAIL

In the VAR backbone configurations, the detailed training settings, including learning rate, batch
size, number of epochs, and other hyperparameters, are provided in Tab. [13|for the class-to-image
task and in Tab. |14| for the text-to-image task. Notably, for the experiments on improving class-to-
image generation, we discard the first-scale prompts to prevent interference with the pretrained class
embeddings and maintain the conditioning integrity.

Table 13: Implementation detail of MVP for class-to-image

backbone VAR-d16 VAR-d20 VAR-d24 VAR-d30 VAR-d36
T 20 20 20 28 28
first-scale prompt X X X X X
optimizer AdamW

AdamW (51, B2) (0.9, 0.95)

learning rate le-3 le-3 le-3 Se-4 8e-5
weight decay Se-2 Se-2 le-2 le-2 le-2
batch size 132 124 82 58 12
epoch 1 1 1 1 1

Table 14: Implementation detail of MVP for text-to-image

backbone VAR-d16 VAR-d20 VAR-d24 VAR-d30 HART-0.7B Infinity-2B
T 20 28 28 36 36 44
first-scale prompt X X
optimizer AdamW

AdamW (51, B2) (0.9, 0.99)

learning rate le-4 le-4 Te-5 8e-5 le-4 le-4
weight decay Se-2 Se-2 le-2 le-2 Se-2 Se-2
batch size 148 124 82 58 12 8
epoch 1 1 1 1 1 1
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D.2 TRAINING LOSS DETAILS

Training loss details of MVP and VAR To further complement the results presented in Table|[§]
we analyze the training loss dynamics of MVP and full-parameter VAR fine-tuning across three
datasets (SUN397, Food101, and RESISC). As illustrated in Fig. ] MVP consistently converges
faster than full-parameter VAR, achieving both a steeper early-stage loss drop and a lower final loss.
For clarity, we visualize both the raw loss and an exponentially smoothed version (smoothing factor
value is 0.65). The results across all datasets show substantially more stable optimization behavior
and a more favorable convergence trajectory with MVP. These observations further validate MVP’s
strong transferability and robust adaptation ability compared with standard full-parameter VAR fine-
tuning approaches.

Loss Value During Training Steps(SUN397) Loss Value During Training Steps(Food101) Loss Value During Training Steps(Resisc)

MYP(aw) e
VAR(raw)

i : p 3 . h
Training Steps Training Steps Training Steps

Figure 4: Training loss details for MVP vs. full-parameter VAR fine-tuning.

Training loss details for different prompt placement strategies To more precisely examine the
differences in efficiency and performance across different prompt position designs, we visualize the
training loss behavior of our design in MVP and four alternative position designs under an identical
prompt token budget. As shown in Fig.[3] the resulting gaps A clearly show that our outermost-frame
position design not only achieves the fastest convergence but also yields the lowest final loss across
all variants. These results provide strong optimization-level evidence that our prompt placement
design imposes minimal perturbation on pretrained representations while offering the most effective
semantic conditioning.
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Figure 5: Training loss details for different prompt position designs.

D.3 MORE THEORETICAL JUSTIFICATION DETAILS

To complement the simplified analysis in Section 3.1, we provide a more complete theoretical ratio-
nale explaining why the outermost-frame region constitutes the most informative and stable location
for placing prompt tokens in multi-scale VAR generation.

Propagation Distance and Signal Attenuation Model We begin by formalizing the distance-
based attenuation model of prompt influence. Consider the feature map as a 2D grid (or graph)
of tokens V' = (z,y) | 1 <,y < S, at a given scale t. Let d((x,y), (u,v)) denote the distance
between two token positions. For theoretical generality, d can be any appropriate metric on the
grid (e.g. Manhattan distance, Euclidean, or Chebyshev distance), but we will often treat it as the
shortest-path distance on the grid graph (equivalent to Manhattan distance if only orthogonal moves
are allowed). We suppose that a prompt token at position p imparts a perturbation signal § that
propagates to other tokens with a strength that decays as a function of distance. Formally, let f(d)
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be a monotonically decreasing attenuation function (with f(0) = 1 and 0 < f(d) < 1 ford > 0).
A simple choice in our initial analysis was an exponential decay f(d) = o< for some 0 < a < 1,
but more generally one could consider, for example, an exponential f(d) = e~*9, a power-law
f(d) = (1 + Bd)~*, or other diffusion-based kernels. The key property is that influence diminishes
with propagation distance.

