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Abstract

We develop an empirical Bayes prior for probabilistic matrix factorization. Matrix
factorization models each cell of a matrix with two latent variables, one associated with
the cell’s row and one associated with the cell’s column. How to set the priors of these
two latent variables? Drawing from empirical Bayes principles, we consider estimating the
priors from data, to find those that best match the populations of row and column latent
vectors. Thus we develop the twin population prior. We develop a variational inference
algorithm to simultaneously learn the empirical priors and approximate the corresponding
posterior. We evaluate this approach with both synthetic and real-world data on diverse
applications: movie ratings, book ratings, single-cell gene expression data, and musical
preferences. Without needing to tune Bayesian hyperparameters, we find that the twin
population prior leads to high-quality predictions, outperforming manually tuned priors.

1 Introduction

This paper is about empirical Bayes methods for setting the priors in Bayesian matrix factorization (??).
Matrix factorization models each cell of a matrix with two latent variables, one associated with its row
and one associated with its column. Matrix factorization has found broad applications across many fields,
including studying consumer behavior, understanding legislative patterns, assessing pharmaceutical impacts,
and exploring social networks (????).

Suppose Xi,j is the observed entry in row i and cell j, such as user i’s rating of movie j. As a hierarchical
model, a matrix factorization generates the data from the following process:

Ui ∼ P θr θrow
:::

(U) (1)

Vj ∼ P θc θcol
::

(V ) (2)

Xi,j ∼ P (Xi,j | Ui, Vj). (3)

Here Ui and Vj are per row and per column specific latent vectors, and Pθr and Pθc
:::::
Pθrow ::::

and
::::
Pθcol:

are the
priors, each with hyperparameters θr and θc

:::
θrow::::

and
::::
θcol.

This formulation encompasses many factorization models. In Gaussian matrix factorization (?), the priors
are Gaussians and Xi,j is drawn from a Gaussian with mean U⊤

i Vj and variance σ2. In Poisson matrix
factorization (???), the priors are over the positive reals and Xi,j is drawn from a Poisson with rate U⊤

i Vj .

An observed matrix of data X then defines a posterior distribution P (U , V | X) over the row variables
and the column variables. The posterior can provide interpretations of the data and an avenue to form
predictions about missing entries, for example, for a recommendation system.

The prior distributions on the row variables and column variables significantly impact the quality of the
model posterior. How should we set them? Practitioners typically assume a simple parametric family for
the priors, such as a Gaussian or a Gamma, and then find the prior hyperparameters best suited to the data,
e.g., with cross-validation (??). This approach can be effective, but it is expensive and only allows for priors
from a simple parametric family.

1

Salehi, Sohrab/Sloan Kettering Institute
Notation tracking. 
are in Blue. 
The references and citations are not shown as ? in this document.



Under review as submission to TMLR

In this paper, we develop an empirical Bayes (EB) methodology for setting the priors (??), learning them
from data. The EB idea is to set the priors using the data, for example by finding the one that maximizes the
marginal log-likelihood of the data. It is applicable for priors over variables that have repeated draws from
them, such as the row and column variables in matrix factorization. EB has found applications in applied
sciences in diverse fields such as astronomy (?), actuarial sciences (?), genomics (??), economics (??), and
survey sampling (?). EB priors have been successfully employed in simple hierarchical models, such as in
variational autoencoders (???).

Matrix factorization, however, provides a different type of application of EB. In matrix factorization, there
are two priors to set, one for the row variables and one for the column variables, and the data that informs
us about them is overlapping. Thus, we will find empirical Bayes priors for both row variables and col-
umn variables. The result is the twin empirical Bayes prior (TwinEB), a practical EB method for matrix
factorization. Other methods for EB on matrix factorization include ? and ?; we discuss these below.

Specifically, we model the two priors with mixture distributions, one for each prior. We use mixtures since
they are a flexible family of distributions that can approximate a wide range of distributions (??). We
use variational inference (??) to simultaneously estimate the priors and approximate the corresponding
posterior. We verify the efficiency and the robustness of this approach with real-world data about rec-
ommendation systems and computational biology, and for both Poisson matrix factorization and Gaussian
matrix factorization.

We summarize the contributions as follows:

1. We develop the twin population prior, an EB prior for Bayesian matrix factorization.

2. We derive a variational inference algorithm to approximate the matrix factors’ posteriors and learn
the twin population prior simultaneously.

3. We study the twin population prior on both synthetic and real data and with two types of factoriza-
tion. The automatically learned EB prior performs as well as the best prior chosen retrospectively.

2 Related work

One approach to setting the hyperparameters of priors involves using hierarchical Bayesian models (?). In
this line of work, the prior’s hyperparameters are treated as unknown and assigned a prior with hyperpriors
to be determined. ? employs this method for introducing hierarchical Poisson factorization, and ? applies
it to gene signature discovery from scRNAseq data. Our work involves more expressive priors (mixtures),
which leads to a more flexible class of models while keeping a simpler model as no extra variables for the
hyperparameters are introduced.

A fruitful direction of research for setting priors for matrix factorization has also been the use of empirical
Bayes, a methodology by which one tries to find the prior that matches, in some sense, the population
distribution of the data. In ?, the authors formulate prior elicitation for matrix factorization (MF) as steps
in a variational expectation maximization algorithm, and in that context, find that it is equivalent to solving
the EB normal means (EBNM) problem (?). Our proposed approach is closely related to ?, but we propose
to update both priors simultaneously which bypasses potentially costly numerical integration required in the
EBNM step. A related line of research makes the connection to EBNM via random-matrix theory, focusing
specifically on denoising principal components (?). Closely related to TwinEB, ? optimizes hyperparameters
to match the prior predictive distribution to statistics computed from the data, and derives closed-form
solutions for PMF and its hierarchical extensions. In Section ??, we compare our method to ? and ?.

