
Published as a conference paper at ICLR 2025

ASK, AND IT SHALL BE GIVEN: ON THE TURING COM-
PLETENESS OF PROMPTING

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, & Hanghang Tong
University of Illinois Urbana–Champaign
{rq5,zhexu3,wbao4,htong}@illinois.edu

ABSTRACT

Since the success of GPT, large language models (LLMs) have been revolutioniz-
ing machine learning and have initiated the so-called LLM prompting paradigm.
In the era of LLMs, people train a single general-purpose LLM and provide the
LLM with different prompts to perform different tasks. However, such empirical
success largely lacks theoretical understanding. Here, we present the first theoret-
ical study on the LLM prompting paradigm to the best of our knowledge. In this
work, we show that prompting is in fact Turing-complete: there exists a finite-size
Transformer such that for any computable function, there exists a corresponding
prompt following which the Transformer computes the function. Furthermore, we
show that even though we use only a single finite-size Transformer, it can still
achieve nearly the same complexity bounds as that of the class of all unbounded-
size Transformers. Overall, our result reveals that prompting can enable a single
finite-size Transformer to be efficiently universal, which establishes a theoretical
underpinning for prompt engineering in practice.

1 INTRODUCTION

The mainstream architecture of large language models (LLMs; e.g., OpenAI, 2024; Anthropic, 2024;
Meta, 2024; Google, 2024) is Transformers (Vaswani et al., 2017). There has been a series of
theoretical studies on Transformers under realistic abstractions (Pérez et al., 2019; Bhattamishra
et al., 2020; Hahn, 2020; Pérez et al., 2021; Hao et al., 2022; Liu et al., 2023a; Chiang et al., 2023;
Merrill & Sabharwal, 2023; Roberts, 2023; Merrill & Sabharwal, 2024a;b; Hou et al., 2024; Li
et al., 2024). For example, Pérez et al. (2021) have shown that the class of all Transformers with
hardmax attention is Turing-complete: for any computable function φ ∈ TIME1(t(n)), there exists
a Transformer that computes φ using O(t(n)) chain-of-thought (CoT; Wei et al., 2022b) steps and
O(log(n + t(n))) precision on length-n inputs; Merrill & Sabharwal (2024a) have later improved
the CoT complexity to O(t(n)) for TIME(t(n)) functions. These works have finely characterized
the capacities and limits of Transformers under the classic one-model-one-task paradigm.

Nevertheless, existing theoretical studies fail to align with the LLM prompting practice (i.e., one-
model-many-tasks). In the era of LLMs, people train a single general-purpose LLM and provide
the LLM with different prompts to perform different tasks. Since the success of GPT (Brown et al.,
2020), the LLM prompting paradigm has revolutionized machine learning (Liu et al., 2023b). For
example, a bonus capability arising from prompting is zero-shot learning (Wei et al., 2022a): when
provided with suitable prompts, LLMs can even perform novel tasks not present in their training cor-
pora. Such empirical success calls for a theoretical understanding of the LLM prompting paradigm:

Fundamentally, how powerful is the LLM prompting paradigm?

We answer this call and present the first theory on the LLM prompting paradigm to the best of our
knowledge. In this work, we show that prompting is in fact Turing-complete: there exists a finite-size
Transformer such that for any computable function, there exists a corresponding prompt following
which the Transformer computes the function. Furthermore, we show that prompting is not only
universal but also efficiently universal: even though we use one finite-size Transformer, it can still
achieve nearly the same complexity bounds as that of the class of all unbounded-size Transformers.

Main contributions. Our main contributions are informally stated as follows:

1

Published as a conference paper at ICLR 2025

• Expressive power. We show that prompting is Turing-complete: there exists a finite-size
Transformer Γ such that for any computable function φ, there exists a finite prompt πφ

such that for any input x, the Transformer Γ computes φ(x) following the prompt πφ.
Importantly, our constructed Transformer Γ is independent of the function φ, the prompt
πφ is independent of the input x, and the input x can be arbitrarily long.

• Simple construction. In fact, it is not hard to deduce the existence of such a Transformer
Γ by combining Theorem 1 of Hennie & Stearns (1966) and Theorem 3.4 of Pérez et al.
(2019), but explicitly constructing the Transformer via that approach is cumbersome. In-
stead, we provide a simple constructive proof, which makes it easy to further study the
properties of the construction such as CoT complexity and precision complexity.

• CoT complexity. We show that our Γ can compute any TIME2(t(n)) function within
O(t(n)) CoT steps and can compute any TIME(t(n)) function within O(t(n) log t(n))
CoT steps for any length-n input. Notably, our result shows that even a single Transformer
can still achieve nearly the same CoT complexity as the class of all Transformers does.

• Precision complexity. We show that our Γ can compute any TIME(t(n)) function within
O(log(n + t(n))) bits of precision for any length-n input. Notably, our result shows that
even a single Transformer can still achieve the same precision complexity as the class of
all Transformers does. In particular, Γ can decide any P language within log-precision.

1.1 RELATED WORK

In modern machine learning (Wei et al., 2024; Chen et al., 2024; Liu et al., 2024a;b;c; 2023c; Qiu
et al., 2024b;a; 2023; 2022; Xu et al., 2024; Qiu & Tong, 2024; Zeng et al., 2024; Lin et al., 2024;
Yoo et al., 2025; 2024; Chan et al., 2024; Wu et al., 2024; He et al., 2024; Wang et al., 2023),
Transformers have nowadays become a mainstream architecture. Existing theoretical studies on
Transformers fall under the classic one-model-one-task paradigm: they need to construct different
Transformers for different tasks. There are two lines of related work: (i) when at most O(1) CoT
steps are allowed, it has been shown that Transformers are capable but far from Turing-complete
(Hahn, 2020; Hao et al., 2022; Liu et al., 2023a; Chiang et al., 2023; Merrill & Sabharwal, 2023;
2024b); (ii) when more CoT steps are allowed, it has been shown that the expressive power of
Transformers increases with the number of CoT steps (Pérez et al., 2019; Bhattamishra et al., 2020;
Pérez et al., 2021; Roberts, 2023; Merrill & Sabharwal, 2024a; Hou et al., 2024; Li et al., 2024).
Besides that, there have recently been studies on the learnability (Malach, 2023; Grau-Moya et al.,
2024) and the in-context learning capability (Akyürek et al., 2022; von Oswald et al., 2023; Zhang
et al., 2024; Ahn et al., 2024; Vladymyrov et al., 2024). Nevertheless, no existing work studies the
LLM prompting paradigm (i.e., the one-model-many-tasks paradigm). Our work is the first to bridge
this gap to the best of our knowledge.

1.2 TECHNICAL OVERVIEW

A core step of our constructive proof is to construct a new model of computation (called 2-PTMs)
that can be easily encoded into a prompt using a finite alphabet. Furthermore, we show that 2-PTMs
are not only Turing-complete but also nearly as efficient as Turing machines.

Theorem (informal version of Theorem 4.1). Any TIME(t(n)) function can be computed by a 2-
PTM within O(t(n) log t(n)) steps.

Given any computable function φ, we encode its 2-PTM into a prompt πφ. Then, it remains to
construct a Transformer Γ that can execute 2-PTMs. Since it is known that Transformers without
CoTs are not universal (Hahn, 2020), the Transformer Γ needs to use CoT steps to execute 2-PTMs.
Specifically, we use CoT steps to record the execution steps of the 2-PTM so that the Transformer
can restore the state of the 2-PTM at any step. This establishes the CoT complexity of Γ .

Corollary (informal version of Corollary 4.5). Our constructed Γ can compute any TIME(t(n))
function within O(t(n) log t(n)) CoT steps.

To incorporate input x into computation, we use O(|x|) CoT steps to emulate an imaginary process
of writing the input x onto a tape of the 2-PTM. This implies the precision complexity of Γ .
Corollary (informal version of Corollary 4.7). Our constructed Γ can compute any TIME(t(n))
function within O(log(n+ t(n))) bits of precision.

2

Published as a conference paper at ICLR 2025

Finally, we construct a decoder-only Transformer that achieves the desiderata above by leveraging
ReLU activation, layer normalization, and causal attention.

2 PRELIMINARIES

Let ϵ denote the empty string. Given an alphabet Σ, let Σn (n ≥ 0) denote the set of length-n
strings over Σ, let Σ∗ :=

⋃
n≥0Σ

n denote the set of all finite strings over Σ, let Σ+ :=
⋃

n≥1Σ
n

denote the set of all non-empty finite strings over Σ, and let Σω denote the set of all countably
infinite strings over Σ. Each symbol in Σ is called a token. For a string x ∈ Σ∗, let |x| denote the
length of the string, and let xn denote repeating the string n times. For two strings x,y ∈ Σ∗, let
x · y denote their concatenation. Given a string x = x0 · x1 · · ·x|x|−1 ∈ Σ∗, for an index i ∈ Z, let
xi denote the (i mod |x|)-th token of x; for indices i, j ∈ Z with i mod |x| ≤ j mod |x|, let xi:j

denote the substring xi mod |x| · x(i mod |x|)+1 · · ·x(j mod |x|)−1.

2.1 THEORY OF COMPUTATION

Turing machines. Turing machines (TMs; Turing, 1937a) are an abstract model of computation that
defines the notion of computability (Church, 1936; Kleene, 1936; Turing, 1937b). An m-tape TM
is defined by a septuple (Q, qstart, qhalt, Σ, ,m, δ) where Q is the finite set of states, qstart ∈ Q is the
initial state, qhalt is the halting state, Σ is the finite alphabet of the tapes, ∈ Σ is the blank symbol,
m ∈ N is the number of tapes, and δ : (Q \ {qhalt})×Σm ⇀ Q× (Σ×{L, S, R})m is the transition
function (L: left; S: stay; R: right). See, e.g., Arora & Barak (2009) for details. By the Church–
Turing thesis (Church, 1936; Kleene, 1936; Turing, 1937b), a function φ : domφ→ {0, 1}∗ is said
to be computable if there exists a TM that computes φ(x) for all inputs x ∈ domφ.

Shannon (1956) has shown that any TM M over any alphabet can be simulated by a TM M ′ over
the binary alphabet Σ = {0, 1} with = 0 (although M ′ uses more states). Hence, we will assume
that TMs have a binary alphabet for simplicity throughout this paper.

