
Under review as a conference paper at ICLR 2021

Appendices
A THE DIFFICULTY OF COMBINING GRADIENT-BASED META-LEARNING

WITH VALUE-BASED RL METHODS

One straightforward idea of building a sample efficient off-policy meta-RL algorithm that adapts well
to out-of-distribution task is to simply combine MAML with an off-policy actor-critic RL algorithm.
However, this seemingly simple idea is very difficult in practice, mainly because of the difference
between Bellman backup iteration used in actor-critic methods and gradient descent. Consider the
Bellman backup of Q function Qπ for policy π,

Qπ(s,a)← r(s,a) + γEs′∼p(s′|s,a),a′∼π(a′|s′)[Q
π(s′,a′)]

which backs up the next state Q value to the current state Q value. One iteration of Bellman backup
can only propagate value information backward in time for one timestep. Therefore, given a trajectory
with horizon T , even if we can perform the backup operation exactly at every iteration, at least T
iterations of Bellman backup is required for the Q function to converge. Therefore, it cannot be used
as the inner loop objective for MAML, where only a few steps of gradient descent is allowed. In
practice T is usually 200 for MuJoCo based meta-RL domains, and applying MAML with 200 steps
of inner loop is certainly intractable. If we only perform K steps of Bellman backup for the inner
loop, where K is a small number, we would obtain a Q function that is greedy in K steps, which
gives us very limited performance. In fact, we realized this limitation only after implementing this
method, where we were never able to get it to work in even the easiest domain.

B SAMPLE EFFICIENCY AND ANALYSIS FOR EXTRAPOLATION TASKS

Figure 5: Extrapolation performance on OOD tasks. In all experiements, we see our method exceeds or matches
the performance of previous state-of-the-art methods. We also observe that experience relabeling is crucial to
getting good performance on out-of-distribution tasks.

12

Under review as a conference paper at ICLR 2021

Figure 6: Performance evaluated on validation tasks of varying difficulty. For Cheetah Velocity, the training
distribution consists of target speeds from 0 to 1.5 m/s, and so tasks become harder left to right along the x axis.
Ant Direction consists of training tasks ranging from 0 to 1.5 π radians, so the hardest tasks are in the middle.

C IMPLEMENTATION DETAILS

Please see the released codebase for code to meta-train models and extrapolate to out-of-distribution
tasks. We also include code for the simulation environments included in the paper.

C.1 DATASETS

All experiments are run with OpenAI gym (Brockman et al., 2017), use the mujoco simulator (Todorov
et al., 2012) and are run with 3 seeds (We meta-train 3 models, and run extrapolation for each). The
metric used to evaluate performance is the average return (sum of rewards) over a test rollout. The
horizon for all environments is 200. For the meta-RL benchmarks (Fig. 2), performance on test tasks
is plotted versus number of samples meta-trained on. The out-of-distribution plots (Fig. 4 and 6)
report performance of all algorithms meta-trained with the same number of samples (2.5M for Ant
Negated Joints, and 1.5M for all other domains). For the standard meta-RL benchmark tasks, we
use the settings from PEARL (Rakelly et al., 2019) for number of meta-train tasks, meta-test tasks
and data points for adaptation on a new test task. For the out-of-distribution experiments, the values
used for datasets are listed in Table 1. The description of the meta-train and meta-test task sets for
out-of-distribution tasks is included in Section 6.2.

C.2 EXTRAPOLATION EXPERIMENT DETAILS

For the settings with varying reward functions, the state dynamics does not differ across tasks, and
so we only meta-train a reward prediction model. We only relabel rewards and preserve the (state,
action, next state) information from cross task data while relabelling experience in this setting. For
domains with varying dynamics, we meta-learn both reward and state models.

When continually adapting the model to out of distribution tasks, we first take a number of gradient
steps (N) that only affect the context , followed by another number of gradient steps (M) that affect
all model parameters. We also note that if the model adaptation process overfits to the adaptation
data, using generated synthetic data will lead to worse performance for the policy. To avoid this, we
only use 80% of the adaptation data to learn the model, and use the rest for validation. The model is
used to produce synthetic data for a task only if the total model loss on the validation set is below a
threshold (set to -3).

Table 1: Settings for out-of-distribution environments

Environment Meta-train tasks Meta-test tasks Data points for adaptation N M
Cheetah-vel-medium 100 30 200 10 100
Cheetah-vel-hard 100 30 200 10 100
Ant-direction 100 10 400 20 0
Cheetah-negated-joints 10 10 400 10 0
Ant-negated-joints 10 10 400 10 0
Walker-rand-params 40 20 400 10 100

13

Under review as a conference paper at ICLR 2021

C.3 HYPER-PARAMETERS

For the MIER experiments hyper-parameters are kept mostly fixed across all experiments, with the
model-related hyperparameters set to default values used in the Model Based Policy Optimization
codebase (Janner et al., 2019), and the policy-related hyperparameters set to default settings in
PEARL (Rakelly et al., 2019), and their values are detailed in Table 2. We also ran sweeps on some
hyper-parameters, detailed in Table 3.

For the baselines, we used publicly released logs for the benchmark results, and ran code released by
the authors for the out-of-distribution tasks. Hyper-parameters were set to the default values in the
codebases. We also swept on number of policy optimization steps and context vector dimension for
PEARL, similar to the sweep in Table 3.

Table 2: Default Hyper-parameters

(a) Model-related

Hyperparameter Value
Model arch 200-200-200-

200
Meta batch size 10
Inner adaptation steps 2
Inner learning rate 0.01
Number of cross tasks for rela-
belling

20

Batch-size for cross task sam-
pling

1e5

Dataset train-val ratio for model
adaptation

0.8

(b) Policy-related

Hyperparameter Value
Critic arch 300-300-300
Policy arch 300-300-300
Discount factor 0.99
Learning rate 3e-4
Target update interval 1
Target update rate 0.005
Sac reward scale 1
Soft temperature 1.0
Policy training batch-size 256
Ratio of real to synthetic data
for continued training

0.05

Number of policy optimization
steps per synthetic batch genera-
tion

250

Table 3: Hyper-parameter sweeps

Hyper-parameter Value Selected Values
Number of policy optimization steps per meta-training iteration 1000, 2000, 4000 1000
Context vector dimension 5, 10 5
Gradient norm clipping 10, 100 10

All experiments used GNU parallel (Tange, 2011) for parallelization, and were run on GCP instances
with NVIDIA Tesla K80 GPUS.

14

	Introduction
	Preliminaries
	Meta Training with Model Identification
	Adapting to Out-of-Distribution Tasks via Experience Relabeling
	Related Work
	Experimental Evaluation
	Meta-Training Sample Efficiency on Meta-RL Benchmarks
	Adaptation to Out-of-Distribution Tasks

	Conclusion
	Appendices
	The Difficulty of Combining Gradient-Based Meta-Learning with Value-Based RL Methods
	Sample Efficiency and Analysis for Extrapolation Tasks
	Implementation Details
	Datasets
	Extrapolation Experiment Details
	Hyper-parameters