Empirical Bayes (EB) priors have been explored in the context of variational autoencoders (VAEs) (?) under
the name aggregated posterior, average encoding distribution (?) or VampPrior (?). The VampPrior learns
an amortized posterior and a prior over the latent variables using a shared neural network. It models a prior
on the rows only and was used to address posterior collapse (?) or to learn disentangled representations (?).
Our method focuses on matrix factorization, and we derive EB priors for both row and column latent
variables.
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3 Empirical Bayes priors for probabilistic matrix factorization

Our goal is to develop empirical Bayes (EB) priors for Bayesian matrix factorization models. We will focus
here on Poisson matrix factorization (PMF). In the supplement, we derive EB priors for Gaussian matrix
factorization (GMF).

With matrix factorization, the presence of repeated and identically distributed latent variables for each row
and each column provides the opportunity to learn their prior distribution from data. This is a form of
empirical Bayes (??) that prescribes a population prior (see ??).

This population prior aims to align the model’s marginal distribution of observations with the observed
population distribution. In the special case of matrix factorization, there are two distinct populations: the
populations of row vectors, and the population of column vectors. With TwinEB, we learn one prior for each
population. This is a form of hierarchical modeling without introducing an extra layer of latent variables.

Notations. Define [N ] := 1, . . . , N . Let X = [Xi,j ] ∈ NN×D represent the measured feature j in individual

:::
We

:::::::
employ

:::::::::
boldface

:::::::
symbols

:::
to

::::::::::
distinguish

:::::::
vectors

::::
from

:::::::
scalars.

::::
We

::::::::::::
recapitualate

::::
the

::::::::
notations

:::::::
below:

•
:::::::::::
X ∈ NN×D:

:::
the

:::::::::
observed

::::
data

:::::::
matrix;

:::::
Xi,j ::

is
:::
the

:::::
entry

:::
in

::::
row i , where i ∈ [N ] and j ∈ [D]. The

dimension of the latent variables (
:::
and

:::::::
column

::
j.
:

•
::
N

::::
the

:::::::
number

:::
of

::::
rows

::::::
(e.g.,

::::::::::::
individuals),

::
D

:
the number of factors)is denoted as

:::::::
columns

::::::
(e.g.,

::::::::
features).

:

•
:::::::::
P ⋆

row(Xi,:)::
is

:::
the

:::::::::
unknown

:::::::::::
distribution

::
of

:::::
rows

:::::::
vectors,

::::
and

:::::::::
P ⋆

col(X:,j)
::::
the

:::
one

:::
of

::::::::
columns.

:

•
:::::::
Ui ∈ RL

::::
and

::::::::
Vj ∈ RL

::::
are

:::::
model

::::::
latent

::::::::
variables

::::
for

:::
row

::
i
::::
and

:::::::
column

::
j;

::
of

::::::::::
dimension L.

•
:
π
::
is
::::
the

:::::
prior

::::::::::
distribution

:::
of

:::
the

::::::
latent

:::::::::
variables.

:

3.1 Background: Population priors for simple hierarchical models

::
In

::::
this

::::::
paper,

::
we

:::::::
assume

::
to

:::::
have

::::
data

:::
X

::::
that

::
is

::::::
drawn

::::
from

:::
an

:::::::
unkown

:::::::::::
distribution

:::
P ⋆,

::::
also

:::::
called

::::::::::
population

::::::::::
distribution

:
,
::::
that

:::
we

::::::
would

:::
like

:::
to

::::::
model

::::
with

::
a

:::::::::::
probabilistic

::::::
model

:::::::::
consisting

:::
of

:::::
latent

:::::::::
variables

::
Z,

::
a
:::::
prior

::::
over

:::
the

::::::
latent

::::::::
variables

:::
π,

:::
and

::
a
:::::::::
likelihood

::::::::
function

::::::::::
P (X | Z).

:

A crucial step in Bayesian statistics is the choice of the prior distribution; if done arbitrarily, it can lead
to suboptimal posterior inference (?). We choose to follow an empirical Bayes principle that prescribes a
population prior (??). This prior, by design, aligns the model’s marginal distribution of observations with
the population distribution

::::::
P ⋆(X).

We first focus on a family of latent variable models called simple hierarchical models (?). The joint distri-
bution factorizes as follows:

P (Z, X) =
N∏

i=1
Pππ

:
(zi)P θ(xi | zi), (4)

where θ and Z = [zi] are global and local latent variables respectively and observations X = [xi] are
exchangeable conditioned on the latent variables. The variable π indexes the

:
π

::
is

::::
the

:
prior distribution

of zi. We assume that the global latent variables are fixed (e.g., they are learned through MAP estimation).
We use a subscript notation to indicate fixed variables. To further

::
To

:
simplify notations, we

::::
then

:
focus on

the marginal likelihood of a single observation, x, and its corresponding local latent variable z.

Let P ⋆(x) be the true (unobserved) distribution of observations. An empirical Bayes criterion is that the
marginal distribution of observations under the model, Pπ,θ,(x), should align

:::::::
denoted

:::
as

::::::
Pπ(x),

:::::::
should

3
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:::::
match

:
with their true population distribution

:::::
P ⋆(x) (?), that is:

P ⋆(x) = P π,θπ
:
(x)

=
∫

Pππ
:
(z)P θ(x | z) dz.