Time complexity. Let n denote the length of the input. A function t(n) : N → R+ is said to be
a complexity function iff t(n) is non-decreasing and either t(n) is a constant > 1 or t(n) → ∞ as
n→∞. In this work, we refer to the time complexity as the the time complexity on a random-access
machine (RAM) unless otherwise stated (e.g., when working with TMs). If Θ(t(n)) is a complexity
function, let TIMEm(t(n)) denote the class of functions that can be computed by an m-tape TM
within O(t(n)) steps; let TIME(t(n)) :=

⋃
m≥1TIMEm(t(n)) denote the class of functions that

can be computed by a TM within O(t(n)) steps; and let P ⊂ TIME(poly(n)) denote the class of
(indicator functions of) languages that can be decided in polynomial time.

2.2 NEURAL NETWORKS

ReLU neural networks. A ReLU neural network ψ : Re0 → ReL is a composition ψ := ψL−1 ◦
· · · ◦ ψ0 of basic operations ψl : Rel → Rel+1 (l = 0, . . . , L− 1) where each basic operation ψl(z)
(z ∈ Rel) is either an affine map ψl(z) := W lz + bl (W l ∈ Rel+1×el , bl ∈ Rel+1), an entry-wise
ReLU activation ψl(z) := max{z,0} (Fukushima, 1969) with el+1 = el, or a layer normalization
ψl(z) :=

z
∥z∥2

1[z ̸=0] (Ba et al., 2016) with el+1 = el.

Decoder-only Transformers. Mainstream LLMs are based on decoder-only Transformers (Radford
et al., 2018). Given a finite token alphabet Σ, a decoder-only Transformer Γ : Σ+ → Σ (with
greedy decoding) is a composition Γ := argmax ◦Γout ◦ ΓL−1 ◦ · · · ◦ Γ0 ◦ Γemb consists of an
embedding layer Γemb : Σ+ → (Rd)+, causal-attention Transformer layer Γl : (Rd)+ → (Rd)+

(l = 0, . . . , L− 1), and an output layer Γout : Rd → RΣ . A token embedding is a map emb : Σ →
Rd, and a positional encoding is a map pos : N → Rd. Following the common practice (Vaswani
et al., 2017), given the input token sequence v = v0 · · · v|v|−1 ∈ Σ+, the embedding layer Γemb

adds a positional encoding pos(i) to each token embedding emb(vi):

z0,i := emb(vi) + pos(i), i = 0, . . . , |v| − 1, (1)

where pos is a computable function. Following existing theoretical works (e.g., Pérez et al., 2019;
Hao et al., 2022; Merrill & Sabharwal, 2024a), we use hardmax attention as a realistic abstraction
of softmax. Given an R sequence s, if the maximum value of s appears t times, then one has

3

Published as a conference paper at ICLR 2025

hardmaxi(s) := 1
t if si equals the maximum value and hardmaxi(s) := 0 otherwise. Each

Transformer layer Γl has Hl attention heads followed by a ReLU neural network ϕl : Rd → Rd.
Each attention head k has a query map qryl,k : Rd → Rdl,k , a key map keyl,k : Rd → Rdl,k , a value
map vall,k : Rd → Rd, and a similarity map siml,k : R→ R (k = 0, . . . ,Hl − 1), all of which are
ReLU neural networks. The similarity scores between two tokens vi and vj are

sl,k,i,j := siml,k(qryl,k(zl,i)
T keyl,k(zl,j)). (2)

A decoder-only Transformer layer Γl is computed via causal attention and residual connection:

zl+1,i := zl,i + ϕl

(Hl−1∑
k=0

(i∑
j=0

hardmaxj(sl,k,i,0, . . . , sl,k,i,i) vall,k(zl,j)

))
. (3)

The output token is greedily selected according to the final outputs of the last token v|v|−1:

Γ (v) := argmax
c∈Σ

Γout(zL,|v|−1)c, (4)

where the output layer Γout is a ReLU neural network.

Given a Transformer Γ , let generateΓ : Σ+ → Σ+∪Σω denote autoregressive generation using Γ .
Specifically, let w ∈ Σ+ denote the input sequence and y ∈ Σ∗ the (current) output sequence. Ini-
tially, y is an empty string. In each generation step, we append Γ (w·y) to y. The generation process
ends once the last token of y is a so-called stop token $ ∈ Σ, and we define generateΓ (w) := y
at last. It is possible that generation never ends, in which case we have y ∈ Σω. The autore-
gressive generation procedure is formally presented in Algorithm 1. A Transformer is said to use
log-precision for a computable function φ if the intermediate computation of all generation steps
uses O(log n) bits of precision for every length-n input of function φ (Merrill & Sabharwal, 2023).

3 TURING COMPLETENESS OF PROMPTING

Theorem 3.1 (Turing completeness of prompting). There exist a finite alphabet Σ, a finite-size
decoder-only Transformer Γ : Σ+ → Σ, and coding schemes tokenize : {0, 1}∗ → Σ∗ and
readout : Σ∗ → {0, 1}∗ with which prompting is Turing-complete: for every computable function
φ : domφ → {0, 1}∗ with domφ ⊆ {0, 1}∗, there exists a prompt πφ ∈ Σ+ such that for every
input x ∈ domφ, generateΓ (πφ · tokenize(x)) computes1 a finite CoT, and

readout(generateΓ (πφ · tokenize(x))) = φ(x). (5)
Here, Σ,Γ, tokenize, readout are independent of φ; πφ is independent of x; for any input x ∈
{0, 1}∗, tokenize and readout run in O(|x|) and O(|φ(x)|) time on a RAM, respectively.

Our Theorem 3.1 shows that prompting can enable a single Transformer to be universal and estab-
lishes a theoretical underpinning for prompt engineering in practice. Note that CoT is necessary for
Turing completeness because it is known that Transformers without CoTs cannot even compute the
parity function (Hahn, 2020). As a CoT typically contains more information than the answer φ(x)
alone, we need a map readout : Σ∗ → {0, 1}∗ here to extract the answer, resembling the fact that
humans need to read out the answer from the generated CoT.

Furthermore, to elucidate the technical non-triviality of our Theorem 3.1, we remark that our Theo-
rem 3.1 has ruled out trivial possibilities:

• Memorization? It is impossible that the Transformer Γ simply memorizes all computable
functions, because there are infinitely many computable functions while Γ has only a finite
size (i.e., it has a finite number of finite-bit parameters).

• Self-answering? It is impossible that the prompt πφ simply reveals the answers for all
possible inputs, because there can be infinitely many inputs while the prompt is finite.

• Tautology? It is impossible that Γ simply restates πφ · tokenize(x) and lets tokenize
or readout compute φ(x) instead, because the time hierarchy theorem (Hartmanis &
Stearns, 1965) implies that a computable function φ in general can require more than
Ω(max{|x|, |φ(x)|}) time while tokenize and readout run in only O(|x|) time and
O(|φ(x)|) time, respectively.

1Following prior work (e.g., Pérez et al., 2019), we assume that every arithmetic computation in Γ is exact.

4

Published as a conference paper at ICLR 2025

Our proof of Theorem 3.1 is constructive. In the rest of this section, we will present the core con-
structions in our proof, including the prompt, the CoT steps, the input tokenizer, and the Transformer.
Due to space limit, the complete proof is deferred to Appendix B.

3.1 CONSTRUCTION OF PROMPTS

In this subsection, we show how to construct a prompt πφ for any given computable function φ.
The basic idea here is that we let the prompt encode a formal description of the function φ and later
construct a Transformer that can execute the description. The construction of the Transformer is
deferred to Section 3.4.

As computability means that there exists a TM that computes φ, one might seek to encode the TM
into the prompt. Unfortunately, a TM can have an unbounded number of states and an unbounded
number of tapes, but we are only allowed to construct all prompts using a single finite alphabetΣ and
to execute all prompts using a single finite-size Transformer. Even though one can use sophisticated
schemes to encode TMs (Turing, 1937a), it remains highly non-trivial to construct a Transformer to
efficiently execute such encoded TMs.

Hence, instead of working with TMs directly, here we want a model of computation that (i) can be
easily encoded by a single finite alphabet, that (ii) is still Turing-complete, and that (iii) is nearly
as efficient as TMs. Although a possible approach is to use an imperative model of computation
such as Wang machines (Wang, 1957) and Davis–Sigal–Weyuker’s Post–Turing machines (DSW-
PTMs; Davis et al., 1994), it is still unknown how to efficiently simulate arbitrary TMs using Wang
machines or Davis–Sigal–Weyuker’s Post–Turing machines. This suggests that these models of
computation might not be the best candidate for constructing the prompt.

To fulfill our desiderata, we propose a new imperative model of computation that extends Wang ma-
chines and DSW-PTMs. Inspired by the Hennie–Stearns theorem (Hennie & Stearns, 1966), we let
our model of computation use two bi-infinite tapes A and B. Each tape has infinitely many cells over
the binary alphabet {0, 1} and a head pointing to a cell. We call this model two-tape Post–Turing
machines (2-PTMs). A 2-PTM is defined by a finite instruction sequence ι = ⟨ι0, ι1, . . . , ι|ι|−1⟩
where each instruction ιj (0 ≤ j < |ι|) is one of the following:

• #: halt;
• τL (τ ∈ {A, B}): move the head for tape τ one cell left, and go to ιj+1;
• τR (τ ∈ {A, B}): move the head for tape τ one cell right, and go to ιj+1;
• τ0 (τ ∈ {A, B}): write 0 to the pointed cell of tape τ , and go to ιj+1;
• τ1 (τ ∈ {A, B}): write 1 to the pointed cell of tape τ , and go to ιj+1;
• τ!k (τ ∈ {A, B}; k ̸= j): if the pointed cell of tape τ is 0, go to ιk; else, go to ιj+1;
• τ?k (τ ∈ {A, B}; k ̸= j): if the pointed cell of tape τ is 1, go to ιk; else, go to ιj+1.

Let I denote the set of all possible instructions. Before execution, the input is written to tape A, and
the head for tape A is pointing to the leftmost cell of the input (called cell 0). All blank tape cells are
filled with 0. Then, execution starts from instruction ι0 and halts upon instruction #, and the output
is the content left on tape A starting from cell 0. We will show in Section 4.1 that 2-PTMs are not
only Turing-complete but also nearly as efficient as TMs.