If a single prompt token is introduced at some source location u € V' with perturbation magnitude 9,
the impact it has on a target token v € V' can be modeled as [,,_,, = 9, f! (d(u7 v)) When multiple
prompt tokens are present, their effects can be assumed to superpose (e.g. additively, if we treat
small perturbations linearly). Thus, for a set of prompt positions B C V, the total influence on v is:

Ip(v) =Y bu fld(u,v)),

ueB

where §,, is the perturbation added at prompt u (for simplicity one may take all §,, = §). In general,
Ip(v) will be stronger for targets v that are closer to some prompt token and weaker for those far
from all prompts. We can thus formalize two objectives for prompt placement:

(1).Minimal Central Impact: Avoid placing prompts too close to the critical center region of the
image, so that any central token is at a large distance from all prompts. This keeps f(d) small for
center distances, mitigating disruptive changes to the core visual content. (2)Maximal Propagation
Coverage: Ensure that every token in the feature map lies reasonably close to at least one prompt, so
that prompt signals can efficiently reach all parts of the map. In other words, we want to minimize
the worst-case (or average) distance from any token to the nearest prompt, thereby maximizing the
minimum influence I5(v) across the map.

These goals are in tension: keeping prompts far from the center suggests placing them at the pe-
riphery, but doing so might increase distances to some other tokens. We next analyze this trade-off
formally and show that an outermost-frame placement of prompts achieves an optimal balance under
these criteria.

Boundary vs. Interior Prompt Placement: Distance Analysis Consider a decomposition of the
Sy x Sy feature map into concentric square frames (or layers) around the center. Define Frame
0 as the set of all tokens on the outer boundary of the map (positions where x = 1, x = 5,
y = 1, ory = S;). Frame 1 is the next inward layer (the “sub-outermost” border), and so on,
until Frame N which contains the central token(s). By construction, N = L%J, i.e. there are
N concentric frames inward from the boundary to the center. Each frame index n can be thought
of as the Chebyshev distance (infinite norm distance) of those tokens from the image center. Now
suppose we introduce prompt tokens on Frame ¢ (meaning all prompt tokens lie in that concentric
layer at distance ¢ from the boundary). What is the distance from these prompts to the center, and to
other tokens? Two key observations can be made:

* Distance to Center: All prompt tokens on Frame c are a distance of (N — ¢) away from
the center frame (in terms of frame index difference). In fact, the minimum distance from
the center to any prompt in Frame ¢ is N — ¢ (achieved along a straight line from the
center to the prompt layer). Thus, a prompt at frame ¢ induces a central impact of roughly
Lenter = 0, f(N — ¢). If we use the exponential model f(d) = a, this recovers the
earlier result that a prompt in frame n has impact 6, ' =™ on the center, which increases
rapidly as n grows closer to N (i.e. as the prompt moves inward). Keeping prompts
in the outermost frame (¢ = 0) maximizes the center distance N — 0 = N, yielding
minimal impact on the central tokens Ileeper = 0, oV, By contrast, any non-boundary
placement (¢ > 0) would put prompt tokens closer to the center (distance N — ¢ with
N — ¢ < N), leading to significantly larger direct impacts on central features (e.g. a frame
c prompt gives d, v’V =¢, and since N — ¢ < N, we get oV 7¢ > oV for a € (0,1)).
In the extreme case of a prompt at the center itself (¢ = N), the distance to center is
0 and the central impact is maximized (no attenuation, f(0) = 1) — this would heavily
“corrupt” the core visual features, which is exactly what we must avoid. Therefore, placing
prompts on the outer boundary is theoretically optimal for protecting the image center:
it maximizes the minimum distance from any prompt to the central region, minimizing
unwanted perturbation of semantically critical center content.
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* Distance to Other Tokens (Coverage): We must also ensure that prompt signals can reach
and influence all other tokens in the feature map efficiently. For a given token v = (x,y)
in the map, let distB(v) = minu € Bd(u,v) denote the distance from v to the nearest
prompt in the set B. We seek to make distp(v) as small as possible for all v. If B is
the outermost frame (B = B; in scale ¢, using the notation B; for the set of all boundary
positions), then every non-prompt token lies somewhere inside the boundary. Intuitively,
any interior location will be adjacent (in some direction) to the boundary after a certain
number of steps outward. In fact, for an arbitrary token at (x,y), the minimal Manhattan
distance to the outer frame is given by:

distp, (z,y) =min{z -1, Sy —z, y—1, Sy —y }. (10)