(5)

Our goal is to set π such that , for a fixed θ,
:
π

::::
such

:::::
that Equation (??) holds. For a fixed likelihood function

Pθ(x | z) (i.e., θ is fixed), the
:::
The

:
expression for the prior Pπ⋆

:
π
:
that satisfies this conditions is:

Pπ⋆π
:
(z) ≈

∫
P π,θπ

:
(z | x)P ⋆(x)dx

= EP ⋆(x)[Pπ,θ(z | x)]P ⋆(x)[Pπ(z | x)]
:::::::::::::

,
(6)

where Pπ,θ(z | x)
::::::::
Pπ(z | x)

:
is the (local) posterior distribution of the latent variable z given the observation

x under the model. The definition presents two issues: the unknown true marginal
:::::::::
population

:
distribution

P ⋆(x), and the fact that the target prior Pπ⋆(z)
:
π

:
is on both sides of Equation (??), explicitly on the left

and implicitly via the posterior on the right. The research literature has approximated Equation (??) with
Monte Carlo estimates of P ⋆(x) and variational inference of P (z | x)

::::::::
Pπ(z | x) (??).

3.2 Population priors for probabilistic matrix factorization

Our goal is to develop population priors for Bayesian matrix factorization models. The challenge is that
unlike simple hierarchical models, there is no distinction between local and global random variables, rather
latent variables denote row- and column-specific random variables.

3.2.1 Twin population priors

We establish population priors for two latent variables, one for the rows PV ⋆(Ui) :::::
latent

::::::::
variables

::
of

:::
the

:::::
rows

::::::::
πrow(Ui) and one for the columns PU⋆(Vj)

::::::
latent

::::::::
variables

::
of

::::
the

:::::::
columns

::::::::
πcol(Vj). These priors will match

two different populations, one of the row vectors and one of the column vectors:

P ⋆
row(Xi,:) := Population distribution of row vectors

P ⋆
col(X:,j) := Population distribution of column vectors

We
::::
recall

:::::
that

:::
the

:::::::::::
populations

::::::::::::
distributions

:::
are

:::::::::
unkowns

:::::::::::
distribution,

:::::
from

::::::
which

::::
rows

::::
are

:::::::
samples

:::
as

:::
we

::::::
gather

:::::
more

:::::::::::
observations

::::
and

::::::::
columns

:::
are

:::::::
samples

:::
as

:::
we

::::::
gather

:::::
more

::::::::
features.

:

:::
We begin with population priors for row latent variables. As in section ??, we specify the prior based on an
empirical Bayes principle such that the true marginal distribution of the rows P ⋆

row(Xi,:) is aligned with the
distribution of the rows under the modelPV (Xi,:), that is:

P ⋆
row(Xi,:) = PV ()=

∫
Pπrow(Ui)

D∏
j=1

P (Xi,j | Ui, Vj)dUi, (7)

for a fixed set of column variables V . For Equation (??) to hold, a population prior should be used:

PV ⋆πrow(Ui;V ) = EP ⋆
row(Xi,:)[P V πrow

:::
(Ui | Xi,:,V )]., (8)

:::::
where

:::
we

::::::::
explicted

::::
the

::::::::::
dependence

:::
of

:::
the

:::
EB

:::::
prior

:::
on

:::
the

:::::::
column

::::::
latent

::::::::
variables

:::
V .

:
Similarly for columns,

for a fixed set of row latent variables U , the empirical Bayes criterion is:

P ⋆
col(X:,j) = PU ()=

∫
P (Vi)

N∏
i=1

P Uj
(Xi,j | Ui,V j)dV ij . (9)
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The prior that satisfies this criterion is the column population prior:

PU⋆πcol(Vj ;U) = EP ⋆
col(X:,j)[P U πcol

::
(Vj | X:,j ,U)]. (10)

Since there are two populations in need of prior specification, we call Equations (?? and ??) the twin
population priors.

We have established the form of population priors in probabilistic matrix factorization. Next we focus on
how to estimate the twin population priors and how to approximate posterior inference under them.

In the remainder of the paper, we focus on the Poisson matrix factorization (PMF). We derive the priors for
Gaussian matrix factorization (GMF) in the supplement.

3.3 Twin EB prior for Poisson matrix factorization

In Poisson matrix factorization (PMF), the row and column latent variables Ui and Vi are non-negative
L-vectors and the likelihood in Equation (??) is Poisson:

Xi,j | Ui, Vj ∼ Poisson
(
UT

i Vj

)
, (11)

for i ∈ [N ], j ∈ [D].

The log-likelihood of the data is:

log P (X | U , V ) = log
N∏

i=1

D∏
j=1

P (Xi,j | Ui, Vj)

=
N,D∑
i,j

log Poisson
(
Xi,j ; UT

i Vj

)
.

(12)

Some methods place Gamma priors on Vj and Ui (?). Note that this is a Bayesian formulation of non-
negative matrix factorization (?).

To compute the population prior for the rows, PV (Ui) = EP ⋆
row(Xi,:)[PV (Ui | Xi,:)]::::::::::::::::::::::::::::::::

πrow(Ui) = EP ⋆
row(Xi,:)[PV (Ui | Xi,:)],

we face two problems. Namely, we do not know the true population distribution of the rows P ⋆
row(Xi,:), and

the population prior PV (Ui) appears on both sides of the equality.

To find the population prior, we first notice that a Monte Carlo estimate of ?? writes as:

PV πrow(Ui;V ) ≈ 1
N

N∑
i′=1

PV (Ui | Xi′,:,V ). (13)

When the prior satisfies Equation (??), this property is called self-consistency (?).