Next, we describe how to construct a prompt for a given computable function. Recall that 2-PTMs
use the binary alphabet {0, 1} with blank symbol being 0. To distinguish the input symbol 0 and
the blank symbol 0, we employ Shannon’s encoding S : {0, 1}∗ → {0, 1}∗ (Shannon, 1956) to
translate inputs and outputs of computable functions:

S(ϵ) := ϵ, S(0) := 10, S(1) := 11; (6)
S(x) := S(x0) · · ·S(x|x|−1), x ∈ {0, 1}∗. (7)

Thus, we identify 00 as the blank symbol. Note that Shannon’s encoding S is injective, and that both
S and its corresponding decoding S−1 are computable in linear time. Since the class of 2-PTMs is
Turing-complete, then given any computable function φ, there exists a 2-PTM ι ∈ I+ that computes
S(φ(x)) from S(x) for all x ∈ domφ. It remains to encode ι into a prompt πφ.

We will define a map P : N × I → Σ∗ to encode each instruction ιj and let the prompt be the
concatenation of P (j, ιj), where the alphabet Σ will be specified later. For instructions #, τL, τR,

5

Published as a conference paper at ICLR 2025

τ0, τ1, we can simply create a corresponding token in Σ for each of them:

P (j, ιj) := ιj if ιj is one of #, τL, τR, τ0, τ1. (8)

For instructions τ!k and τ?k, since k can be any natural number, we can no longer create a token
for each k because otherwise the alphabet Σ would be infinite. Instead, to help the Transformer to
execute the prompt, we use a unary encoding w.r.t k − j:

P (j, ιj) :=

{
σ · -j−k · @ if ιj = σk and k < j,

σ · +k−j · @ if ιj = σk and k > j,
σ ∈ {τ!, τ?}τ∈{A,B}, (9)

where we create seven auxiliary tokens A!, B!, A?, B?,-,+,@ ∈ Σ to be used by the Transformer.
Finally, we construct the prompt as

πφ := ˆ · P (0, ι0) · · ·P (|ι| − 1, ι|ι|−1) · $, (10)

where we create two auxiliary tokens ˆ,$ ∈ Σ to be used by the Transformer.

Example. A 2-PTM for deciding the DYCK language (Schützenberger, 1963) is2

A?14A0ALA0ALA?1ARARA1ARBLB?13A1#ARA?19B1BRB!21BLB!24B0ARB!0ALARARA?25A0ALA0ALA?28ARARA1#,

and its corresponding prompt is
ˆA?++++++++++++++@A0ALA0ALA?----@ARARA1ARBLB?++@A1#ARA?++++@B1BRB!+++@BLB!++++@B0ARB!-----------------------@
ALARARA?--@A0ALA0ALA?----@ARARA1#$.

3.2 RECORDING EXECUTION IN COT STEPS

It is known that finite-size Transformers without CoT steps are not universal (Hahn, 2020). To
achieve Turing completeness, here we leverage CoT steps to record execution steps of the 2-PTM ι
so that the Transformer can restore the state of ι at any execution step. In this subsection, we focus
on the case where the input is empty; we will describe how to incorporate the input in Section 3.3.

Let ιj denote the current instruction, and let cA, cB denote the pointed cell of tapes A and B, respec-
tively. Note that each execution step can be summarized as a quadruple (j, ιj , cA, cB), where ιj is the
current instruction, and cA and cB are the currently pointed cell of tapes A and B, respectively. We
will define a map C : N × I × {0, 1}2 → Σ∗ that maps each execution step to one or more CoT
steps. If ιj is one of #, τL, τR, τ0, τ1, we simply use a single CoT step to record ιj :

C(j, ιj , cA, cB) := ιj if ιj is one of #, τL, τR, τ0, τ1. (11)

If ιj is τ!k or τ?k, we record whether the go-to condition is satisfied or not:

C(j, ιj , cA, cB) :=



/ if ιj = τ!k and cτ ̸= 0;

= · -j−k · @ if ιj = τ!k, cτ = 0, and k < j;

= · +k−j · @ if ιj = τ!k, cτ = 0, and k > j;

/ if ιj = τ?k and cτ ̸= 1;

= · -j−k · @ if ιj = τ?k, cτ = 1, and k < j;

= · +k−j · @ if ιj = τ?k, cτ = 1, and k > j;

(12)

where we create two auxiliary tokens /,= ∈ Σ to indicate whether the go-to condition is unsatisfied
or satisfied, respectively. The execution step stops once it reaches the halting instruction #.

Finally, we append the output φ(x) after the execution steps in the CoT. We create a new auxiliary
token : ∈ Σ to mark the beginning of the output and reuse the token $ ∈ Σ to mark the end of the
output, and we put the output φ(x) ∈ {0, 1}∗ ⊆ Σ∗ between : and $. Hence, we define readout
as extracting the part of the CoT between : and $ (see Algorithm 2). By construction, the number
of CoT steps is proportional to the number of execution steps plus the length of the output.

Example (cont’d). An empty input ϵ is in the DYCK language. Its corresponding CoT steps are:

/A0ALA0AL/ARARA1ARBL/A1:1$.

To recap, we have created a finite alphabet of 23 tokens all together:

Σ := {#, AL, BL, AR, BR, A0, B0, A1, B1, A!, B!, A?, B?,-,+,@,ˆ,$,/,=,:, 0, 1}. (13)
2From now on, we will omit delimiters for conciseness when there is no ambiguity.

6

Published as a conference paper at ICLR 2025

3.3 CONSTRUCTION OF INPUT TOKENIZER

In this subsection, we describe our input tokenizer tokenize : {0, 1}∗ → Σ∗, which is independent
of the function φ and can encode any input x ∈ {0, 1}∗ without changing the prompt πφ. Although
it is possible to introduce additional auxiliary tokens to represent inputs, here we provide a simpler
construction that makes use of only the existing tokens in Σ.

The key idea here is to use CoT steps to emulate an imaginary process of writing the input to tape
A. We will define a map E : {0, 1}+ → Σ+ that encodes an input x into CoT steps. Since 2-PTMs
assume that the head for tape A is initially pointing to the leftmost cell of the input, we write the
input from right to left onto tape A. Hence, for each bit xi of the input x, we write its Shannon
encoding S(xi) from right to left onto tape A:

E(0) := ALALA1, E(1) := ALA1ALA1. (14)

For the entire input, we concatenate the CoT steps of each bit from right to left:

E(x) := E(x|x|−1) · · ·E(x0), x ∈ {0, 1}+. (15)

Intuitively, E(x) represents execution steps of an imaginary program that writes S(x) onto tape A.

To ensure that the tape-A head is at cell 0 after writing the input, we first move the tape-A head
|S(x)| = 2|x| steps right. Hence, we define the CoT steps for writing S(x) as Z : {0, 1}+ → Σ+,

Z(x) := AR2|x| · E(x), x ∈ {0, 1}+. (16)

Nevertheless, there is a caveat: a 2-PTM should start from ι0, but these extra CoT steps Z(x)
will confuse the Transformer into starting from ι|Z(x)|. To address this caveat, our input tokenizer
tokenize additionally employs an imaginary go-to step to let the Transformer go back to ι0. Follow-
ing Equation (12), we re-use =,-,@ to construct the imaginary go-to step:

tokenize(x) :=

{
ϵ if x = ϵ,

Z(x) · = · -|Z(x)| · @ if x ̸= ϵ.
(17)

Example. Since input 01 has Shannon encoding S(01) = 1011, it is tokenized as

tokenize(01) = ARARARARALA1ALA1ALALA1=-----------@.

3.4 CONSTRUCTION OF TRANSFORMER

In this subsection, we sketch how to construct a decoder-only Transformer Γ that executes prompts
through CoT steps as described in Section 3.2. Due to the space limit, we only present three core
operations to be used by Γ here and defer the detailed construction to Appendix B.

Boolean algebra via ReLU activation. Let ReLU(z) := max{z, 0} denote the ReLU function.
Boolean algebra is a basic building block of our Transformer for, e.g., checking the go-to condition.
A core operation in Boolean algebra is the ∧ operation. Here, we implement ∧ via ReLU activation:

u ∧ v = ReLU(u+ v − 1), u, v ∈ {0, 1}. (18)

Together with negation ¬v = 1 − v, they can implement all other Boolean operations such as
u ∨ v = ¬((¬u) ∧ (¬v)) and u⊕ v = (u ∧ (¬v)) + ((¬u) ∧ v).
Equality check via layer normalization. Let LN(z) := z

∥z∥2
1[z ̸=0] denote layer normalization

(LN). When checking whether a tape cell has been written or not, we will need an equality check
between two real numbers: NotEqual : R2 → {0, 1} where NotEqual(u, v) := 1[u̸=v] (u, v ∈ R).
Since NotEqual is not a continuous map, it cannot be implemented using only affine maps or ReLU
activation. Instead, we implement NotEqual via layer normalization as follows:

NotEqual(u, v) := ReLU(LN(u− v)) + ReLU(LN(v − u)), u, v ∈ R. (19)

Farthest retrieval via causal attention. A core operation to be used by the Transformer Γ can be
abstracted as follows: Given a number sequence v = ⟨v0, . . . , v|v|−1⟩ with vi ∈ {−1, 0,+1} for all
i, find the smallest i such that

∑i
j=0 vj =

∑|v|−1
j=0 vj . However, since causal attention is an average

7

Published as a conference paper at ICLR 2025

rather than a sum, it cannot even compute
∑i

j=0 vj for arbitrary i. It can compute the average
1

i+1

∑i
j=0 vj for every i, but

∑i
j=0 vj =

∑|v|−1
j=0 vj does not mean 1

i+1

∑i
j=0 vj = 1

|v|
∑|v|−1

j=0 vj .
To bypass the mismatched coefficients 1

i+1 and 1
|v| , we use LN to remove the averaging coefficient

1
i+1 . First, we let every token attend to the initial token ˆ at i = 0 to compute 1

i+1 and compute

ui := LN

(∑i
j=0 vj

i+ 1
,

1

i+ 1

)T

=

(∑i
j=0 vj√

(
∑i

j=0 vj)
2 + 1

,
1√

(
∑i

j=0 vj)
2 + 1

)T

. (20)

If
∑i

j=0 vj =
∑|v|−1

j=0 vj , we have uT
i u|v|−1 = 1; if

∑i
j=0 vj ̸=

∑|v|−1
j=0 vj , we have uT

i u|v|−1 <
1. Thus, we can add u|v|−1 to the query map qry and add ui to the key map key in attention to
retrieve an i with

∑i
j=0 vj =

∑|v|−1
j=0 vj .