This formula says that the distance to the boundary is determined by whichever edge (top,
bottom, left, or right) is nearest to (z,y). For example, if a token is 5 cells from the top
edge, 10 from the bottom, 3 from the left edge, and 8 from the right edge, then its nearest
prompt on the outer frame is 3 away (via the left border). The worst-case distance from any
token to the outer-frame prompts is achieved at the geometric center of the map: a central
token is farthest from all edges. Indeed, from Eq.[I0]one can show the maximum distance
is

. Sy —1
DmaX(Bt) (;2??‘/ dlSth, (l’, y) \‘ 9 J N,

attained at the center (z=[S;/2],;y~[St/2]). Thus, with outermost-frame prompts, no
token is more than NV steps away from some prompt. In terms of the attenuation function,
the minimum prompt influence on any token v is at least d, f(Dmax) = 9, f(IN). Using the
exponential model as an example, the weakest-controlled token (at the center) still receives
a small but nonzero signal §, V. All other tokens are closer than N steps to the boundary
and hence receive stronger prompt influence than the center does. In other words, placing
prompts on the boundary yields full coverage of the map with a radius N: prompt signals
need at most [V steps to reach any location.

It is insightful to contrast this with alternative placements. If prompts were placed at the center in-
stead (Frame V), the situation essentially inverts: the center prompt directly affects itself (distance
0), but tokens on the outer border are now farthest (roughly N steps away) and would experience
the weakest influence. In fact, a single central prompt also has a worst-case distance of N — the
corners/edges of the map are IV units away from the center in Manhattan distance — so the maxi-
mum propagation distance is still N. Thus, in terms of worst-case distance alone, a central prompt
or an all-boundary prompt cover the grid in a comparable radius. However, the crucial difference
lies in which region of the image suffers the maximum distance (minimal influence). With boundary
prompts, it is the central region that is farthest — but we want the center to be least affected (to pre-
serve semantic content). With a central prompt, it is the border region that is farthest — meaning the
periphery of the image gets the weakest control. For many vision tasks, the periphery often contains
background or less critical details, whereas the center often contains the main subject; therefore,
it is far preferable that the center be the least altered region. Boundary placement guarantees this,
whereas central placement does the opposite. Furthermore, if we use not one but a distributed set of
prompts, the boundary configuration can cover the image more uniformly. In fact, the outer-frame
prompt set B, consists of all 45; — 4 edge positions (for an S; x S; map), surrounding the entire
image. Most interior tokens will be very close to some edge (e.g. a token near the top of the image
is only a few pixels from the top prompt band), and only the very middle of the image has the max-
imal distance N. By contrast, a small set of prompts in an interior region would leave large areas
of the image (e.g. all four corners or sides) far from any prompt. Thus, outermost-frame prompts
minimize the area of the feature map that lies at high propagation distance. This yields more uni-
form and efficient coverage: prompt signals originate from all sides and diffuse inward, reaching a
given interior token from multiple directions. We can formalize this advantage by comparing dis-
tance distributions. For boundary prompts, the fraction of tokens within a distance d of some prompt
grows rapidly with d — indeed, for distance d < NN the “uncovered” region is an inner square of side
(St — 2d), whose area shrinks quadratically as d increases. In contrast, for a centralized prompt,
the covered region within distance d is just a central disk/square of area ~ (2d + 1)2, and a large
peripheral ring remains uncovered until d approaches N. As a result, for any reasonably small d,
far more of the image is reached by boundary prompts than by an equal number of interior prompts.
In a dynamic diffusion sense, if prompt signals propagate outward one step at a time, the boundary
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configuration will influence a large portion of the image in the first few propagation steps (with only
the middle lagging behind), whereas a central source influences only the vicinity at first and leaves
all outskirts unaffected until much later. This spatial coverage analysis underscores the efficiency of
having prompts on the outer frame.