The structure of Equations (??) suggests to use families of mixtures of parametric distributions to approxi-
mate the row and column population priors (?). Mixtures can approximate complex distributions when their
number of components increases while having the convenience of remaining parametric (??). We choose to
model the priors as,

::::
with

:::
as,

:

PV πrow(Ui) := P θr θrow
:::

(Ui): =
Kr∑
k=1

πω
:kPµk,σk

(Ui), (14)

PU πcol(Vj) := P θc θcol
::

(Vj): =
Kc∑

k=1
ρkPνk,ηk

(Vj), (15)

where Kr and Kc are the number of components in the mixtures, θr = {µ, σ, π} and
θc = {ν, η, ρ}

::::::::::::::
θrow = {µ, σ, ω}

::::
and

::::::::::::::
θcol = {ν, η, ρ}. The locations µ ∈ RKr×L and ν ∈ RKc×L, the scales

5
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Figure 1: Twin population priors for Poisson matrix factorization model. Shaded nodes are
observed while other nodes represent latent random variables. The empty squares indicate that we will fit
these priors to the data.

σ ∈ RKr×L and η ∈ RKc×L, and the mixture weights π ∈ ∆Kr
::::::::
ω ∈ ∆Kr

:
and ρ ∈ ∆Kc are the parameters of

the mixtures priors. As Kr and Kc increase, the priors become more and more expressive (see Figure ??).
Figure ?? shows a graphical model representation of matrix factorization with EB priors.

In a classical empirical Bayes setup, the idea is to set the priors that maximize the marginal likelihood of
the data:

θ̂row
::

, θ̂col
::

= arg max θr,θc θrow,θcol
::::::

log P (X; θrθrow, θcθcol), (16)

where

log P (X; θrθrow, θcθcol) = log
∫

P θr θrow
:::

(U)P θc θcol
::

(V )P (X | U , V ) dUdV . (17)

In ??, we find θr, θc
::::::::
θrow, θcol ::

at the same time as we approximate the model posterior
P (U , V | X; θr, θc)

::::::::::::::::::::
P (U , V | X; θrow, θcol).

3.4 Posterior inference in PMF with twin EB priors

Given data X, our goal is to calculate the posterior P (U , V | X; θr, θc)
::::::::::::::::::::
P (U , V | X; θrow, θcol), which also

depends on our choice of priors θr, θc
:::::::
θrow, θcol. The challenges are that this posterior is intractable (for any

prior) and we simultaneously want to fit the priors to satisfy the EB criterion in ??.

Our strategy will be as follows. We will use variational inference (VI) (?) to approximate the posterior,
taking gradient steps in the variational objective with respect to the posterior approximation (the variational
family). At the same time, however, the variational objective of VI is an approximation (lower bound) of
the log-marginal from ??. So we also take gradient steps with respect to the EB priors to maximize it. The
result is an algorithm that simultaneously approximates the posterior and learns the EB prior.

The variational posterior. Consider a parameterized mean-field variational family,

qΛ(U , V | X) =
∏
i,l

qλr
i,l

(Ui,l)
∏
j,l

qλc
j,l

(Vj,l), (18)

This family has parameters for each row’s latent vector and each column’s latent vector, λr
i and λc

i respec-
tively. We further define Λr := [λr

i,l], and Λc := [λc
j,l]. The full set of variational parameters is Λ = {Λr, Λc}.

6
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From the perspective of posterior inference, our goal is to set qΛ to minimize the KL divergence to the exact
posterior:

Λ̂ = arg min
Λ

KL(qΛ; P (U , V | X; θrθrow, θcθcol)). (19)

In detail, the variational family is a bank of Log-Normals:

λr
i,l := (a′

i,l, b′
i,l), (20)

λc
j,l := (aj,l, bj,l), (21)

qλr
i,l

(Ui,l) := LN (a′
i,l, b′

i,l), (22)
qλc

j,l
(Vj,l) := LN (aj,l, bj,l). (23)

Each Log-Normal is parameterized by its natural parameters a and b:

LN (x; a, b) ∝ exp
(
− a

2b
log(x)− (log x)2

2b

)
.

To minimize the KL divergence in ??, VI optimizes the variational parameters Λ to, equivalently, maximize
the evidence lower bound (ELBO) (?):

L(X; Λ, θrθrow, θcθcol) = EqΛ(U ,V | X)[log P (X | U , V )]

+ EqΛ [log P (U ; θr, θc) + log P (V ; θr, θc)]qΛ [log P (U ; θrow, θcol) + log P (V ; θrow, θcol)]
:::::::::::::::::::::::::::::::::::::

− EqΛ [log qΛ(U , V | X)]. (24)

Here
:
,
:
we use gradient ascent to maximize L(X; θ, Λ) with respect to Λ (?). We further use stochastic

reparameterization gradients to take such steps (??).

Maximum marginal likelihood. At the same time, we would like to set the prior parameters to maximize
the marginal likelihood of the data (??). The variational objective in ?? conveniently also provides a lower-
bound on the marginal likelihood (?):

log P (X; θrθrow, θcθcol) ≥ L(X; θ, Λ). (25)

So, we will also follow stochastic gradients of the ELBO with respect to the prior parameters θr, θc
:::::::
θrow, θcol

to maximize L(X; θ, Λ) with respect to θr, θc
:::::::
θrow, θcol. This strategy has been used in the context of linear

regression (?).

Twin EB. Putting these two pieces together, our algorithm is a stochastic gradient ascent of the ELBO
with respect to two sets of parameters. In optimizing with respect to Λ, we minimize the KL divergence
between qΛ and the posterior; in optimizing with respect to θr, θc

:::::::
θrow, θcol, we maximize the (approximate)

marginal likelihood of the data.

We use the Adam algorithm for stochastic optimization (?) with a batch size of 128, and using ten particles
to obtain unbiased noisy estimates of the gradient of the ELBO via the reparameterization trick (the particles
are samples from qΛ to estimate the expectation EqΛ of the ELBO with Monte-Carlo).