It remains to retrieve the smallest such i via causal attention. Since vi ∈ {−1, 0,+1}, then note that
if uT

i u|v|−1 < 1, we in fact have

uT
i u|v|−1 <

(
|v|√
|v|2 + 1

,
1√
|v|2 + 1

)(
|v|+ 1√

(|v|+ 1)2 + 1
,

1√
(|v|+ 1)2 + 1

)T

(21)

=
|v|(|v|+ 1) + 1√

|v|2 + 1
√
(|v|+ 1)2 + 1

= 1− Ω
(1

|v|4
)
. (22)

This motivates us to use the following quantity, which can be computed in positional encoding pos:

pi := 1− (i+ 1)(i+ 2) + 1√
(i+ 1)2 + 1

√
(i+ 2)2 + 1

= Ω
(1

(i+ 1)4

)
. (23)

Note that if uT
i u|v|−1 = 1 and uT

j u|v|−1 < 1, we also have

uT
j u|v|−1 +

p|v|−1

j + 1
≤ uT

j u|v|−1 + p|v|−1 < 1 = uT
i u|v|−1 < uT

i u|v|−1 +
p|v|−1

i+ 1
. (24)

Therefore, we can retrieve the smallest iwith uT
i u|v|−1 = 1 by using query vector (u|v|−1, p|v|−1)

T

and key vector (ui,
1

i+1)
T in causal attention.

4 COMPLEXITY BOUNDS

We (i) show in Section 4.1 that 2-PTMs are Turing-complete and nearly as efficient as TMs and (ii)
use this result to characterize the complexities of our constructed Γ in Sections 4.2 & 4.3. Through-
out this section, let t(n) denote a complexity function. Following the convention in complexity
theory, we allow different computable functions to have different constant factors in big O.

4.1 EFFICIENT SIMULATION OF TMS BY 2-PTMS

Since 2-PTMs are an essential component of our construction, we need the complexity bounds of
2-PTMs to analyze the complexities of Γ . While Wang machines and DSW-PTMs suffer from a
polynomial slowdown over TMs (Neary et al., 2014), we show that our 2-PTMs in fact has only at
most a logarithmic slowdown over TMs. Let TIME2-PTM(t(n)) denote the class of functions that can
be computed by a 2-PTM within O(t(n)) steps.
Theorem 4.1 (efficient multi-tape simulation). TIME(t(n)) ⊆ TIME2-PTM(t(n) log t(n)).

Theorem 4.1 shows that our 2-PTMs are Turing-complete and nearly as efficient as TMs. To prove
it, we need the following Lemma 4.2 to establish a relation between two-tape TMs and 2-PTMs.
Lemma 4.2 (two-tape simulation). TIME2(t(n)) ⊆ TIME2-PTM(t(n)).
Proof of Lemma 4.2. For any computable function φ ∈ TIME2(t(n)), there is a two-tape TM M =
(Q, qstart, qhalt, {0, 1}, = 0,m = 2, δ) that maps S(x) to S(φ(x)) within time O(t(n)), according
to Shannon (1956). Suppose w.l.o.g. that Q = {0, 1, . . . ,K} (K ∈ N+) and that qstart = 0, qhalt =
K. We will construct a 2-PTM ι of length |ι| = 27K + 1 that simulates M within time O(t(n)).

8

Published as a conference paper at ICLR 2025

Recall that δ : (Q \ {qhalt})× {0, 1}2 → Q× ({0, 1} × {L, S, R})2. We use exactly six instructions
η(q′,cA,dA,cB,dB) to simulate each transition (q′, c′A, dA, c

′
B, dB), where q′ ∈ Q, c′A, c

′
B ∈ {0, 1}, dA, dB ∈

{L, S, R}. If dA, dB ̸= S, we let

η(q′,c′A,dA,c
′
B,dB)

:= ⟨Ac′A, AdA, Bc′B, BdB, A!27q′ , A?27q′⟩. (25)

If dA = S or dB = S, we can replace the corresponding AdA or BdB with Ac′A or Bc′B, respectively, so
that η(q′,c′A,dA,c

′
B,dB)

still has exactly six instructions.

Then for each q ∈ Q \ {qhalt}, we use 27 instructions to simulate its transition rules:

ι27q:27q+27 := ⟨A?27q+14, B?27q+8,ηδ(q,0,0),ηδ(q,0,1), B?27q+21,ηδ(q,1,0),ηδ(q,1,1)⟩. (26)

For the halting state qhalt = K, we use one instruction ι27K := # to simulate it.

Since ι simulates each transition of M by O(1) steps, then ι also has time complexity O(t(n)).

Due to space limit, the proof of correctness of ι is deferred to Appendix A.

We are now ready to prove Theorem 4.1.

Proof sketch of Theorem 4.1. Let φ ∈ TIME(t(n)). Then, there exists a TM M that computes φ
within T (n) = O(t(n)) steps for every length-n input.

Case 1: There exists n0 ∈ N such that T (n0) < n0. Thus, the behavior of the TM M depends only
on the first T (n0) < n0 bits of the input. Hence, further increasing the length of the input does not
change the behavior of M . Therefore, a tighter time complexity T̃ (n) of M is

T̃ (n) ≤ T (n0) = O(1), ∀n ∈ N. (27)

This implies that φ ∈ TIME2(1) ⊆ TIME2-PTM(1) ⊆ TIME2-PTM(t(n) log t(n)).

Case 2: T (n) ≥ n for all n ∈ N. Then by the Hennie–Stearns theorem (Hennie & Stearns, 1966),
φ ∈ TIME2(T (n) log T (n)). Therefore, by Lemma 4.2,

φ ∈ TIME2(t(n) log t(n)) ⊆ TIME2-PTM(t(n) log t(n)). (28)

It follows from the above two cases that TIME(t(n)) ⊆ TIME2-PTM(t(n) log t(n)).

Theorem 4.1 shows that 2-PTMs have only at most a logarithmic slowdown over TMs. In subsequent
Sections 4.2 & 4.3, we will use Theorem 4.1 to characterize the CoT complexity and the precision
complexity of our constructed Γ .

4.2 COT COMPLEXITY

In this subsection, we analyze the CoT complexity of our construction. We will show that our con-
structed Γ can compute any TIME2(t(n)) function within O(t(n)) CoT steps and any TIME(t(n))
function within O(t(n) log t(n)) CoT steps for any length-n input.
Definition 4.3 (CoT complexity class). Let CoTΓ (t(n)) be the class of functions that our con-
structed Transformer Γ can compute within O(t(n)) CoT steps.
Lemma 4.4 (CoT complexity for 2-PTMs). TIME2-PTM(t(n)) ⊆ CoTΓ (t(n)).

Proof sketch. For any φ ∈ TIME2-PTM(t(n)), since prompt πφ has length |πφ| = O(1), then by
Section 3.2, each #, τ<, τ>, τ0, τ1 takes 1 = O(1) CoT step, and each τ!k, τ?k takes at most
O(|πφ|) = O(1) CoT steps. This implies that TIME2-PTM(t(n)) ⊆ CoTΓ (t(n)).

Corollary 4.5 (CoT complexity for TMs). For two-tape TMs, TIME2(t(n)) ⊆ CoTΓ (t(n)). For
general TMs, TIME(t(n)) ⊆ CoTΓ (t(n) log t(n)).

Proof. For two-tape TMs, by Lemmas 4.2 & 4.4,

TIME2(t(n)) ⊆ TIME2-PTM(t(n)) ⊆ CoTΓ (t(n)).

For general TMs, by Theorem 4.1 & Lemma 4.4,

TIME(t(n)) ⊆ TIME2-PTM(t(n) log t(n)) ⊆ CoTΓ (t(n) log t(n)).

9

Published as a conference paper at ICLR 2025

Corollary 4.5 shows prompting a single Transformer can compute any TIME2(t(n)) function within
O(t(n)) CoT steps and any TIME(t(n)) function within O(t(n) log t(n)) CoT steps. Notably, this
is nearly the same as the CoT complexity of the class of all Transformers, which can compute any
TIME(t(n)) function within O(t(n)) CoT steps. The logarithmic slowdown here is because the
class of all Transformers can simulate an unbounded number of tapes while our single Transformer
simulates only a finite number of tapes. Assuming TIME2(t(n)) ̸= TIME(t(n)), it is unlikely that
the CoT complexity O(t(n) log t(n)) of Γ for TIME(t(n)) could be further improved to O(t(n)).

4.3 PRECISION COMPLEXITY

In this subsection, we analyze the precision complexity of our construction. We will show that our
constructed Γ can compute any TIME(t(n)) function within O(log(n+ t(n))) bits of precision for
any length-n input; in particular, it can decide any P language within log-precision. Following the
common practice in numerical analysis, we assume that each floating-point number has significant
bits and guard bits (Goodman & Feldstein, 1977), where both significant bits and guard bits are used
in arithmetic operations while guard bits are rounded off in number comparisons.
Definition 4.6 (Precision complexity class). For a complexity function p(n), let PRECΓ (p(n)) be
the class of functions that our constructed Γ can compute using O(p(n)) significant and guard bits.

Corollary 4.7 (Precision complexity). TIME(t(n)) ⊆ PRECΓ (log(n+t(n))); P ⊆ PRECΓ (log n).

Proof sketch. For any function φ ∈ CoTΓ (t(n) log t(n)), since the prompt πφ has length O(1),
then by Section 3.3, the total length I of the prompt, the tokenized input, and the CoT steps is

I = O(1) + O(n) + O(t(n) log t(n)) = O(n+ t(n) log t(n)). (29)

Thus, according to Section 3.4, all the intermediate results during computation are ≤ O(1), and
attention similarities have mutual differences ≥ Ω

(
1

IΘ(1)

)
= Ω

(
1

(n+t(n) log t(n))Θ(1)

)
. This implies

CoTΓ (t(n) log t(n)) ⊆ PRECΓ (log((n+ t(n) log t(n))Θ(1))) = PRECΓ (log(n+ t(n))). (30)

It follows from Corollary 4.5 and Equation (30) that

TIME(t(n)) ⊆ CoTΓ (t(n) log t(n)) ⊆ PRECΓ (log(n+ t(n))). (31)

In particular, we have

P ⊂ TIME(poly(n)) ⊆ PRECΓ (log(n+ poly(n))) = PRECΓ (log n).