It is also useful to consider a more general placement: suppose prompts are placed on some inter-
mediate frame ¢ (neither center nor outermost). The maximum distance to some token will then be
maxc, ; N — c. There is a natural trade-off here: if c is small (near the boundary), the center is far;
if ¢ is large (near the center), the boundary is far. The worst-case is minimized if ¢ ~ N/2, which
would balance the farthest distance to center and to edge at roughly N/2. Indeed, purely from a
graph covering perspective, the “middle ring” of an image could theoretically minimize the absolute
worst-case distance to all points. However, such a placement means the center is only moderately
distant (on the order of N/2) from a prompt, implying a much stronger direct prompt effect on the
central content than the outermost frame does. In designing MVP, we prioritize protecting the center
from corruption over the marginal gain of reducing the overall radius by a small factor. Empirically,
even with outermost prompts the maximum distance N is only about half the image size, and we will
show that this still provides effective propagation across the image. In fact, because the outer frame
uses a greater number of prompt tokens distributed all around, it compensates for a larger radius
by multi-directional influence — the center receives some (weak) signal from all sides rather than a
strong push from one close prompt. This multi-source arrangement can guide the model subtly and
consistently from the periphery, rather than risking a heavy-handed alteration near the center.

Graph-Theoretic and Diffusion Perspective We can cast the above intuitions in terms of graph
diffusion or boundary-value problems, which lends another angle to why outer-frame prompting
is advantageous. Imagine the feature map as a weighted graph, where each token is a node and
edges connect neighboring tokens (e.g. adjacent in the grid). Prompt tokens can be seen as sources
introducing a certain state or “potential” into the network, which then spreads to other nodes through
the edges. Placing prompt sources on the boundary is analogous to setting boundary conditions in a
diffusion process. For instance, one could imagine an iterative update where at each network layer or
time step, tokens influence their neighbors (like heat diffusing). If we initialize all boundary nodes
with a certain perturbation value and interior nodes at zero, the diffusion or random-walk process
will cause the interior to gradually absorb influence from all sides. Classical results for diffusion
on a 2D domain tell us that with boundary sources, the interior will be harmonically influenced
from all boundaries, often resulting in a smooth gradient that is minimal at the center (the point
maximally distant from all sources). By contrast, if a source is at the center, a diffusion process
would send a wave of influence outward, with the strongest effect concentrated near the source and
decaying toward the boundaries. In a steady state (e.g. solving Laplace’s equation with a fixed value
at the prompt sources), having the boundary held at a certain perturbation value yields an interior
solution that is lowest at the center (the furthest point from the boundary conditions). In other words,
the center stays relatively untouched when control signals are applied at the periphery — which is
precisely what we want to ensure. This diffusion analogy reinforces that boundary prompts provide a
global, gentle influence that permeates the feature map from the outside in, whereas interior prompts
act more like local shocks that could disrupt central contents.

From a graph-theoretic view, one can also consider the concept of a dominating set: the prompt set B
“dominates” the graph if every node in the graph is within a certain distance r of some prompt. The
smallest such r for a given B is the covering radius of that prompt set (our Dy, above). The entire
outer boundary B; forms a dominating set with radius N. While a smaller dominating radius could
be achieved by a carefully chosen subset of interior nodes, those interior nodes would inherently
be closer to the center (reducing central distance and increasing corruption risk). The boundary set
has the special property that it maximizes the distance to the most sensitive node (the center) while
still maintaining a reasonable covering radius. In fact, under the constraint that no prompt is closer
than distance dy,, to the center, the outermost ring yields the minimal possible covering radius. For
example, if we require prompts to be at least /N away from center, the only feasible locations are on
the outer frame; if we slightly relax to at least N!—!1 away, the second-outermost frame becomes
available, but using that instead of the outer frame would only shrink the radius by 1 at the heavy
cost of moving prompts closer to center. Thus, given the design constraint to maximize center safety,
outer-frame placement is the optimal choice for broad coverage.
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Rigorous Justification of Outermost-Frame Optimality We now synthesize the above points
into a more rigorous justification. Proposition: Placing prompt tokens on the outermost frame si-
multaneously minimizes the prompt’s direct impact on central tokens and provides near-optimal
coverage of the entire feature map. More concretely: (a) For any fixed attenuation function f(d)
that decreases with d, the maximum possible minimal distance between any prompt and the center
of the map is achieved by prompts on the boundary — this maximizes the center’s distance to the
nearest prompt, thereby minimizing the upper bound on prompt-induced change to central features.
(b) Subject to (a), the outermost-frame configuration ensures that the distance from any token to
some prompt is bounded by N = O(S;), and no other configuration with equal or greater center
distance can achieve a smaller worst-case distance.