The details of the algorithm are in Algorithm ??. Our implementation is available at git@github.com:
xxx/xxx.git.
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Algorithm 1 Variational inference for Poisson matrix factorization with twin EB priors
Input: Data X, number of particles S, learning rate ζ, number of iterations T , number of components
Kr, Kc, number of latent dimensions L.
Output: Variational posterior parameters Λ∗, prior parameters θr∗, θc∗

::::::::::
θrow

∗, θcol
∗.

Initialize: Λ(0), θr(0), θc(0)
::::::::::::
θrow

(0), θcol
(0).

for t = 1 to T do
for i = 1 to N , l = 1 to L do

for s = 1 to S do
Sample ϵ

(s)
i,l ∼ N (0, 1).

Compute U
(s)
i,l = exp(a′(t−1)

i,l + b′(t−1)
i,l ϵ

(s)
i,l ).

end for
end for
for j = 1 to D, l = 1 to L do

for s = 1 to S do
Sample ϕ

(s)
j,l ∼ N (0, 1).

Compute V
(s)

j,l = exp(a(t−1)
j,l + b

(t−1)
j,l ϕ

(s)
j,l ).

end for
end for
Estimate L(X; θrt−1, θc(t−1), Λ(t−1))

::::::::::::::::::::::::::
L(X; θrow

t−1, θcol
(t−1), Λ(t−1))

::
using Monte-Carlo in Equa-

tion (??) with samples U (s), V (s) in place of EqΛ .
Λ(t), θr(t), θc(t) ← Adam(∇(θr,θc,Λ)L, ζ)

:::::::::::::::::::::::::::::::::::::::
Λ(t), θrow

(t), θcol
(t) ← Adam(∇(θrow,θcol,Λ)L, ζ).

end for
return Λ(T ), θr(T ), θc(T )

::::::::::::::::::
Λ(T ), θrow

(T ), θcol
(T ).

4 Experiments

We studied Algorithm ?? in several real-world matrix factorization settings: book ratings, movie ratings,
artist preferences, and single-cell RNA sequence gene counts. For all datasets, we studied both Gaussian
and Poisson matrix factorization. In all datasets, we set L = 15. We found that TwinEB performs as well
or better than manually searching for a parameterized prior, and performs as well or better than setting a
simple parameterized prior by empirical Bayes.

4.1 Datasets

In this section we first review four real-world datasets, ranging from user-preferences to genomics, and then
explore the impact of twin population priors on the performance of Gaussian and Poisson matrix factorization.
In our experiments, we fix the number of row and column mixtures to Kr = 70 and Kc = 100 respectively.

MovieLens 1M. This dataset comprises 1 million ratings from 6,000 users (rows) on 4,000 movies
(columns) (?). The ratings are on a scale of 1 to 5. Sparsity of this dataset, defined as the number of
nonzero elements divided by the total number of entries, is 0.04. We can use matrix factorization to capture
different aspects of user preferences and movie characteristics. Specifically, Ui,l may signify user i’s affinity
for aspect l (e.g., genre), while Vj,l may represent the degree to which movie j exhibits aspect l.

Ru1322b. We analyze single cell gene expression data from a patient with small cell lung cancer (?). This
dataset comprises 4,000 highly variable genes (columns) across 5,308 cells (rows). For the GMF family, we
applied a two-step transformation. First, we performed a log transformation on the counts after adding a
pseudo-count of one. Then, we standardized the non-zero elements. Sparsity of this dataset is 0.16. Each
entry of the matrix denotes the number of transcripts of gene j in cell i. We explain the gene expression
matrix via L gene-modules, with Ui,l as the activity of module l in cell i, and Vj,l as gene j’s contribution
to module l. Matrix factorization can be used as exploratory data analysis (finding gene modules associated
with malignancy in cancer) or as a component in a more complex analysis (causal inference (?)). See the
supplement for details on preprocessing of the sequencing data.
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MovieLens-1M

Ru1322b

UserArtists

GoodBooks

Figure 2: Twin population priors induce robustness to prior selection The held-out likelihood is
sensitive to the choice of the prior hyper-parameters. GMF endowed with population priors on both row and
column latent variables, TwinEB (GMF), achieves comparable or better results than other methods. Each
sub-panel displays held-out log-likelihood from adjusting the column prior variance with a fixed row prior,
while the right sub-panel does the opposite, varying the row prior variance with a constant column prior.
We demonstrate four datasets, from the top to bottom, MovieLens 1M, Ru1322b-scRNAseq, UserArtists,
and GoodBooks. In all datasets, we set L = 15. Similar results hold for other values of L (see supplement).

UserArtists We use the data introduced in ?, comprising 92,834 user-listened artist relations, across 1,892
users and 17,632 artists, with a maximum value of 352, 698. Similar to MovieLens 1M, we use matrix
factorization to explain different aspects of user preferences and artist groupings. Sparsity of this dataset is
0.003. We note that this dataset was analyzed in ?.

GoodBooks Contains 6 million ratings across 51,288 users and 10,000 books1. Ratings range from 1 to 5.
Sparsity of this dataset is 0.01.

4.2 Evaluation Metric and Baselines

We evaluate each model based on the likelihood of held-out data. For a given row-wise data split into held-in
and held-out rows, let =//{ i} denote the set of Nout masked entries of the held-out rows. We estimate the

1Accessed at https://github.com/zygmuntz/goodbooks-10k
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held-out log-likelihood as follows:

1
Nout

Nout∑
i=1

log P ( i | X in) ≈ (26)

1
Nout

Nout∑
i=1

log 1
M

M∑
m=1

P ( i | U (m), V (m)), (27)

where M is the number of Monte Carlo samples from qΛ(U , V ).

We randomly assign 20% of the rows as the test set, and the rest as training data. We then mask 20% of the
entries at random, and train the model on this train set using ten random restarts. We use the 20% masked
entries as a validation set. At test time, we put aside 30% of the entries of the test rows at random - these
entries constitute the test set - then we train the model on 40% of the rest of the entries. This procedure
measures strong generalization (?).