Notably, Corollary 4.7 shows that prompting a single Transformer can achieve the same precision
complexity as that of the class of all Transformers: it is known that the class of all Transformers can
compute any TIME(t(n)) function within O(log(n+ t(n))) precision (Pérez et al., 2021) while we
further show a single Transformer with prompting can as well. This suggests our precision complex-
ity is presumably tight unless there are further advances in the complexity theory of Transformers.

5 CONCLUSION

In this work, we have shown that prompting is in fact Turing-complete: there exists a finite-size
Transformer such that for any computable function, there exists a corresponding prompt following
which the Transformer computes the function. Furthermore, we have shown that even though we
use only a single finite-size Transformer, it can still achieve nearly the same complexity bounds as
that of the class of all unbounded-size Transformers. Overall, our result reveals that prompting can
enable a single finite-size Transformer to be efficiently universal, which establishes a theoretical
underpinning for prompt engineering in practice.

ACKNOWLEDGMENTS

This work is supported by NSF (2416070). The content of the information in this document does not
necessarily reflect the position or the policy of the Government, and no official endorsement should
be inferred. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

10

Published as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2022.

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv, 1607.06450,
2016.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of Transformers
and its implications in sequence modeling. In Proceedings of the 24th Conference on Computa-
tional Natural Language Learning, pp. 455–475, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv, 2005.14165,
2020.

Eunice Chan, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, and Hanghang Tong.
Group fairness via group consensus. In The 2024 ACM Conference on Fairness, Accountability,
and Transparency, pp. 1788–1808, 2024.

Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu, Tianxin Wei, Hyunsik Yoo, Zhichen Zeng,
Deqing Yang, and Hanghang Tong. WAPITI: A watermark for finetuned open-source LLMs.
arXiv, 2410.06467, 2024.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of Transformer
encoders. In Proceedings of the 40th International Conference on Machine Learning, pp. 5544–
5562, 2023.

Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Math-
ematics, 58(2):345–363, 1936.

Martin Davis, Ron Sigal, and Elaine J Weyuker. Computability, complexity, and languages: funda-
mentals of theoretical computer science. Elsevier, 1994.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold ele-
ments. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969.

R. Goodman and Alan Feldstein. Effect of guard digits and normalization options on floating point
multiplication. Computing, 18:93–106, 1977.

Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv, 2403.05530, 2024.

Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Gregoire Deletang, Elliot Catt,
Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, and Joel Veness.
Learning universal predictors. In Proceedings of the 41st International Conference on Machine
Learning, volume 235, pp. 16178–16205, 2024.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Published as a conference paper at ICLR 2025

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention Trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Juris Hartmanis and Richard E. Stearns. On the computational complexity of algorithms. Transac-
tions of the American Mathematical Society, 117:285–306, 1965.

Xinyu He, Jian Kang, Ruizhong Qiu, Fei Wang, Jose Sepulveda, and Hanghang Tong. On the
sensitivity of individual fairness: Measures and robust algorithms. In Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management, pp. 829–838, 2024.

Fred C. Hennie and Richard Edwin Stearns. Two-tape simulation of multitape Turing machines.
Journal of the ACM, 13(4):533–546, 1966.

Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy Jelassi, and Eran Malach. Universal
length generalization with Turing programs. arXiv, 2407.03310, 2024.

Stephen Cole Kleene. λ-definability and recursiveness. Duke Mathematical Journal, 2(2):340–353,
1936.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers Transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024.

Xiao Lin, Zhining Liu, Dongqi Fu, Ruizhong Qiu, and Hanghang Tong. BackTime: Backdoor
attacks on multivariate time series forecasting. In Advances in Neural Information Processing
Systems, volume 37, 2024.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023a.

Lihui Liu, Zihao Wang, Ruizhong Qiu, Yikun Ban, Eunice Chan, Yangqiu Song, Jingrui He, and
Hanghang Tong. Logic query of thoughts: Guiding large language models to answer complex
logic queries with knowledge graphs. arXiv, 2404.04264, 2024a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023b.

Zhining Liu, Zhichen Zeng, Ruizhong Qiu, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
Weldemariam, Jingrui He, and Hanghang Tong. Topological augmentation for class-imbalanced
node classification. arXiv, 2308.14181, 2023c.

Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy
Weldemariam, Jingrui He, and Hanghang Tong. Class-imbalanced graph learning without class
rebalancing. In Proceedings of the 41st International Conference on Machine Learning, 2024b.

Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Yada Zhu, Hendrik Hamann, and Hanghang Tong. AIM:
Attributing, interpreting, mitigating data unfairness. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2014–2025, 2024c.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv, 2309.06979,
2023.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision Trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

William Merrill and Ashish Sabharwal. The expressive power of Transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024a.

12

Published as a conference paper at ICLR 2025

William Merrill and Ashish Sabharwal. A logic for expressing log-precision Transformers. In
Advances in Neural Information Processing Systems, volume 36, 2024b.

Meta. Introducing Llama 3.1: Our most capable models to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3-1/.

Turlough Neary, Damien Woods, Niall Murphy, and Rainer Glaschick. Wang’s B machines are
efficiently universal, as is Hasenjaeger’s small universal electromechanical toy. Journal of Com-
plexity, 30(5):634–646, 2014.

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the Turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing-complete. Journal of Ma-
chine Learning Research, 22(75):1–35, 2021.

Ruizhong Qiu and Hanghang Tong. Gradient compressed sensing: A query-efficient gradient esti-
mator for high-dimensional zeroth-order optimization. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combina-
torial optimization problems. In Advances in Neural Information Processing Systems, volume 35,
pp. 25531–25546, 2022.

Ruizhong Qiu, Dingsu Wang, Lei Ying, H Vincent Poor, Yifang Zhang, and Hanghang Tong. Re-
constructing graph diffusion history from a single snapshot. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1978–1988, 2023.

Ruizhong Qiu, Jun-Gi Jang, Xiao Lin, Lihui Liu, and Hanghang Tong. TUCKET: A tensor time
series data structure for efficient and accurate factor analysis over time ranges. Proceedings of the
VLDB Endowment, 17(13), 2024a.

Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong, James Ezick, and Christopher Lott. How
efficient is LLM-generated code? A rigorous & high-standard benchmark. arXiv, 2406.06647,
2024b.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training, 2018. URL https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_
paper.pdf.

Jesse Roberts. How powerful are decoder-only Transformer neural models? arXiv, 2305.17026,
2023.

Marcel Paul Schützenberger. On context-free languages and push-down automata. Information and
Control, 6(3):246–264, 1963.

Claude E. Shannon. A universal Turing machine with two internal states. Automata Studies, 34:
157–165, 1956.

Alan Mathison Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42(2):230–265, 1937a.

Alan Mathison Turing. Computability and λ-definability. Journal of Symbolic Logic, 2(4):153–163,
1937b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, pp. 5998–6008, 2017.

Max Vladymyrov, Johannes von Oswald, Mark Sandler, and Rong Ge. Linear Transformers are
versatile in-context learners. arXiv, 2402.14180, 2024.

13

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openai.com/index/hello-gpt-4o/
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Published as a conference paper at ICLR 2025

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In Proceedings of the 40th International Conference on Machine Learning, pp. 35151–
35174. PMLR, 2023.

Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew Margenot, and Hang-
hang Tong. Networked time series imputation via position-aware graph enhanced variational
autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 2256–2268, 2023.

Hao Wang. A variant to Turing’s theory of computing machines. Journal of the Association for
Computing Machinery, 4(1):63–92, 1957.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022b.

Tianxin Wei, Ruizhong Qiu, Yifan Chen, Yunzhe Qi, Jiacheng Lin, Wenju Xu, Sreyashi Nag, Ruirui
Li, Hanqing Lu, Zhengyang Wang, Chen Luo, Hui Liu, Suhang Wang, Jingrui He, Qi He, and
Xianfeng Tang. Robust watermarking for diffusion models: A unified multi-dimensional recipe,
2024. URL https://openreview.net/pdf?id=O13fIFEB81.

Ziwei Wu, Lecheng Zheng, Yuancheng Yu, Ruizhong Qiu, John Birge, and Jingrui He. Fair anomaly
detection for imbalanced groups. arXiv, 2409.10951, 2024.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph gener-
ation. In Advances in Neural Information Processing Systems, volume 37, 2024.

Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining Liu, Fei Wang, Charlie
Xu, Eunice Chan, and Hanghang Tong. Ensuring user-side fairness in dynamic recommender
systems. In Proceedings of the ACM on Web Conference 2024, pp. 3667–3678, 2024.

Hyunsik Yoo, Ruizhong Qiu, Charlie Xu, Fei Wang, and Hanghang Tong. Generalizable recom-
mender system during temporal popularity distribution shifts. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2025.

Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui
He, and Hanghang Tong. Graph mixup on approximate Gromov–Wasserstein geodesics. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained Transformers learn linear models in-
context. Journal of Machine Learning Research, 25(49):1–55, 2024.

14

https://openreview.net/pdf?id=O13fIFEB81

Published as a conference paper at ICLR 2025

Algorithm 1 Autoregressive generation: generateΓ (x)
Input: decoder-only Transformer Γ : Σ+ → Σ; nonempty input x ∈ Σ+; stop token $ ∈ Σ
Output: generated output ∈ Σ+ ∪Σω

1: repeat
2: generate next token c← Γ (x)
3: append next token x← x · c
4: until c = $
5: return generated output x

Algorithm 2 Extracting output from CoT (readout)
Input: generated CoT v ∈ Σ+

Output: extracted output y ∈ {0, 1}∗
1: initialize the left index i← −2
2: while vi ̸= : do
3: decrement the left index i← i− 1
4: end while
5: return extracted output vi+1:−1

CONTENTS

A Two-tape TMs v.s. 2-PTMs . 15
A.1 2-PTMs simulating two-tape TMs . 15
A.2 Bi-infinite two-tape TMs simulating 2-PTMs . 16

B Proof of Theorem 3.1 . 16
B.1 Embedding layer . 16
B.2 Other positional identifiers . 17
B.3 Parsing CoT steps . 17
B.4 Retrieving pointed tape cells . 17
B.5 Parsing instructions in prompt . 18
B.6 Locating current CoT step . 19
B.7 Executing next CoT step . 20
B.8 Extracting final output . 21
B.9 Generating next token . 22

B.10 Composing the Transformer . 22
B.11 Size of the constructed Transformer . 23

C Experiments . 23
D Concluding remarks . 23

A TWO-TAPE TMS V.S. 2-PTMS

In this section, we characterize the relation between two-tape TMs and 2-PTMs.