Proof Sketch: (a) is straightforward — the farthest any point can be from the center in an S; X Sy
grid is along the boundary. Any prompt placed at an interior location has a distance to center
< N, whereas prompts on the edge have distance N to center; hence the boundary placement
uniquely achieves the maximum center distance N. Thus, if minimizing Icenier = 9, f (deenter-prompt)
is paramount, one should choose dcenter-prompt a5 large as possible, i.e. place prompts at the periphery.
(b) Now, given that prompts are confined to those at least distance /N (or N — 1, etc.) from center,
we consider the coverage of the map. The outer boundary B; is one natural choice meeting this
constraint. Could any other allowed configuration cover the map more efficiently (i.e. with a smaller
maximum distance)? Suppose we remove some subset of boundary prompts or move some prompts
off the exact edge inward by one cell. Any interior point that was previously nearest to a removed
prompt will now be farther from the remaining prompt set, increasing the worst-case distance. In
fact, removing or insetting prompts can only increase the covering radius unless other prompts are
moved inward to compensate — but moving any prompt inward violates the center-distance constraint
or at least lowers the center distance achieved. The full ring of boundary tokens is a redundant but
robust cover — it may use slightly more tokens than minimally necessary for coverage, but this
redundancy guarantees no gaps in coverage and uniformly short distances except at the very center.
Formally, one can show that B; (the set of all edge positions) minimizes the function ®(B) =
max,cy ming,ep d(u, v) among all sets B that satisfy min, e p d(u,center) = N. In other words,
under the condition that no prompt is closer than NV to the center, B; yields the minimal possible
®(B) (which in fact equals NV in this case). Any other set that also keeps prompts off the n < N
inner frames will either have the same worst-case distance N or worse. Thus, outermost placement
is Pareto-optimal in balancing the two objectives: you cannot increase the center safety without
also worsening coverage, and vice versa, and the chosen design maximizes center safety while only
modestly sacrificing distance-efficiency (staying within a factor of 2 of the absolute minimal radius
achievable by any prompt configuration, which is a small price for protecting central content).

In summary, our expanded theoretical analysis confirms that introducing prompts in the outermost
square frame is an optimal or at least highly well-founded design choice. It minimizes the risk of
core feature corruption by keeping prompts as far as possible from the image’s crucial center, while
still efficiently diffusing control signals across the entire feature map from the boundaries inward.
This justifies the MVP strategy of injecting learnable prompt tokens in the outermost frame at each
scale, as it offers strong signal coverage with minimal adverse impact on the learned visual features
at the center of the generation.

E PROMPT-COMPLEXITY ANALYSIS

At the ¢-th scale of the VAR’s patch size set P, let the spatial feature map be of size S; x S;. The
corresponding prompt budget is determined by the number of tokens N; introduced at this scale.
Below, we analyze the computational overhead associated with different prompt injection strategies.

* Full Feature-Map Prompt. Each spatial location is placed as a prompt token:
M — A[tfull — St2

This leads to a quadratic increase in token count. For example, S; = 16 = N; = Nl =
256.

+ Outermost Frame Prompt( A% < 7). Only the outermost frame positions are used:

N, = NB =48, — 4,
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which scales linearly with S; (e.g., Sy = 16 = N; = N5 = 60). This formulation is only
valid for S; > 1.

* L-shaped Corner Prompt ( 7 < N). This strategy selects strips of stride width a
originating from the four corners of the feature map:

MZNCB‘ZSa+4.

For example, with a = 2 and S; = 16, we get:

N, = NB = 20.

