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1. Introduction
Drug discovery remains a time-consuming and

costly process. Inventum.AI is a next-generation
drug design platform that integrates structure-based
modeling with interpretable AI. By leveraging graph
neural networks (GNNs) trained on protein–ligand
interaction data, Inventum.AI offers an automated
pipeline from binding site detection to scaffold
placement, functional group generation, docking,
and ADMET prediction [1, 2].

2. Core Methodology
Inventum.AI’s platform integrates advanced AI-

driven modules into a streamlined drug discovery
pipeline. Starting from protein structures, the work-
flow includes binding site detection, pocket anno-
tation, scaffold generation, and periphery elabora-
tion, all guided by graphneural networks andmedic-
inal chemistry heuristics [1, 2]. Optionally, scaffold
placement and site selection can be informed by
a reference ligand, enabling the design process to
leverage known binding modes for improved accu-
racy and relevance.

Fig. 1: Overview of Inventum.AI’s integrated drug
discovery pipeline

2.1 SiteRadar: Binding Pocket Detection
SiteRadar represents protein structures as graphs

of heavy atoms and uses two GNNs—a geomet-
ric model and an amino acid-specific model with
biochemical features—employing multi-head graph
transformers to predict and rank binding pock-
ets. Performance metrics include distance to ligand
centroid (DCC), Top N detection rates, ligand and
pocket coverage, and Dice volume overlap. The AA-
specific model achieves high precision (0.88), recall
(0.91), and F1 score (0.89), with strong localization
(DCC 0.76) and ligand coverage (82%). Compared
to FPocket [3] and PUResNet [4], SiteRadar predicts

fewer but more accurate pockets, including diverse
types like solvent-exposed and allosteric sites, mak-
ing it a robust tool for drug discovery.

Fig. 2: SiteRadar prediction interface showing iden-
tified binding pockets with confidence scores and
spatial localization.

Table 1: Comparison of binding pocket detection
performance for SiteRadar, FPocket, and PURes-
Net models. Metrics are reported on validation
datasets.

Model DCC Top N Top N+2 LC

SiteRadar AA specific 0.76 0.49 0.72 0.82
SiteRadar Geometric 0.82 0.47 0.74 0.83
FPocket 0.71 0.31 0.46 0.90
PUResNet 0.46 ND 0.47 0.95

Model PC DVO N pockets

SiteRadar AA specific 0.47 0.40 4.2
SiteRadar Geometric 0.43 0.39 7.6
FPocket 0.34 0.35 19.2
PUResNet 0.27 0.45 1

2.2 Scaffold Generation, SiteMap, and Periphery Gener-
ation
SiteMap constructs detailed 3D grid-based anno-

tations of binding pocket physicochemical proper-
ties and atom-type probabilities. This is achieved
using ensembles of 13 binary GNN classifiers, each
trained to predict the likelihood of placing a specific
atom type (e.g., aromatic carbon, sp2/sp3 oxygen,
ionizable nitrogen) at a given site.
Scaffold Generation uses pseudo-ligand atom-
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Fig. 3: Example of SiteMap output showing a bound
fragment composed of three atoms fragment
within the binding pocket

type maps and fragment libraries to propose core
scaffolds fitting key pocket interactions. Periphery
Generation adds substituents guided by medicinal
chemistry rules (Lipinski, Veber, PAINS) and atom-
type probabilities to ensure drug-likeness and opti-
mize interactions.
Affinity prediction is integrated through ensem-

ble GNN regressors trained on PDBBind [5], achiev-
ing a Pearson correlation of 0.76 and MAE of 1.03
log units, outperforming AutoDock Vina [6] and
LeadFinder [7]. ADMET properties are predicted
via an automatedmeta-learning pipeline that selects
and tunesmodels based on descriptor sets, enabling
robust and interpretable pharmacokinetic profiling.

Fig. 4: Periphery Generation module illustrating
scaffold placement and functional group growth.

3. Case Study: IRAK4
To validate the platform, we applied it to

interleukin-1 receptor-associated kinase 4 (IRAK4),
a clinically relevant kinase in autoimmune inflam-
mation. Starting from a site-annotated protein
structure, Inventum.AI generated 42 chemically
diverse ligands within 3 days. Molecular docking
and scoring reduced the list to 12 high-confidence
candidates.
Out of these, 6 compounds were prioritized, syn-

thesized, and tested experimentally using the ADP-
Glo kinase assay. All 6 showed measurable inhibi-

tion, with two compounds in the low micromolar
range (1.2–3.8 µM).

4. Conclusion
Inventum.AI provides a rapid, interpretable, and

experimentally validated approach to molecular de-
sign. It supports a full liganddiscoveryworkflowand
allows customization for different target classes and
medicinal chemistry strategies.
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