A.1 2-PTMS SIMULATING TWO-TAPE TMS

In this subsection, we show the correctness of the construction presented in Section 4.1.

For each non-halting state q ∈ Q\{qhalt}, since we use 1+1+6+6+1+6+6 = 27 instructions to
simulate its transition rules, we put these instructions at ι27q:27q+27. Thus, the instructions for state
q starts at ι27q . Besides that, for the halting state qhalt = K, we put the halting instruction after the
last non-halting state K − 1. Thus, the halting instruction is at ι27(K−1)+27 = ι27K = ι27qhalt . To
recapitulate, the instructions for every state q ∈ Q start at ι27q .

Hence, to make a state transition to q′ ∈ Q, we should go to instruction ι27q′ . Since we do not know
pointed cell values after we move tape heads, We use two go-to instructions ⟨A!27q′ , A?27q′⟩with op-
posite conditions to ensure a state transition to q′. This establishes the correctness of η(q′,cA,dA,cB,dB).

15

Published as a conference paper at ICLR 2025

To simulate transition rules δ(q, 0, 0), δ(q, 0, 1), δ(q, 1, 0), δ(q, 1, 1) for each non-halting state q ∈
Q \ {qhalt}, we first use A?27q+14 to check the pointed cell value of tape A and then use B?27q+8 and
B?27q+21 to check the pointed cell value of tape B, where it is easy to see that the indices 27q + 14,
27q + 8, and 27q + 21 are correct.

Finally, note that the simulation is always valid because 2-PTMs have bi-directional tapes while
TMs have uni-directional tapes. This concludes the correctness of the constructed 2-PTM ι.

It follows that TIME2(t(n)) ⊆ TIME2-PTM(t(n)).

A.2 BI-INFINITE TWO-TAPE TMS SIMULATING 2-PTMS

In this subsection, we show that any 2-PTM can be simulated by a TM over two bi-infinite tapes.

For any φ ∈ TIME2-PTM(t(n)), there exists a 2-PTM ι that computes S(φ(x)) from S(x) within
time O(t(n)). Let K := |ι|. We will construct a two-tape TM M = (Q := {0, 1, . . . ,K}, qstart :=
0, qhalt := K, {0, 1}, := 0,m := 2, δ : (Q \ {qhalt})× {0, 1}2 → Q× ({0, 1} × {L, S, R})2) that
simulates the 2-PTM ι within time O(t(n)), where we simulate each instruction ιj (j = 0, . . . , |ι|−
1) using one state j. Let cA, cB ∈ {0, 1} denote the pointed cell value on tapes A and B, respectively.

If ιj = #, then we only make a transition to the halting state qhalt:
δ(j, cA, cB) := (qhalt, cA, S, cB, S). (32)

If ιj = AdA (dA ∈ {L, R}), then we move the head for tape A and keep the head for tape B:
δ(j, cA, cB) := (j + 1, cA, dA, cB, S). (33)

If ιj = BdB (dB ∈ {L, R}), then we move the head for tape B and keep the head for tape A:
δ(j, cA, cB) := (j + 1, cA, S, cB, dB). (34)

If ιj = Ac′A (c′A ∈ {0, 1}), then we write c′A to tape A and keep tape heads:
δ(j, cA, cB) := (j + 1, c′A, S, cB, S). (35)

If ιj = Bc′B (c′B ∈ {0, 1}), then we write c′B to tape B and keep tape heads:
δ(j, cA, cB) := (j + 1, cA, S, c

′
B, S). (36)

If ιj = τ!k (τ ∈ {A, B}), we go to k if the pointed cell on tape τ is 0 and to j + 1 otherwise:

δ(j, cA, cB) :=

{
(k, cA, S, cB, S) if cτ = 0,

(j + 1, cA, S, cB, S) if cτ ̸= 0.
(37)

If ιj = τ?k (τ ∈ {A, B}), we go to k if the pointed cell on tape τ is 1 and to j + 1 otherwise:

δ(j, cA, cB) :=

{
(k, cA, S, cB, S) if cτ = 1,

(j + 1, cA, S, cB, S) if cτ ̸= 1.
(38)

The correctness of the construction above is clear. Since M simulates each ιj through 1 = O(1)
transition, then M also has time complexity O(t(n)).

B PROOF OF THEOREM 3.1

In this section, we present our detail construction of the Transformer Γ as the proof of Theorem 3.1.
We will show that we can execute the constructed prompts using affine maps, ReLU activation, layer
normalization, and causal attention. Some key ideas are presented in Section 3.4 in the main paper.
Unless otherwise specified, the similarity map we use in causal attention is the identity function.

B.1 EMBEDDING LAYER

Here, we present our construction of the token embedding and the positional encoding in the embed-
ding layer Γemb. Let v = v0 · · · v|v|−1 ∈ Σ+ denote the input token sequence of the Transformer.
For each token vi (i = 0, . . . , v|v|−1), we use the one-hot representation as its embedding:

zis σ
i := 1[vi=σ], σ ∈ Σ. (39)

As described in Section 3.4, we use the following positional encoding for each position i:

pi := 1− (i+ 1)(i+ 2) + 1√
(i+ 1)2 + 1

√
(i+ 2)2 + 1

. (40)

16

Published as a conference paper at ICLR 2025

B.2 OTHER POSITIONAL IDENTIFIERS

In addition to the positional encoding, we compute three other positional identifiers to be used later.
First, we use causal attention with query 1, key 1, and value zis ˆ

j to compute

zpos, 1
i :=

1

i+ 1

i∑
j=0

zis ˆ
j =

1

i+ 1
. (41)

Next, we use layer normalization (LN) to compute two other positional identifiers:

(zpos, 2
i , zpos, 3

i) := LN(1, zpos, 1
i) =

(
i+ 1√

(i+ 1)2 + 1
,

1√
(i+ 1)2 + 1

)
. (42)

B.3 PARSING COT STEPS

Since the prompt and the CoT share some tokens, we need distinguish CoT steps from the prompt
according to the position of the delimiter token $. Specifically, we need an indicator of whether
each token vi is located after the delimiter token $ or not. Thus, we use causal attention with query
1, key 1, and value zis $ to compute the discounted indicator:

zafter delim, disc
i :=

1

i+ 1

i∑
j=0

zis $
j =

1[∃j≤i:vj=$]

i+ 1
. (43)

Then, we use layer normalization to convert it to a Boolean value:

zafter delim
i := LN(zafter delim, disc

i) = 1[∃j≤i:vj=$]. (44)

Next, we check if a token is a CoT step of writing a cell using ReLU-implemented Boolean algebra:

zis τ write
i := ReLU(zis τ0

i + zis τ1
i + zafter delim

i − 1), τ ∈ {A, B}; (45)

we can compute the value that is being written using ReLU:

zτ write
i := ReLU(zis τ1

i + zafter delim
i − 1), τ ∈ {A, B}; (46)

we can also compute the direction of head move in a CoT step using ReLU:

zτ move
i := ReLU(zis τR

i + zafter delim
i − 1)− ReLU(zis τL

i + zafter delim
i − 1), τ ∈ {A, B}. (47)

B.4 RETRIEVING POINTED TAPE CELLS

Before retrieving the pointed tape cells, we need to compute the current positions of tape heads.
Since attention cannot compute sums directly, we use the idea presented in Section 3.4 to compute
a normalized representation of the position. Specifically, we first use causal attention with query 1,
key 1, and value zτ move

j to compute discounted head positions:

zτ cur disc
i :=

1

i+ 1

i∑
j=0

zτ move
j , τ ∈ {A, B}. (48)

Then, we use zpos, 1
i = 1

i+1 and LN to compute a normalized representation of head positions:

(zτ cur norm
i , zτ cur one norm

i) := LN(zτ cur disc
i , zpos, 1

i) (49)

=

(∑i
j=0 z

τ move
j√

(
∑i

j=0 z
τ move
j)2 + 1

,
1√

(
∑i

j=0 z
τ move
j)2 + 1

)
, τ ∈ {A, B}. (50)

Next, we can retrieve the pointed tape cells by finding the last write step at the
same position. We use causal attention with query (1, zτ cur norm

i , zτ cur one norm
i , pi)

T, key
(zis τ write

j , zτ cur norm
j , zτ cur one norm

j ,−zpos, 1
j)T, and value (zτ write

j , zτ cur norm
j , zis τ write

j)T to compute

17

Published as a conference paper at ICLR 2025

the retrieved tape cells (zτ retr
i , zτ retr cur norm

i , zτ retr is write
i)T (τ ∈ {A, B}). Note that we also com-

pute zτ retr cur norm
i and zτ retr is write

i here because there is a caveat: the pointed tape cells might not
have been written yet. We use LN and ReLU to compute an indicator of whether the pointed tape
cells have not been written:

zτ not found
i := ReLU(LN(zτ cur norm

i − zτ retr cur norm
i)) + ReLU(LN(zτ retr cur norm

i − zτ cur norm
i))

= 1[zτ cur norm
i ̸=zτ retr cur norm

i], τ ∈ {A, B}. (51)

If a retreived tape cell has not been written yet, it must have a blank value 0:

zτ val
i := ReLU(zτ retr

i − zτ not found
i + zτ retr is write

i − 1), τ ∈ {A, B}. (52)

B.5 PARSING INSTRUCTIONS IN PROMPT

Recall that each instruction is encoded into one or more tokens. Thus, we first compute whether
each token is the start of a instruction in the prompt:

zis inst
i := ReLU(zis #

i + zis AL
i + zis BL

i + zis AR
i + zis BR

i (53)

+ zis A0
i + zis B0

i + zis A1
i + zis B1

i (54)

+ zis A!
i + zis B!

i + zis A?
i + zis B?

i − zafter delim
i). (55)

We compute a program index t for the start token of each instruction. We use causal attention with
query 1, key 1, and value zis inst

j to compute the program index of each token in the prompt:

zprog idx disc, raw
i :=

1

i+ 1

i∑
j=0

zis inst
j . (56)

We further subtract 1 from
∑i

j=0 z
is inst
j to handle the lag between the prompt and the CoT:

zprog idx disc
i := zprog idx disc, raw

i − zpos, 1 =
1

i+ 1

i∑
j=0

zis inst
j − 1

i+ 1
. (57)