To compute the held-out likelihood, after training the model on the held-in data, we fix its column parameters
and then learn row parameters of the held-out rows. We then report the likelihood of the masked entries in
the test set. For each model, we report the test HOLL of the random restart that achieved the best validation
HOLL. In our experiments, we set M = 500. See the supplement for the derivation of Equation (??) and
more details on the experiments.

Baseline. We evaluate the performance of the PMF (GMF) model with TwinEB against multiple baselines,
namely (i) TwinEB-Single, (ii) PMF (GMF). The former is a simple form of TwinEB where all latent
dimensions have an identical prior, which we learn. The latter is a prior of the same family as the TwinEB,
but with fixed hyperparameters. We compare TwinEB against a large choice of fixed parameters, akin to
hyperparameter selection.

4.3 Results: Gaussian Matrix Factorization

We preprocess the data as follows. We standardize each column by subtracting the mean from non-zero
entries and dividing the result by their standard deviation. We study two scenarios: (i) maintaining a fixed
prior on row-wise variables while varying the prior on column-wise variables, and (ii) holding the prior on
column-wise variables constant and adjusting the prior on row-wise variables. We set the variational family
as well as the mixture components for the population priors to be Gaussian. We set the fixed prior to
N (1.0, 1.0) and vary the variance of the non-fixed one over {0.001, 0.01, 0.1, 1.0, 10}.

We compared the GMF model to TwinEB (GMF) and TwinEB-Single (GMF). We treat zero entries as
missing values.

Figure ?? displays the outcomes for four real-world datasets. In GoodBooks and MovieLens-1M datasets,
TwinEB achieves the highest test HOLL. For the UserArtists dataset, TwinEB does better than the fixed
prior. Similar results were obtained by varying L to other values and are reported in Figures ??, ?? in ??.

We also compare to the method of ?, we used the corresponding package flashr, that currently supports
GMF. We designed an imputation experiment where we held-out 10% of entries of a standardized matrix,
and compare reconstruction accuracy on non-zero enteries. We applied flashr to the above four real-world
datasets. flashr crashes on all but the least sparse dataset, Ru1322b. For the Ru1322b dataset it achieves
a mean absolute error of 0.64 vs 0.51 for the TwinEB. We note that it is not straightforward to compare
our method to that of ?; the software implementation does not immediately support missing data and
imputation.

4.4 Results: Poisson Matrix Factorization

For the MovieLens 1M and GoodBooks datasets, we binarize the matrix, setting entries to ’one’ if a user has
rated a movie and to ’zero’ otherwise. For the Ru1322b dataset, we normalize the rows such that the sum of
all rows are equal; we then round each value to the nearest integer. This is to account for the effect of library

10
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MovieLens-1M

Ru1322b

UserArtists

GoodBooks

Figure 3: Twin population priors induce robustness to prior selection. As in Figure ??, but for
PMF.

size (?). We treat zeros as missing data. In all models, we set the variational family to be Log-Normal,
and the prior (or the mixture components for the population priors) to be Gamma. Similar to GMF, we
vary the row or column prior parameters, while keeping the other one fixed. We parameterize the Gamma
prior by its mean and variance Gamma(µ, σ2), where µ = α/β and σ2 = α/β2. In each scenario, we set the
fixed prior to Gamma(1, 10). For the varying prior, we set its mean to µ = 1 and change its variance along
{0.01, 0.1, 0.25, 1.0, 10.0, 100.0}. Figure ?? shows the results.

In datasets except for GoodBooks, TwinEB outperforms TwinEBSingle. In the UserArtists dataset, TwinEB
outperforms other methods. TwinEB, on average, takes about 1.5X the runtime of PMF (ranging form 1.1X
to 2.1X). We point out that finding a good prior using grid-search incurs the sum of the cost of evaluations
of the individual points in the grid, over 6.5X the running time of the PMF with TwinEB prior. We note
that using a grid to find fixed priors (or alternatively, learning the scalar prior) does not guarantee reaching
a best test HOLL. Indeed in the UserArtists dataset, TwinEB yields the best test HOLL.

We also compared TwinEB to the method of ?; given the data, it estimates values for the shape and
rate parameters of the Gamma prior for both the row and column r.v.s. Table ?? displays the estimated
hyperparameters and the resulting test HOLL.

PMF equipped with fixed priors values calculated from this methods yields Test HOLL that are on par or
slightly worse than the TwinEB method. This method yielded negative hyperparameter estimates for the

11
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Simulated Data - Study of K

Figure 4: Increasing the number of mixtures improves the model performance. Each line shows
the average test-HOLL over 10 seeds for a fixed value for Kc, the number of column mixtures, and varying
values of Kr, the number of row mixtures. Here, we set L = 64 to its true simulated value. The results are
similar for L = 32 (see supplement).

MovieLens-1M and GoodBooks datasets. These parameters are effectively not usable, since the parameters
of a Gamma must be positive. Hence, we emphasize that unlike ours, this methods cannot be used on all
datasets.

Table 1: Test Heldout Loglikelihood from running PMF with prior hyperparameters sets using the method
of ?. For MovieLens-1M and GoodBooks datasets, ? yielded inadmissible hyperparameters.

test HOLL
Dataset ? TwinEB
Ru1322b -9.53 -9.46
UserArtists -1,583 -1,481
MovieLens-1M NA -3.04
GoodBooks NA -3.95

4.5 Simulation: Complexity of the Prior

Here
:
, we examine the performance of the population priors as the number of mixture components are varied.