This configuration is applied only when it does not exceed the corresponding square frame
prompt count, i.e., /\/'CB’ < NB:,

This comparison reveals a clear computational hierarchy:

NP~ O(S2) > NB ~ O(S)) > NF ~ O(1),

where NV, A/Br and /\/'CB " denote the token budget under full feature map, outermost square frame,
and l-shaped corner prompting respectively. In practice, the 1-shaped corner strategy reduces the
token cost by a factor of ~5-10x compared to border prompting, and over ~ 30x—-100x compared
to dense prompting, while retaining sufficient spatial coverage. This establishes an efficient trade-off
between semantic guidance fidelity and computational complexity.

F LIMITATION

While MVP demonstrates good performance in class-to-image and text-to-image generation, there
are still some limitations that warrant further investigation.

Limitation of CLIP’s text encoder. We employ only the default CLIP text encoder throughout all
experiments. While more powerful or specialized language encoders may potentially yield better
generation quality, particularly in text-to-image tasks, we did not pursue this direction due to the
principle of minimizing model modifications in prompt tuning.

Limitation of Visual-Quality and Semantic-Quality Balance. Frankly speaking, compared to
the significant improvements in metrics like IS after applying MVP, the improvement in FID, a low-
level fidelity metric, is limited. This can be attributed to the fact that our method introduces prompts
at the outermost frames of feature maps, thereby primarily emphasizing semantic information. As a
result, it inherently favors metrics like IS that capture cross-category semantics. In contrast, the im-
provement in FID typically requires optimization in the pixel space. While introducing perturbations
for each input token in the pixel space could effectively improve FID, it would also bring substantial
computational cost, which contradicts the original intention of prompt tuning. In conclusion, this is
an inherent limitation of prompt tuning.
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G ALGORITHM OF MVP

Algorithm 1: Multi-Scale Visual Prompt

Input: P = {S4,..., 57},
Output: V5, Ti4

T

VB « Queue(), Tiq < Queue(); // > initialize prompt and indices queues

forall S; € P do

return VB, T,y

Nt 48, —4; // > compute number of outermost tokens
if V' < 7 then
NBe— N, // > set prompt count to outermost size
Iﬁ’(—Outermost(S,); // > select outermost token indices
else
a L%J; // > compute stride width for corner sampling
NB— 8a+4; // > set prompt count under threshold
Ifi’eLCorner(St,a); // > select L-shaped corner indices
VB« Visual_Prompts(N') ;
QueuePush(Iid,Ifi’); // > enqueue selected indices
Queue_Push(VB, VB ; // > enqueue generated prompts

24



Under review as a conference paper at ICLR 2026

H VISUALIZATION

Figure 6: Visualization of class-to-image samples generated using MVP (512x512).
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Figure 7: Visualization of class-to-image samples generated using MVP (256 x256).
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mvpP VAR

Figure 8: Comparison of class-conditional image samples generated by MVP and VAR at 256 x 256 resolution.

Class-to-Image. Visualization of samples conditioned on class labels. A subset of class labels is
randomly sampled from the validation set, and multiple images are generated for each class using
MVP. Each row corresponds to one class, and columns show diverse samples under the same con-
dition. Fig.[6|and Fig.[7]present the results at 512x512 and 256x256 resolutions, respectively. As
shown in Fig. 8] compared to VAR, our method produces more detailed and semantically accurate
generations, demonstrating stronger alignment with the class-conditional guidance.

Text-to-Image.  Fig. [0] and Fig. [I0] illustrate examples of text-to-image generation results pro-
duced by MVP at 256 x 256 resolution. Although VAR is originally trained for class-conditional
generation, these results demonstrate that it can be readily adapted to free-form text prompts through
minimal finetuning with paired image-text data. The generated samples exhibit diverse visual con-
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tent and strong semantic consistency with the input text, indicating MVP ability to generalize beyond
class supervision with minimal adaptation.

a photo of little cute cat.

a bookshelf full of books.

Figure 9: Visualization of text-to-image samples generated using MVP (256 x 256).
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a frog sitting on a leaf.

a deer standing in the woods.

Figure 10: Visualization of text-to-image samples generated using MVP (256 x 256).
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