Then, we use LN to compute a normalized representation of
∑i

j=0 z
is inst
j − 1:

(zprog idx norm
i , zprog idx one norm

i) := LN(zprog idx disc
i , zpos, 1

i) (58)

=

(∑i
j=0 z

is inst
j − 1√

(
∑i

j=0 z
is inst
j − 1)2 + 1

,
1√

(
∑i

j=0 z
is inst
j − 1)2 + 1

)
. (59)

Besides that, since go-to’s are special instructions that need multiple tokens to encode, we also check
whether a token is the start of a go-to instruction:

zis goto cond
i := zis A!

i + zis B!
i + zis A?

i + zis B?
i . (60)

We also need a go-to index for tokens -,+,@ in the prompt to mark the order of tokens within
each go-to instruction. To compute it, we first compute the reciprocal number of tokens between
vi and the start token vi′ of the current go-to instruction, using causal attention with query 1, key
zprog idx norm
j , and value zis goto cond

j :

zgoto one disc
i :=

∑i
j=i′ z

is goto cond
j∑i

j=i′ 1
=

1

i− i′ + 1
. (61)

Then, we use LN to compute a normalized representation of the go-to index:

(zgoto idx norm, raw
i , zgoto one norm, raw

i) := LN(1− zgoto one disc
i , zgoto one disc

i) (62)

=

(
i− i′ + 1√

(i− i′ + 1)2 + 1
,

1√
(i− i′ + 1)2 + 1

)
. (63)

18

Published as a conference paper at ICLR 2025

To match the go-to index of non-go-to tokens, we finally adjust them if vi is the start token v′i of the
current go-to instruction:

zgoto idx norm
i := zgoto idx norm, raw

i + zis goto cond
i , (64)

zgoto one norm
i := zgoto one norm, raw

i − zis goto cond
i . (65)

That is, when vi is the start token v′i of a go-to instruction, we instead have

(zgoto idx norm
i , zgoto one norm

i) = (1, 0). (66)

B.6 LOCATING CURRENT COT STEP

Here, we describe how to locate the current instruction to execute. We can imagine a program
pointer t that indicates the instruction ιt we are currently executing. A caveat here is that each go-to
instruction needs multiple CoT steps. Thus, it is important to check whether it is during a go-to
instruction or not.

First, we compute how each go-to step contributes to the program pointer via ReLU:

zprog move
i := ReLU(zis +

i + zafter delim
i − 1)− ReLU(zis -

i + zafter delim
i − 1). (67)

Then, we use causal attention with query 1, key 1, and value zprog move
i to compute the discounted

total contribution:

zprog move disc
i :=

1

i+ 1

i∑
j=0

zprog move
j ; (68)

and use LN to compute a normalized representation of
∑i

j=0 z
prog move
j :

(zprog move norm
i , zprog move one norm

i) := LN(zprog move disc
i , zpos, 1

i) (69)

=

(∑i
j=0 z

prog move
j√

(
∑i

j=0 z
prog move
j)2 + 1

,
1√

(
∑i

j=0 z
prog move
j)2 + 1

)
. (70)

Next, we check whether the token vi is the start token v′i of the current execution step record in the
CoT:

zis rec start
i := zis ˆ

i +ReLU(zis AL
i + zis BL

i + zis AR
i + zis BR

i (71)

+zis A0
i + zis B0

i + zis A1
i + zis B1

i (72)

+zis /
i + zis =

i + zafter delim
i − 1), (73)

where we also add zis ˆ
i here for convenience later. Similarly, we check whether the token vi is the

ending token v′i of the current execution step record in the CoT:

zis rec end
i := ReLU(zis $

i +zis AL
i + zis BL

i + zis AR
i + zis BR

i (74)

+zis A0
i + zis B0

i + zis A1
i + zis B1

i (75)

+zis @
i + zafter delim

i − 1). (76)

Then, imagine that each token has a record index to mark which each execution step it belongs to.
To compute it, we first compute the reciprocal number of execution steps t′ so far, using causal
attention with query 1, key zis rec start

j , and value zis ˆ
j :

zprog rec one disc
i :=

∑i
j=0 z

is rec start
j zis ˆ

j∑i
j=0 z

is rec start
j

=
1

t′ + 1
. (77)

We then compute a normalized representation of t′ + 1 using LN:

(zprog rec norm
i , zprog rec one norm

i) := LN(1, zprog rec one disc
i) (78)

=

(
t′ + 1√

(t′ + 1)2 + 1
,

1√
(t′ + 1)2 + 1

)
. (79)

19

Published as a conference paper at ICLR 2025

Next, since each go-to execution step needs multiple CoT steps, we need to handle go-to execution
step records specially when the go-to condition is satisfied. We can image that each CoT step has
a temporary program index that marks the order of each token in a go-to execution step record. To
compute it, we first compute the reciprocal number of tokens between vi and the start token vi′ of
the current go-to execution step record, using causal attention with query 1, key−zprog rec one disc

j , and
value zis =

j :

zprog tmp one disc
i :=

∑i
j=i′ z

is =
j∑i

j=i′ 1
=

1

i− i′ + 1
. (80)

With this, we can compute a normalized representation of i− i′ + 1 using LN:

(zprog tmp norm, raw
i , zprog tmp one norm, raw

i) := LN(1, zprog tmp one disc
i) (81)

=

(
i− i′ + 1√

(i− i′ + 1)2 + 1
,

1√
(i− i′ + 1)2 + 1

)
. (82)

To match the temporary program index of non-go-to execution steps, we further adjust them if vi is
the ending token of the current go-to instruction:

zprog tmp norm
i := ReLU(zprog tmp norm, raw

i − zis rec end
i) + zis rec end

i , (83)

zprog tmp one norm
i := ReLU(zprog tmp one norm, raw

i − zis rec end
i). (84)

That is, when vi is the ending token of the current go-to instruction, we instead have

(zprog tmp norm
i , zprog tmp one norm

i) = (1, 0). (85)

We will use the quantities above to identify the instruction to execute.

B.7 EXECUTING NEXT COT STEP

To generate the next token, we need to execute the current instruction and record it via a CoT step.
Before that, we check whether vi belongs to a satisfied go-to execution step record:

zis rec goto
i := ReLU(zis =

i + zis -
i + zis +

i + zafter delim
i − 1). (86)

Another quantity we will need is how each CoT step contributes to the current program pointer:

zprog cur move
i := ReLU(zis AL

i + zis BL
i + zis AR

i + zis BR
i (87)

+zis A0
i + zis B0

i + zis A1
i + zis B1

i (88)

+zis /
i + zis +

i + zafter delim
i − 1)− ReLU(zis -

i + zafter delim
i − 1). (89)

We also compute an auxiliary bound zprog rec diff
i on the differences between some attention scores

using causal attention with query (zprog rec norm
i , zprog rec one norm

i)T, key (zpos, 2
j , zpos, 3

j)T, and value pj .
We further compute an auxiliary quantity:

zprog rec bias
i := 3− 1

2
ReLU(zprog rec diff

i + 2zis rec goto
i − 2). (90)

It is easy to see that zprog rec diff
i < 3 if and only if zis rec goto

i = 1. Using this quantity, we
will be able to avoid attending to tokens outside the current execution step record. Next, we
use it to identify the next instruction to execute. We first compute the discounted program in-
dex of the instruction that we need to execute, which is proportional to the sum of zprog cur move

j
until the beginning token vi′ of the current execution step record, using causal attention with
query (zprog rec bias

i ,−zprog rec norm
i ,−zprog rec one norm

i)T, key (1, zprog rec norm
j , zprog rec one norm

j)T, value
(zprog cur move

j , zis ˆ
j)T, and similarity function sim(x) := 2− ReLU(2− x) = min{x, 2}:

zprog cur disc
i :=

∑i′

j=0 z
prog cur move
j∑i′

j=0 1
=

∑i′

j=0 z
prog cur move
j

i′ + 1
, (91)

zprog cur one disc
i :=

∑i′

j=0 z
is ˆ
j∑i′

j=0 1
=

1

i′ + 1
. (92)

20

Published as a conference paper at ICLR 2025

Then, we use LN to compute a normalized representation of
∑i′

j=0 z
prog cur move
j :

(zprog cur norm
i , zprog cur one norm

i) := LN(zprog cur disc
i , zprog cur one disc

i) (93)

=

(∑i
j=0 z

prog cur move
j√

(
∑i

j=0 z
prog cur move
j)2 + 1

,
1√

(
∑i

j=0 z
prog cur move
j)2 + 1

)
. (94)

Next, we find the instruction ιt whose program index matches the current program
pointer and whose go-to index matches the current temporary program index, using
causal attention with query (zprog cur norm

i , zprog cur one norm
i , zprog tmp norm

i , zprog tmp one norm
i , pi,−1)T, key

(zprog idx norm
j , zprog idx one norm

j , zgoto idx norm
j , zgoto one norm

j , zpos, 1
j , 1)T, and value zis σ

j :

ztoken is σ
i := zis σ

t , σ ∈ {#, AL, BL, AR, BR, A0, B0, A1, B1, A!, B!, A?, B?,-,+,@}; (95)

ztoken is :
i := zis #

t . (96)

Note that exactly one of them is 1. It remains to execute the instruction ιt and record its outcome. If
ztoken is σ
i = 1 for some σ ∈ {A!, B!, A?, B?}, then we need to check whether the go-to condition is

satisfied or not:

zsat A!
i := ReLU(ztoken is A!

i − zA val
i), (97)

zsat B!
i := ReLU(ztoken is B!

i − zB val
i), (98)

zsat A?
i := ReLU(ztoken is A?

i + zA val
i − 1), (99)

zsat B?
i := ReLU(ztoken is B?

i + zB val
i − 1). (100)

They enable us to choose = (satisfied) or / (unsatisfied):

ztoken is =
i := zsat A!

i + zsat B!
i + zsat A?

i + zsat B?
i , (101)

ztoken is /
i := ztoken is A!

i + ztoken is B!
i + ztoken is A?

i + ztoken is B?
i − ztoken is =

i . (102)

B.8 EXTRACTING FINAL OUTPUT

After execution, the content left on the tape A is the Shannon-encoded output S(φ(x)). We need to
extract the decoded output φ(x) from the previous CoT steps.