To this end, we simulate a 1, 000 by 1, 500 dataset, with L = 64 dimensional row and column-wise r.v.s. We
sample the row- and column-wise r.v.s from a mixture of 15 and 20 Gamma distributions respectively, the
rate and shape parameters of which are sampled from a Gamma(1, 1). The mixture weights are sampled
from a Dirichlet(e0, . . . , e0) where the concentration parameter is e0 = 10.

Performance Increase with Number of Mixture Components. The more mixture components, the
more flexible the EB prior is. If learning a EB prior is beneficial, then we expect the performance to increase
with the number of mixture components. We run PMF with population priors with varying number of row
and column mixtures, setting the dimension of the latent variable to its true value, and, to avoid model
misspecification, set the mixture prior family to Gamma. We then report the average of the test HOLL
across ten different seeds. Figure ??, the log-likelihood of test held-out data increases with the number of
mixture components in the row prior.

12
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5 Discussion

We introduced the twin population priors for probabilistic matrix factorization. We derived a method to
estimate the corresponding posterior using Monte Carlo and variational inference. On real-world data, this
method finds a prior as good as the best parametric prior chosen retrospectively.

One area of further work is to extend this algorithm to tensor factorization (??). While in matrix factoriza-
tion, each entry of the observed matrix is explained via two latent variables, tensor factorization models will
involve more. One detail to address is how to formally define the population distribution associated with
each.

Broader Impact Statement

The authors do not foresee any negative impact of this work.
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A Introduction

This is the supplement for the manuscript titled "Population priors for matrix factorization". The figures in
this document supplement Figures 2, 3, and 4 in the main text. We provide derivations for twin population
priors for Gaussian matrix factorization, as well as computing the likelihood of the held-out data in section ??.
We then give more details about our experimental setup, including the parameters used in training (e.g.,
batch-size) in section ??. Finally, we provide results for additional experiments in section ??: for additional
values of the latent dimension L for the datasets studied in the main text.

Note that this document is accompanied by an archive file code.zip, that contains the source code, in-
structions to install and run the code, and scripts to recreate the experiments and plot the figures in the
manuscript. All scripts have been de-identified.

B Derivations

In this section, we give more details and derivations for the quantities defined in the main text. Specifically,
in section ?? we derive the twin population priors for the Gaussian matrix factorization (GMF). In section ??,
we derive the variational approximation to the twin population priors in GMF. Finally, in section ??, we
derive the expression for held-out likelihood in matrix factorization.

B.1 Twin population priors for Gaussian matrix factorization

In this section we derive population priors for Gaussian matrix factorization (GMF). In the classical GMF,
the likelihood and priors on the latent variables are Gaussian (?). The generative model is as follows:

Wj,l ∼ N (0, σ2
W ), j = 1 . . . D, l = 1 . . . L,

Zi,l ∼ N (0, σ2
Z), i = 1 . . . N, l = 1 . . . L,

Xi,j | Ui, Vj ∼ N (
L∑

l=1
Zi,lWjl, σ2), i = 1 . . . N, j = 1 . . . D,

(28)

where U = [Zi,l] ∈ RN×L and [Wj,l] ∈ RD×L, with Ui and Vj and are L-vectors representing the row and
column wise latent variables, and σ, σW and σZ are constant.

For TwinEB, our goal is to learn the prior for the row and column latent variables, so, as in the main text,
we construct mixture priors (Equations ?? and ??), where Pµk,σk

and Pνk,ηk
are Gaussian parameterized

by their mean and scale parameters. That is,

Pθr (Ui) =
Kr∑
k=1

πω
:kN (Ui; µk, σk), (29)

Pθc(Vj) =
Kc∑

k=1
ρkN (Vj ; νk, ηk), (30)

(31)

where Kr and Kc are the number of components in the mixtures, θr = {µ, σ, π}
::::::::::::
θr = {µ, σ, ω}

:
and θc =

{ν, η, ρ}. The locations µ ∈ RKr×L and ν ∈ RKc×L, the scales σ ∈ RKr×L and η ∈ RKc×L, and the mixture
weights π ∈ ∆Kr

:::::::
ω ∈ ∆Kr

:
and ρ ∈ ∆Kc are the parameters of the mixtures priors.

B.2 Posterior inference in GMF with twin population priors

Our goal is to calculate the posterior P (U , V | X.θr, θc), given data X, which also depends on our choice
of priors θr, θc. Our strategy is the same as in the main text, namely, to simultaneously optimize for the
parameters of the variational distribution and the TwinEB prior. We substitute the variational family in
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Equations (??) and (??) with Gaussian, as follows:

λr
i,l := (a′

i,l, b′
i,l), (32)

λc
j,l := (aj,l, bj,l), (33)

qλr
i,l

(Ui,l) := N (a′
i,l, b′

i,l), (34)
qλc

j,l
(Vj,l) := N (aj,l, bj,l). (35)

Each Gaussian is parameterized by its natural parameters a and b:

N (x; a, b) ∝ exp
(
ax + bx2)

The log-likelihood of the data is:

log P (X | Z, W ) = log
N∏

i=1

D∏
j=1

Pσ(Xi,j | Zi, Wj)

=
N∑

i=1

D∑
j=1

logN
(

Xi,j ;
L∑

l=1
Zi,lWj,l, σ2

)

= −
N∑

i=1

D∑
j=1

log σ
√

2π + 1
2

(
Xi,j −

∑L
l=1 Zi,lWj,l

σ

)2
 .

(36)

B.3 Held-out likelihood for matrix factorization

We use the log likelihood of held-out data as the score for each model. Let =//{Xi,j} denote Nout entries
of the held-out rows that were masked. We compute the likelihood of the masked entries via the posterior
predictive distribution:

log P ( |//X in) = log
Nout∏
i=1

P ( i | X in) (37)

=
Nout∑
i=1

log P ( i | X in). (38)

For Bayesian matrix factorization we expand the summand in Equation (??) as follows:

log P ( i | X in) ≈ log
∫∫

P ( i | U , V )P (U , V | X in)dUdV (39)

≈ log
∫∫

P ( i | U , V )qΛ(U , V | X in)dUdV (40)

= log E
U ,V ∼qΛ(.)