First, we need to check whether we have arrived at the final output stage:

zis read key
i := zis :

i + zis 0
i + zis 1

i . (103)

Suppose that we are now trying to find the k-th token of the output φ(x). Recall that the k-th token
(k ≥ 0) of the output φ(x) corresponds to the (2k)-th and (2k + 1)-th tokens of S(φ(x)). To help
compute the indices 2k and 2k + 1, we compute the following shifts:

zread cur0 shift
i := 2(zis 0

i + zis 1
i), (104)

zread cur1 shift
i := zis :

i + 2(zis 0
i + zis 1

i). (105)

Suppose that token : is the t-th token in the generated CoT. We use causal attention with query 1,
key zis read key

j , and value (zread cur0 shift
j , zread cur1 shift

j , zis :
j)T to compute the discounted 2k and 2k + 1

for i = t+ k:

zread cur0 disc
i :=

1∑i
j=0 z

is read key
j

i∑
j=0

zread cur0 shift
j =

2k

i− t+ 1
, (106)

zread cur1 disc
i :=

1∑i
j=0 z

is read key
j

i∑
j=0

zread cur1 shift
j =

2k + 1

i− t+ 1
, (107)

zread one disc
i :=

1∑i
j=0 z

is read key
j

i∑
j=0

zis :
j =

1

i− t+ 1
. (108)

21

Published as a conference paper at ICLR 2025

We use layer normalization to compute representations of 2k and 2k + 1:

(zread cur0 norm
i , zread cur0 one norm

i) := LN(zread cur0 disc
i , zread one disc

i)

=

(
2k√

(2k)2 + 1
,

1√
(2k)2 + 1

)
, (109)

(zread cur1 norm
i , zread cur1 one norm

i) := LN(zread cur1 disc
i , zread one disc

i)

=

(
2k + 1√

(2k + 1)2 + 1
,

1√
(2k + 1)2 + 1

)
. (110)

Next, similarly with Appendix B.4, we retrieve the (2k)-th and (2k + 1)-th tokens of S(φ(x))
as follows. We use causal attention with query (1, zread cur0 norm

i , zread cur0 one norm
i , pi)

T, key
(zis A write

j , zA cur norm
j , zA cur one norm

j ,−zpos, 1
j)T, and value (zA write

j , zA cur norm
j , zis A write

j)T to compute the
retrieved tape cell status (zread retr0

i , zread retr0 cur norm
i , zread retr0 is write

i)T. We use causal attention with
query (1, zread cur1 norm

i , zread cur1 one norm
i , pi)

T, key (zis A write
j , zA cur norm

j , zA cur one norm
j ,−zpos, 1

j)T,
and value (zA write

j , zA cur norm
j , zis A write

j)T to compute the retrieved tape cell status
(zread retr1

i , zread retr1 cur norm
i , zread retr1 is write

i)T. We use LN and ReLU to compute an indicator
of whether the retrieved tape cells have not been written:

zread retr0 not found
i := ReLU(LN(zread cur0 norm

i − zread retr0 cur norm
i)) + ReLU(LN(zread retr0 cur norm

i − zread cur0 norm
i))

= 1[zread cur0 norm
i ̸=zread retr0 cur norm

i], (111)

zread retr1 not found
i := ReLU(LN(zread cur1 norm

i − zread retr1 cur norm
i)) + ReLU(LN(zread retr1 cur norm

i − zread cur1 norm
i))

= 1[zread cur1 norm
i ̸=zread retr1 cur norm

i]. (112)

Finally, we can obtain the values of cells 2k and 2k + 1:

zread retr0 val
i := ReLU(zread retr0

i − zread retr0 not found
i + zread retr0 is write

i − 1), (113)

zread retr1 val
i := ReLU(zread retr1

i − zread retr1 not found
i + zread retr1 is write

i − 1). (114)

Using the quantities above, we can decide the next token to generate:

ztoken is 0
i := 2ReLU(zis read key

i + zread retr0 val
i − zread retr1 val

i − 1), (115)

ztoken is 1
i := 2ReLU(zis read key

i + zread retr0 val
i + zread retr1 val

i − 2), (116)

ztoken is $
i := 2ReLU(zis read key

i − zread retr0 val
i). (117)

Here, we use coefficient 2 to distinguish the output extraction stage from the execution stage.

B.9 GENERATING NEXT TOKEN

The next token to be generated by the Transformer Γ is

argmax
σ∈{AL,BL,AR,BR,A0,B0,A1,B1,/,=,-,+,@,:,0,1,$}

ztoken is σ
|v|−1 . (118)

The generation procedure stops upon the generation of the ending token $.3

B.10 COMPOSING THE TRANSFORMER

In this subsection, we describe how to compose the aforementioned operations into a Transformer.

Embedding layer. Recall that the construction uses 4 positional encodings pi, z
pos, 1
i , zpos, 2

i , zpos, 3
i .

Thus, our token embedding and positional encoding use the first |Σ|+ 1 dimensions. For the token
embedding emb, the first |Σ| dimensions are the ont-hot representation of the token, and the next
dimension is zero. For example, if vi is the first token in Σ, then

emb(vi) = (1, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: one-hot

0,︸︷︷︸
next dim: zero

0, 0, . . . , 0︸ ︷︷ ︸
slots for intermediate results

)T. (119)

3Nevertheless, the token $ in the prompt does not stop the generation procedure.

22

Published as a conference paper at ICLR 2025

For the positional encoding pos,

pos(i) = (0, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: zeros

pi,︸︷︷︸
next dim: pos enc

0, 0, . . . , 0︸ ︷︷ ︸
slots for intermediate results

)T. (120)

Therefore, the embedding layer for the example above is

emb(vi) + pos(i) = (1, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: one-hot

pi,︸︷︷︸
next dim: pos enc

0, 0, . . . , 0︸ ︷︷ ︸
slots for intermediate results

)T. (121)

Here, emb(vi) + pos(i) is indeed the standard embedding layer in LLMs.

Intermediate results. Recall that each Transformer layer has a residual connection after its output.
Thus, we can compute each intermediate result via a Transformer layer and add it to the hidden
embedding via the residual connection. For the example above, we can construct a Transformer
layer that computes zpos, 1

i , and then the hidden embedding after the residual connection of this
Transformer layer is

(1, 0, . . . , 0,︸ ︷︷ ︸
first |Σ| dims: one-hot

pi, z
pos, 1
i , 0, . . . , 0︸ ︷︷ ︸

slots for other intermediate results

)T. (122)

B.11 SIZE OF THE CONSTRUCTED TRANSFORMER

In this subsection, we show that the constructed Transformer Γ has a constant size in terms of the
number of its operations and the number of bits to represent its parameters.

Number of operations. From the construction above, we can see that the constructed Transformer
Γ does not depend on φ or x. (To compute different functions φ, we change only the prompt but
do not need to change the Transformer.) It is clear to see that our constructed Transformer has a
constant number of operations.

Number of parameter bits. From the construction above, we can see that the constructed Trans-
former uses only 0, 12 , 1, 2, 3 as its parameters. These numbers can be exactly expressed with a
constant number of bits.

C EXPERIMENTS

We demonstrate our construction through a Python implementation. Our code and demo results are
publicly available at https://github.com/q-rz/ICLR25-prompting-theory.

D CONCLUDING REMARKS

Connection with universal TMs. Hennie & Stearns (1966) have shown that there exists a uni-
versal TM (UTM) that can simulate any Turing machine M in O(t(n) log t(n)) steps if M halts in
t(n) ≥ n steps. Then by Pérez et al. (2019), there exists a Transformer that simulates this UTM.
However, due to the complication of the UTM, it would be quite involved to explicitly construct
this Transformer. Nevertheless, this UTM has inspired us to propose 2-PTMs, which enables us to
explicitly construct a simpler Transformer. Furthermore, our 2-PTMs establish the first theoretical
framework to formalize prompting. Using our 2-PTM-based framework, we believe that people
will be able to generalize more results from the classic one-model-one-task paradigm to the LLM
prompting paradigm.

Discussion on CoT complexity. A limitation of this work is that our construction uses long CoTs for
hard problems with high time complexity. However, while it might be possible to slightly improve
the CoT complexity, recent theoretical evidence has suggested that long CoTs are very likely to be
necessary for these hard problems. For example, Merrill & Sabharwal (2024a) have shown that any
Transformer with O(log n) CoT steps can solve only L problems. Assuming L ̸= NL, it implies
that any Transformer with O(log n) CoT steps cannot even solve any NL-complete problems such

23

https://github.com/q-rz/ICLR25-prompting-theory

Published as a conference paper at ICLR 2025

as directed graph connectivity. An interesting future work is to show a tight lower bound of the CoT
complexity.

Discussion on hardmax. Following prior works (e.g., Pérez et al., 2019; Hahn, 2020), this work
uses hardmax in attention to simplify construction. However, real-world Transformers use softmax
in attention. Using hardmax instead of softmax is a limitation of this area. We hope to address this
limitation in future work.

Discussion on context windows. The Transformer constructed in this work uses an unbounded
context window. However, practical implementations of Transformers typically use a bounded con-
text window due to memory considerations. This is indeed a limitation of current studies on the
Turing completeness of Transformers. To address this limitation, we hope to study bounded context
windows in future work.

Discussion on learnability. Our current work focuses on expressive power rather than learnability.
While we have shown the existence of a Transformer on which prompting is Turing-complete, it
does not necessarily imply that a Transformer effectively learns to simulate any 2-PTMs through
CoT steps. Investigating the learnability of such a Transformer is an intriguing direction for future
research.

24

	Introduction
	Related work
	Technical overview

	Preliminaries
	Theory of computation
	Neural networks

	Turing completeness of prompting
	Construction of prompts
	Recording execution in CoT steps
	Construction of input tokenizer
	Construction of Transformer

	Complexity bounds
	Efficient simulation of TMs by 2-PTMs
	CoT complexity
	Precision complexity

	Conclusion
	Two-tape TMs v.s. 2-PTMs
	2-PTMs simulating two-tape TMs
	Bi-infinite two-tape TMs simulating 2-PTMs

	Proof of Theorem 3.1
	Embedding layer
	Other positional identifiers
	Parsing CoT steps
	Retrieving pointed tape cells
	Parsing instructions in prompt
	Locating current CoT step
	Executing next CoT step
	Extracting final output
	Generating next token
	Composing the Transformer
	Size of the constructed Transformer

	Experiments
	Concluding remarks