[P ( i | U , V )] (41)

≈ log 1
M

M∑
m

P ( i | U (M), V (M)), (42)

where M is the number of Monte Carlo samples from qΛ(U , V | X in). In Equation (??) we approximate
the true posterior P (U , V | X in) with its variational counterpart qΛ. The log-likelihood score for the entire
held-out data is then:

Nout∑
i

log P ( i | X in) ≈
Nout∑

i

log 1
M

M∑
m

P ( i | U (M), V (M)). (43)
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C Experimental details

In this section we give more details on our experimental studies in the main manuscript. In section ?? we
describe preprocessing for the gene expression in the Ru1322-scRNAseq dataset. In section ??, we specify
the parameters used during training. In section ?? we give a brief description of the artifacts that accompany
this supplementary material.

C.1 Preprocessing of the Ru1322-scRNAseq gene expression dataset

We use CellRanger version 6.0.1 to process the FASTQ and generate the unique molecular identifier (UMI)
count matrices. We use scanpy to preprocess the data, and the seuratv3 algorithm to select highly variable
genes ?.

C.2 Training details

We set a batch size of 128 in all our experiments. We ran Poisson and Gaussian matrix factorization
experiments for a maximum of 20, 000 iterations. By this step, all runs had converged.

We initialized the learning rate for the row and column variables, rlr and clr separately. We fix the initial
learning rate rlr ∈ {0.01} and clr ∈ {0.01}. In the experiments in the main text, we use 10 Monte Carlo
samples to approximate the ELBO, while in the supplemental experiments, we use a single particle.

For the PMF experiments in the supplement, we subsample zeros as is standard (?). We uniformly randomly
subsample the same number of zeros as non-zero values to estimate the likelihood. Concretely, let L()/ denote

the log-likelihood of the masked entries of the held-out rows, =//{Xi,j}. Then L()/ can be decomposed as the
sum of non-zero and zero Xi,j :

L()/ = L( xi,j ̸= 0) + L( xi,j = 0), (44)

where xi,j ̸= 0 and xi,j = 0 have cardinalities Nout
non-zero and Nout

zero respectively.

We approximate Equation (??) by subsampling Nsub = min(Nout
zero, Nout

non-zero) of the zeros. Let Xzero
Nsub

denote
a multiset of zeros of cardinality Nsub, then:

L̂()/≈ L( xi,j ̸= 0) + Nout
zero

Nsub
Xzero

Nsub
. (45)

We ran our experiment on a machine equipped with an NVIDIA A100 GPU with 80GB memory. We imple-
mented all methods in pytorch (?).

C.3 Implementation

Please refer to the code directory for the source code and instructions on how to run the model. The file
README.md contains instructions for installing the software, and running it. Under the data directory, we
included preprocessed data for the MovieLens-100K dataset, a smaller version of the MovieLens-1M studied
in the main text. In the notebooks directory, we put notebooks used for preprocessing the data, and plotting
the figures in the manuscript. Finally, in the pipelines directory, we put nextflow scripts that recreate
experiments that we have run for the manuscript.

D Additional experiments

In this section we present additional experimental results. We show results for additional values of the
latent dimension L. Concretely, section ?? studies the effects of the twin population priors on Poisson and
Gaussian matrix factorization, on three real world datasets, while section ?? examines the sensitivity of the
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twin population priors to the choice of its hyper-parameters. We find that these results corroborate those
that were presented in the main manuscript, that is, matrix factorization with traditional priors is sensitive
to the choice of the hyper-parameters of the prior, and twin population priors is a robust way to set the
prior in this family of models.

D.1 Additional values of latent dimensions

In the main text, we study the effects of twin population priors on the Poisson and Gaussian matrix factor-
ization over four real datasets, with the dimension of the latent variables set to L = 15. Here we present
results for additional values of L. Figures ??, ??, ??, ??, and ?? show the results. However, the twin
population priors find a comparable or better prior, in the sense of higher held-out likelihood.

MovieLens-1M

L = 20
MovieLens-1M

Ru1322b

UserArtists

L = 30

Ru1322b

UserArtists

GoodBooks GoodBooks

Figure 5: As in Figure ??, but with additional values of latent dimension L.

D.2 Performance Increase with Number of Mixture Components

We show the performance of TwinEB on simulated data as we vary the number of row and column mixture
components . Here we add results for additional values of L, and also study the MovieLens 100K dataset.
The result in Figures ?? suggests that as the number of mixture components increases, the performance of
TwinEB improves. The gain is apparent when the number of row components Kr increases. This is expected,
as our evaluation procedure, measures the generalizability for held-out rows, but not held-out columns.
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MovieLens-1M

L = 40
MovieLens-1M

Ru1322b

UserArtists

L = 64

Ru1322b

UserArtists

GoodBooks GoodBooks

Figure 6: As in Figure ??, but with additional values of latent dimension L.
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MovieLens-1M

L = 20
MovieLens-1M

Ru1322b

UserArtists

L = 30

Ru1322b

UserArtists

GoodBooks GoodBooks

Figure 7: As in Figure ??, but with additional values of latent dimension L.
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MovieLens-1M

L = 40
MovieLens-1M
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UserArtists
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UserArtists

GoodBooks GoodBooks

Figure 8: As in Figure ??, but with additional values of latent dimension L.
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L = 32 L = 64

Figure 9: As in Figure ??, but with additional column components as well as latent dimension L = 32.
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